improving fm combiner/filter efficiency and size using non...

41
Improving FM Combiner/Filter Efficiency and Size Using Non-Conventional Coupling Cory Edwards Sales Manager

Upload: others

Post on 30-Apr-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

Improv ing FM Combiner /F i l te rE f f i c iency and S ize

Us ing Non-Conven t iona l Coup l ingC o r y E d w a r d sS a l e s M a n a g e r

Page 2: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

2

Today’s Presentat ion

• Manifold / CIF Comparison

• Combining Requirements Each Technique

• Introduce Cross Coupling  for Efficiency

• Introduce New Source / Load Coupling

• Small Space (Less Poles)

• More Efficiency

• New 2 Channel Design

• Manifold Channel Limited?

Company Confidential

Page 3: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

3

Eff iciency, Manifold or Direct ional

Manifold• More efficient• All channels same VSWR• All channels same loss• Mainline offers higher voltage safety margin• Compact, light and simple• Easy to assemble• Easy to test• Easily maintainable• Lower cost (by 60%)• Simple module design and installation• Expandable

Directional• Less efficient• VSWR degrades with distance • Loss degrades with distance• Hybrids limit voltage safety margin• Large, heavy and complex• Difficult to assemble• Difficult to test• Difficult to maintain• Higher cost• Part intense module design• Expandable

Company Confidential

Page 4: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

4

Combining Requirement

Combiner abc’sCombiner abc’s

Junction Combiner Channel isolation for reduced IM products 40 dB

Directional Combiner Enough rejection for low loss combining 27 – 30 dB

Company Confidential

Page 5: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

5

Combining Requirements1.6 MHz Spacing Example

Junction Combiner• Isolation entirely dependent on filter• ∴ 40 dB min filter rejection• 4‐pole required for 1.6 MHz spacing

Directional Combiner• Hybrids provide directionality, or 

isolation, ~ 30 dB• ∴ 27‐30 dB min filter rejection• 3‐pole required for 1.6 MHz spacing

Company Confidential

Page 6: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

6

Chebyshev

Number of PolesChebyshev

Min. CH Spacing, MHz

Directional  Junction 2 8.4 9.03 1.6 2.44 .8 1.2

Combining Requirement Summary

Company Confidential

Page 7: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

7

Current FM BroadcastFi l ter Topologies

Chebyshev

Lump element inductively coupled filter

• Sequentially coupled from input to output• Chebshev g number from lowpass prototype/closed form equations• Normalized coupling coefficients, Mi,j determined• Coupling bandwidth given by dF1,2 = BWr * M1,2 

1 2 3

,1

Coupling routing diagram

S 1 2 3 L

dF1,2 dF2,3

1 2 31 0 M1,2 02 M1,2 0 M2,33 0 M2,3 0

Company Confidential

Page 8: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

8

• More recently, X‐coupled filters have been used to provide greater rejection

• Filters designed using insertion loss theory

= ∙∙∙ ∙∙∙

• Tri‐Section, normalized coupling coefficients extracted from polynomials

1 2 31 0 M1,2 M1,32 M1,2 0 M2,33 M1,3 M2,3 0Places zero above passband

S L

2

31

increasedincreasedreducedreduced

Tri‐Section

Current FM BroadcastFi l ter Topologies X-Coupled

Company Confidential

Page 9: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

9

Source multi‐resonator coupling provides 2 transmission zeros

New Source/LoadMult i -Resonator Coupling

Key benefits

• Tighter channel spacing for given filter order

• Efficiency gain

• Size reduction

• Easy implementation

S 1 2 3 LS 0 1.36 0 ‐.052 01 1.36 0 1.47 0 02 0 1.47 0 1.41 03 ‐.052 0 1.41 0 1.39L 0 0 0 1.39 0

S L

2

31

Company Confidential

Page 10: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

10

ExampleWhere this Technique was used

• Miami

• Small space for combiner

• TX has very little head room

• A frequency might be added Later

Company Confidential

Page 11: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

11

• 99.1 MHz, high power • No Tx headroom• 3‐pole filters to minimize loss• 101.5 MHz may come in later• NEED < .1dB loss• Space constraints

Manifold

New S o u r c e / L o a d M u l t i - R e s o n a t o r C o u p l i n gS o l u t i o n f o r a n E f f i c i e n c y P r o b l e m

99.1MHz

105.1MHz

97.3MHz

93.1MHz

99.1MHz

97.3MHz

101.5MHz

n = 3VSWR =  1.05BWr = 550kHzLa = .128 dB

105.1MHz

93.1MHz

Company Confidential

Page 12: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

12

• 24” Cavity• 3‐pole red• 4‐pole blue

New S o u r c e / L o a d M u l t i - R e s o n a t o r C o u p l i n gL o s s v s B a n d w i d t h

Loss vs BWr

Need ≈ 1 MHz BWr

Chebyshev

Company Confidential

Page 13: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

13

New S o u r c e / L o a d M u l t i - R e s o n a t o r C o u p l i n gS o l u t i o n t o E f f i c i e n c y P r o b l e m

n = 3VSWR =  1.12BWr = 1150kHzLa = .06 dB

S 1 3

2

L

Company Confidential

Page 14: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

14

Multi‐channel site in Miami

• Source multiple coupling used on a 3‐pole filter to provide transmission zeros and allow wider bandwidth to increase efficiency

• Filter loss:< .16 dB w/o X‐coupling< .06 dB with X‐coupling 

Efficiency improvement with wider bandwidth

New S o u r c e / L o a d M u l t i - R e s o n a t o r C o u p l i n gS o l u t i o n t o E f f i c i e n c y P r o b l e m

S 1 3

2

L

Company Confidential

Page 15: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

15

Efficiency improvement with wider bandwidth

New S o u r c e / L o a d M u l t i - R e s o n a t o r C o u p l i n gS o l u t i o n t o E f f i c i e n c y P r o b l e m

Multi‐channel site in Miami

• Source multiple coupled MODULE loss:  .08dB

Company Confidential

Page 16: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

16

New Design for 2 Sta t ion Combin ing

• Auburn

• Small space for combiner

• Very Tight timeline

• Limited resources on site

Company Confidential

Page 17: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

17

Manifold Combiner

2‐Channel Manifold

• Filters placed ≈ n λ/2 from junctions

• Tees spaced ≈ n λ/2 

• Short ≈ n λ/4 from Tee

• Short can be replaced w filter to eliminate a Tee

Company Confidential

Page 18: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

18

Load Mult iple Coupling Combiner

LPFM Common Case Combiner

• Simplified design• Elimination of Tees and delay lines• One filter “box”

• Band tunable• Tee/delay line design not easily tuned• Spacing set by rejection levels

• Lower cost• Reduced part count• Same design for all channels• Less labor: manufacture, assemble, test

• Easy Install• Smaller size• Space limited sites

Company Confidential

Page 19: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

19

LPFM Common Case Combiner, Test Results

Product highlights

• 3‐pole design

• 96.1 MHz and 98.5 MHz

• Loss < .45 dB

• VSWR  < 1.08:1

• Isolation >  40dB

Company Confidential

Page 20: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

20

Manifold Limitat ions

• Project

• Small space for combiner

• 19 channels

• Very close spacing of channels

Company Confidential

Page 21: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

21

Manifold Combiner, How Many CH’s?

19 CH FM combiner, 800 kHz spacing

10 channels, 1.6 MHz spaced (odd channels)

9 channels, 1.6 MHz spaced (even channels)

Feeding RHCP and LHCP antenna

IBOC compatible

4‐Pole Filter Size and Loss

24” 14” 9” 5.5”Power* 23kW 15kW 5kW 1.3kWLoss .25dB .35dB .45dB .68dB

*Convection cooled

Company Confidential

Page 22: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

22

Manifold CombinerLumped Element Model

10 channels, 1.6 MHz spaced

IBOC compatible

Company Confidential

Page 23: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

23

Manifold Combiner Lumped Element Model , Optimized Results

Company Confidential

Page 24: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

24

Manifold Combiner, w/o “drip loops”

Company Confidential

Page 25: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

25

Actual Data after Optimizat ion, Return Loss

‐30 dB

Company Confidential

Page 26: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

26

Actual Data after Optimizat ion, VSWR

1.06:1

Company Confidential

Page 27: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

27

Actual Data after Optimizat ion, Transmission, WXRK, 92.3 MHz

92.3MHz .72dB

Filter Loss ≈ .68dB

Combiner Loss

Company Confidential

Page 28: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

28

Actual Data after Optimizat ion, Transmission, WNYC, 93.9 MHz

92.3 MHz .72dB93.9 MHz .79dB

Filter Loss ≈ .68dB

Combiner Loss

Company Confidential

Page 29: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

29

Actual Data after Optimizat ion, Transmission, WXNY, 96.3 MHz

92.3 MHz .72dB93.9 MHz .79dB96.3 MHz .72dB

Filter Loss ≈ .68dB

Combiner Loss

Company Confidential

Page 30: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

30

Actual Data after Optimizat ion, Transmission, WSKQ, 97.9 MHz

92.3 MHz .72dB93.9 MHz .79dB96.3 MHz .72dB97.9 MHz .76dB

Filter Loss ≈ .68dB

Combiner Loss

Company Confidential

Page 31: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

31

Actual Data after Optimizat ion, Transmission, WBAI, 99.5 MHz

92.3 MHz .72dB93.9 MHz .79dB96.3 MHz .72dB97.9 MHz .76dB99.5 MHz .75dB

Filter Loss ≈ .68dB

Combiner Loss

Filter Loss ≈ .68dB

Combiner Loss

Company Confidential

Page 32: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

32

Actual Data after Optimizat ion, Transmission, WCBS, 101.1 MHz

92.3 MHz .72dB93.9 MHz .79dB96.3 MHz .72dB97.9 MHz .76dB99.5 MHz .75dB101.1 MHz .80dB

Filter Loss ≈ .68dB

Combiner Loss

Company Confidential

Page 33: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

33

Actual Data after Optimizat ion, Transmission, WNEW, 102.7 MHz

92.3 MHz .72dB93.9 MHz .79dB96.3 MHz .72dB97.9 MHz .76dB99.5 MHz .75dB101.1 MHz .80dB102.7 MHz .83dB

Filter Loss ≈ .68dB

Combiner Loss

Company Confidential

Page 34: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

34

Actual Data after Optimizat ion, Transmission, WAXQ, 104.3 MHz

92.3 MHz .72dB93.9 MHz .79dB96.3 MHz .72dB97.9 MHz .76dB99.5 MHz .75dB101.1 MHz .80dB102.7 MHz .83dB104.3 MHz .75dB

Filter Loss ≈ .68dB

Combiner Loss

Company Confidential

Page 35: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

35

Actual Data after Optimizat ion, Transmission, WQXR, 105.9 MHz

92.3 MHz .72dB93.9 MHz .79dB96.3 MHz .72dB97.9 MHz .76dB99.5 MHz .75dB101.1 MHz .80dB102.7 MHz .83dB104.3 MHz .75dB105.9 MHz .77dB

Filter Loss ≈ .68dB

Combiner Loss

Company Confidential

Page 36: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

36

Actual Data after Optimizat ion, Transmission, WBLS, 107.5 MHz

92.3 MHz .72dB93.9 MHz .79dB96.3 MHz .72dB97.9 MHz .76dB99.5 MHz .75dB101.1 MHz .80dB102.7 MHz .83dB104.3 MHz .75dB105.9 MHz .77dB107.5 MHz .70dB

Filter Loss ≈ .68dB

Combiner Loss

Company Confidential

Page 37: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

37

Actual Data after Optimizat ion, Transmission, X-coupled

X‐Coupledf0 +/‐ .8 MHz

Manifold Isol. 35 dBAntenna Isol.* 25 dBTx turn‐around loss 20 dBFilter rejection 35 dBIM Suppression 115 dB

* Antenna isolation typically > 30dB

Company Confidential

Page 38: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

38

Actual Data after Optimizat ion, Isolat ion, X-coupled

Company Confidential

Page 39: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

39

10 Channel FM ManifoldDesign/Performance

Actual Duration Times:

• Lumped element design in ANSYS – 2 days

• Mechanical design – 1 day

• Manufacturing – 10 days

• Individual filter tuning – 0.5 days

• 10 channel manifold assembly/test – 0.5 day

Company Confidential

Page 40: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

40

Manifold Combiner Benefi ts

Specification Manifold CIF (# of modules from output)

VSWR < 1.06:1 < 1.1;1 (1st , takes a beating for others )< 1.16:1  ( 10th, pays dearly for position)

Loss, f0 < .35 dB < .35 dB (1st and keeping quite about it)< .95 dB (10th no beer money left)

• Better impedance for transmitters at ALL channels• Higher efficiency for ALL broadcasters• Lower initial cost• Lower operating cost• Design/component simplicity• Reduced size

Company Confidential

Page 41: Improving FM Combiner/Filter Efficiency and Size Using Non ...nationaltranslatorassociation.org/upload/2016Papers/CoryEdwards... · Improving FM Combiner/Filter Efficiency and Size

41Company Confidential