improving fm combiner/filter efficiency and size using non...

Post on 30-Apr-2020

10 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Improv ing FM Combiner /F i l te rE f f i c iency and S ize

Us ing Non-Conven t iona l Coup l ingC o r y E d w a r d sS a l e s M a n a g e r

2

Today’s Presentat ion

• Manifold / CIF Comparison

• Combining Requirements Each Technique

• Introduce Cross Coupling  for Efficiency

• Introduce New Source / Load Coupling

• Small Space (Less Poles)

• More Efficiency

• New 2 Channel Design

• Manifold Channel Limited?

Company Confidential

3

Eff iciency, Manifold or Direct ional

Manifold• More efficient• All channels same VSWR• All channels same loss• Mainline offers higher voltage safety margin• Compact, light and simple• Easy to assemble• Easy to test• Easily maintainable• Lower cost (by 60%)• Simple module design and installation• Expandable

Directional• Less efficient• VSWR degrades with distance • Loss degrades with distance• Hybrids limit voltage safety margin• Large, heavy and complex• Difficult to assemble• Difficult to test• Difficult to maintain• Higher cost• Part intense module design• Expandable

Company Confidential

4

Combining Requirement

Combiner abc’sCombiner abc’s

Junction Combiner Channel isolation for reduced IM products 40 dB

Directional Combiner Enough rejection for low loss combining 27 – 30 dB

Company Confidential

5

Combining Requirements1.6 MHz Spacing Example

Junction Combiner• Isolation entirely dependent on filter• ∴ 40 dB min filter rejection• 4‐pole required for 1.6 MHz spacing

Directional Combiner• Hybrids provide directionality, or 

isolation, ~ 30 dB• ∴ 27‐30 dB min filter rejection• 3‐pole required for 1.6 MHz spacing

Company Confidential

6

Chebyshev

Number of PolesChebyshev

Min. CH Spacing, MHz

Directional  Junction 2 8.4 9.03 1.6 2.44 .8 1.2

Combining Requirement Summary

Company Confidential

7

Current FM BroadcastFi l ter Topologies

Chebyshev

Lump element inductively coupled filter

• Sequentially coupled from input to output• Chebshev g number from lowpass prototype/closed form equations• Normalized coupling coefficients, Mi,j determined• Coupling bandwidth given by dF1,2 = BWr * M1,2 

1 2 3

,1

Coupling routing diagram

S 1 2 3 L

dF1,2 dF2,3

1 2 31 0 M1,2 02 M1,2 0 M2,33 0 M2,3 0

Company Confidential

8

• More recently, X‐coupled filters have been used to provide greater rejection

• Filters designed using insertion loss theory

= ∙∙∙ ∙∙∙

• Tri‐Section, normalized coupling coefficients extracted from polynomials

1 2 31 0 M1,2 M1,32 M1,2 0 M2,33 M1,3 M2,3 0Places zero above passband

S L

2

31

increasedincreasedreducedreduced

Tri‐Section

Current FM BroadcastFi l ter Topologies X-Coupled

Company Confidential

9

Source multi‐resonator coupling provides 2 transmission zeros

New Source/LoadMult i -Resonator Coupling

Key benefits

• Tighter channel spacing for given filter order

• Efficiency gain

• Size reduction

• Easy implementation

S 1 2 3 LS 0 1.36 0 ‐.052 01 1.36 0 1.47 0 02 0 1.47 0 1.41 03 ‐.052 0 1.41 0 1.39L 0 0 0 1.39 0

S L

2

31

Company Confidential

10

ExampleWhere this Technique was used

• Miami

• Small space for combiner

• TX has very little head room

• A frequency might be added Later

Company Confidential

11

• 99.1 MHz, high power • No Tx headroom• 3‐pole filters to minimize loss• 101.5 MHz may come in later• NEED < .1dB loss• Space constraints

Manifold

New S o u r c e / L o a d M u l t i - R e s o n a t o r C o u p l i n gS o l u t i o n f o r a n E f f i c i e n c y P r o b l e m

99.1MHz

105.1MHz

97.3MHz

93.1MHz

99.1MHz

97.3MHz

101.5MHz

n = 3VSWR =  1.05BWr = 550kHzLa = .128 dB

105.1MHz

93.1MHz

Company Confidential

12

• 24” Cavity• 3‐pole red• 4‐pole blue

New S o u r c e / L o a d M u l t i - R e s o n a t o r C o u p l i n gL o s s v s B a n d w i d t h

Loss vs BWr

Need ≈ 1 MHz BWr

Chebyshev

Company Confidential

13

New S o u r c e / L o a d M u l t i - R e s o n a t o r C o u p l i n gS o l u t i o n t o E f f i c i e n c y P r o b l e m

n = 3VSWR =  1.12BWr = 1150kHzLa = .06 dB

S 1 3

2

L

Company Confidential

14

Multi‐channel site in Miami

• Source multiple coupling used on a 3‐pole filter to provide transmission zeros and allow wider bandwidth to increase efficiency

• Filter loss:< .16 dB w/o X‐coupling< .06 dB with X‐coupling 

Efficiency improvement with wider bandwidth

New S o u r c e / L o a d M u l t i - R e s o n a t o r C o u p l i n gS o l u t i o n t o E f f i c i e n c y P r o b l e m

S 1 3

2

L

Company Confidential

15

Efficiency improvement with wider bandwidth

New S o u r c e / L o a d M u l t i - R e s o n a t o r C o u p l i n gS o l u t i o n t o E f f i c i e n c y P r o b l e m

Multi‐channel site in Miami

• Source multiple coupled MODULE loss:  .08dB

Company Confidential

16

New Design for 2 Sta t ion Combin ing

• Auburn

• Small space for combiner

• Very Tight timeline

• Limited resources on site

Company Confidential

17

Manifold Combiner

2‐Channel Manifold

• Filters placed ≈ n λ/2 from junctions

• Tees spaced ≈ n λ/2 

• Short ≈ n λ/4 from Tee

• Short can be replaced w filter to eliminate a Tee

Company Confidential

18

Load Mult iple Coupling Combiner

LPFM Common Case Combiner

• Simplified design• Elimination of Tees and delay lines• One filter “box”

• Band tunable• Tee/delay line design not easily tuned• Spacing set by rejection levels

• Lower cost• Reduced part count• Same design for all channels• Less labor: manufacture, assemble, test

• Easy Install• Smaller size• Space limited sites

Company Confidential

19

LPFM Common Case Combiner, Test Results

Product highlights

• 3‐pole design

• 96.1 MHz and 98.5 MHz

• Loss < .45 dB

• VSWR  < 1.08:1

• Isolation >  40dB

Company Confidential

20

Manifold Limitat ions

• Project

• Small space for combiner

• 19 channels

• Very close spacing of channels

Company Confidential

21

Manifold Combiner, How Many CH’s?

19 CH FM combiner, 800 kHz spacing

10 channels, 1.6 MHz spaced (odd channels)

9 channels, 1.6 MHz spaced (even channels)

Feeding RHCP and LHCP antenna

IBOC compatible

4‐Pole Filter Size and Loss

24” 14” 9” 5.5”Power* 23kW 15kW 5kW 1.3kWLoss .25dB .35dB .45dB .68dB

*Convection cooled

Company Confidential

22

Manifold CombinerLumped Element Model

10 channels, 1.6 MHz spaced

IBOC compatible

Company Confidential

23

Manifold Combiner Lumped Element Model , Optimized Results

Company Confidential

24

Manifold Combiner, w/o “drip loops”

Company Confidential

25

Actual Data after Optimizat ion, Return Loss

‐30 dB

Company Confidential

26

Actual Data after Optimizat ion, VSWR

1.06:1

Company Confidential

27

Actual Data after Optimizat ion, Transmission, WXRK, 92.3 MHz

92.3MHz .72dB

Filter Loss ≈ .68dB

Combiner Loss

Company Confidential

28

Actual Data after Optimizat ion, Transmission, WNYC, 93.9 MHz

92.3 MHz .72dB93.9 MHz .79dB

Filter Loss ≈ .68dB

Combiner Loss

Company Confidential

29

Actual Data after Optimizat ion, Transmission, WXNY, 96.3 MHz

92.3 MHz .72dB93.9 MHz .79dB96.3 MHz .72dB

Filter Loss ≈ .68dB

Combiner Loss

Company Confidential

30

Actual Data after Optimizat ion, Transmission, WSKQ, 97.9 MHz

92.3 MHz .72dB93.9 MHz .79dB96.3 MHz .72dB97.9 MHz .76dB

Filter Loss ≈ .68dB

Combiner Loss

Company Confidential

31

Actual Data after Optimizat ion, Transmission, WBAI, 99.5 MHz

92.3 MHz .72dB93.9 MHz .79dB96.3 MHz .72dB97.9 MHz .76dB99.5 MHz .75dB

Filter Loss ≈ .68dB

Combiner Loss

Filter Loss ≈ .68dB

Combiner Loss

Company Confidential

32

Actual Data after Optimizat ion, Transmission, WCBS, 101.1 MHz

92.3 MHz .72dB93.9 MHz .79dB96.3 MHz .72dB97.9 MHz .76dB99.5 MHz .75dB101.1 MHz .80dB

Filter Loss ≈ .68dB

Combiner Loss

Company Confidential

33

Actual Data after Optimizat ion, Transmission, WNEW, 102.7 MHz

92.3 MHz .72dB93.9 MHz .79dB96.3 MHz .72dB97.9 MHz .76dB99.5 MHz .75dB101.1 MHz .80dB102.7 MHz .83dB

Filter Loss ≈ .68dB

Combiner Loss

Company Confidential

34

Actual Data after Optimizat ion, Transmission, WAXQ, 104.3 MHz

92.3 MHz .72dB93.9 MHz .79dB96.3 MHz .72dB97.9 MHz .76dB99.5 MHz .75dB101.1 MHz .80dB102.7 MHz .83dB104.3 MHz .75dB

Filter Loss ≈ .68dB

Combiner Loss

Company Confidential

35

Actual Data after Optimizat ion, Transmission, WQXR, 105.9 MHz

92.3 MHz .72dB93.9 MHz .79dB96.3 MHz .72dB97.9 MHz .76dB99.5 MHz .75dB101.1 MHz .80dB102.7 MHz .83dB104.3 MHz .75dB105.9 MHz .77dB

Filter Loss ≈ .68dB

Combiner Loss

Company Confidential

36

Actual Data after Optimizat ion, Transmission, WBLS, 107.5 MHz

92.3 MHz .72dB93.9 MHz .79dB96.3 MHz .72dB97.9 MHz .76dB99.5 MHz .75dB101.1 MHz .80dB102.7 MHz .83dB104.3 MHz .75dB105.9 MHz .77dB107.5 MHz .70dB

Filter Loss ≈ .68dB

Combiner Loss

Company Confidential

37

Actual Data after Optimizat ion, Transmission, X-coupled

X‐Coupledf0 +/‐ .8 MHz

Manifold Isol. 35 dBAntenna Isol.* 25 dBTx turn‐around loss 20 dBFilter rejection 35 dBIM Suppression 115 dB

* Antenna isolation typically > 30dB

Company Confidential

38

Actual Data after Optimizat ion, Isolat ion, X-coupled

Company Confidential

39

10 Channel FM ManifoldDesign/Performance

Actual Duration Times:

• Lumped element design in ANSYS – 2 days

• Mechanical design – 1 day

• Manufacturing – 10 days

• Individual filter tuning – 0.5 days

• 10 channel manifold assembly/test – 0.5 day

Company Confidential

40

Manifold Combiner Benefi ts

Specification Manifold CIF (# of modules from output)

VSWR < 1.06:1 < 1.1;1 (1st , takes a beating for others )< 1.16:1  ( 10th, pays dearly for position)

Loss, f0 < .35 dB < .35 dB (1st and keeping quite about it)< .95 dB (10th no beer money left)

• Better impedance for transmitters at ALL channels• Higher efficiency for ALL broadcasters• Lower initial cost• Lower operating cost• Design/component simplicity• Reduced size

Company Confidential

41Company Confidential

top related