haruo yasuda & herman lee - ncsu

Post on 11-May-2022

6 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Haruo Yasuda & Herman Lee Department of Astronomy, Kyoto university, Japan; yasuda@kusastro.kyoto-u.ac.jp

12) Time evolution of broadband non-thermal emission from supernova remnants in different circumstellar environments

Introduction

Method�:�CR-Hydrodynamics

Supernova remnants (SNRs) are thought to be one of the major acceleration sites of galactic cosmic rays (CRs) and emit broadband non-thermal electromagnetic radiation owing to their interactions with the interstellar matters (ISM) or circumstellar matter (CSM).

・π0 decay  : interaction between CR-proton and ISM/CSM gas

・Inverse Compton (IC)   : interaction between CR-electron and low-energy photon

γ

γ

π0

gas p+

CR p+

CR e-

high γlow γ (Cosmic Microwave Background radiation; CMB)

Epeak ∼ 1 keV

Epeak ∼ 1 TeV

× (Ee,max

10 TeV )2

( B10 μG )

2

× (Ee,max

10 TeV )2

IC

Synchrotron

EF(E

)[

MeV

cm−

2s−

1]

E [ eV ]1012109106 101510310010−310−610−9

10−2

10−5

10−8

∼ 10 TeV (Ep,max

100 TeV )2

π0 decay

@mπc2 ∼ 200 MeVCutoff

Epeak

EF(E

)[

MeV

cm−

2s−

1]

E [ eV ]1012109106 101510310010−310−610−9

10−5

10−8

10−2

spectral�shape

adiabatic cooling

non-thermal    cooling

p [ mpc ]

p4f(

p)[

cgs

]

10−3 10310010−6

10−21

10−18

10−24

radiation�cooling

∂n(E)∂t

= −dEdt

n(E) + Q(E)

Synchrotron IC

π0

Brems

EF(E

)[

MeV

cm−

2s−

1]

E [ eV ]101210910610310010−310−610−9

10−2

10−5

10−8

non-thermal�emissions

Ptot(x) ≡ Pg(x) + PCR(x) + PB(x)

PCR(x) =4π3 ∫

pmax

pinj

p3v fp(x, p) dp, PB(x) =B(x)2

CR magnetic

feedback�of�CR

gas

γeff

γeff − 1Ptot =

γgas

γgas − 1Pgas +

γCR

γCR − 1PCR

(ii)�effective�specific�ratio������:�γeff

(i)�total�pressure�������:�Ptot

・modify�hydro�eqs.�&�EoS�����������������������using�CR�pressure

50 yr 500 yr

5,000 yr1.0 cm−30.1 cm−30.01 cm−3

EF(E

)[

MeV

cm−

2s−

1]

E [ eV ]

10−6

10−9

10−3

101210910610310010−310−6 101210910610310010−310−6 101210910610310010−310−6

nISM =

10−6M⊙/yr10−5M⊙/yr 10−4M⊙/yr 50 yr

500 yr5,000 yr

EF(E

)[

MeV

cm−

2s−

1]

E [ eV ]

10−6

10−9

10−3

101210910610310010−310−6 101210910610310010−310−6 101210910610310010−310−6

·M =

Calibration�test

https://www.nasa.gov/mission_pages/GLAST/news/cosmic-rays-source.html

Cassiopeia A

γ-ray

γ-rayX-ray

radio

Multi-wavelength�observation�of�SNRs

Emission�mechanisms�of�γ-ray

i) < 1,000 yr

ii) < 5,000 yriii) > 10,000 yr

EF(E

)[

MeV

cm−

2s−

1]

E [ eV ] 1012109107 1015

10−3

10−5

10−8

i) < 1,000 yr : π0 decay (hadronic)? ii) < 5,000 yr : IC (leptonic)? iii) > 10,000 yr : π0 decay (hadronic)

●�Questions�:�

・We develop the hydro code which can self-consistently solve the hydrodynamics coupling with effective particle acceleration.

Rsk, Vsk, Tage, B0, T0fp(x, p), fe(x, p)

i) uniform model ii) power-law model

To�fix�many�SNR�and�DSA�parameters,�we�reproduce��the�hydro�and�multi-wavelength�observations�at�the�same�time.

Results:time-evolution�of�SED

ρ[

gcm

−3

]

E [ eV ]

R [ pc ]

EF(E

)[

MeV

cm−

2s−

1]

10−25

10−23

10−24

54321

10−2

10−5

10−8

101210910610310010−310−6

Tycho (446yr)

π0 decaySynchrotron

ρ[

gcm

−3

]

E [ eV ]

R [ pc ]

EF(E

)[

MeV

cm−

2s−

1]

10−25

10−24

10−26

109876 11

101210910610310010−310−6

10−2

10−5

10−8

RX J1713 (1625yr)

ICsynchrotron

leptonicmixed

10−6 M⊙/yr leptonic

hadronichadronic

mixedhadronic leptonic

mixed10−5 M⊙/yr10−4 M⊙/yr

50 yr 5,000 yr500 yr

leptonicmixed hadronic

0.01 cm−3

0.1 cm−3

1.0 cm−3

leptonicleptonicleptonic

hadronichadronichadronic

Tage = > 10,000 yr

leptonichadronic hadronicNo obs.

uniform ISM

power-law CSM

previous picture

Summary

constantly increase・π0 decay :

shift to lower energy・IC :

constantly decrease・π0 decay :

constantly increase・IC :

i) uniform model

ii) power-law model

(i) We�find�that�the�time-evolution�of�γ-ray�is�characterized�by������density�and�B-field�of�cirucmstellar�environment.(ii)�We�acquire�the�relationship�between�γ-ray�spectrum�and��������the�circumstellar�environment.

Environment�model

※ Full ionized gas is assumed

AcknowlegmentThis presentation is supported by the “UCHUGAKU” project of the Unit of Synergetic Studies for Space, Kyoto University.

Ptot, γeff

∂u∂t

= −∂Ptot

∂m

∂E∂t

= −∂(Ptotu)

∂m∂r∂m

=1

4πr2ρ

Hydrodynamics

Forward shock (FS)

Contact discontinuity (CD)

Reverse shock (RS)

ISM CSM

Supernova (SN) ejecta

ρ[

gcm

−3

]

R [ pc ]

E =12

ρu2 +Ptot

γeff − 1

・code : VH-1・spherical symmetric SN-like explosion→ two ejecta model (i) exponential (Dwarkadas+1998) (ii) power-law (Truelove+1999) {u(x) − vA(x)}

∂ f(x, p)∂x

− Q(x, p) =

diffusion

injection∂∂x {D(x, p)

∂ f(x, p)∂x } +

d{u(x) − vA(x)}dx

p3

∂ f(x, p)∂p

Nonlinear�diffusive�shock�acceleration�(NLDSA)

convection

Kep

fMB fNT p+

e-

p [ mpc ]

p4f(

p)[

cgs

]

・solve diffusion-convection equation at shock using semi-analytic model (Capliori+2010a,b)・“thermal-leakage” injection (Blasi+2004,2005)

−∞ 0+0− x

u(x)

u0

Upstream Downstream

Precursor

u1,TP

u2,TP

u1

u2

acceleration

・Magnetic field amplification (MFA) (Bell+1978a,b)

・considering energy-loss due to (i) non-thermal radiation (ii) adiabatic expansion

・4-components as emission (i) π0 decay (ii) Synchrotron (iii) IC (iv) Bremsstrahlung

・We follow time-evolution of γ-ray from SNRs in different circumstellar environments.

R [ pc ]

ρ[

gcm

−3

]

B 0[

μG]

10−22

10−25

10−23

10−24

0 54321

10−5

10−6

10−7

B(r) = B0

ρ(r) = μHmpnISM

R [ pc ]

ρ[

gcm

−3

]

B 0[

μG]

10−22

10−25

10−23

10−24

0 54321

10−5

10−6

10−7

ρ(r) =·M

4πVw

1r2

B(r) =(σw

·MVw)1/2

r

・We prepare two environment models(i) uniform ISM model : the environment as Type Ia SN (ii) power-law CSM model : swept by stellar wind before CC SN

→ Free parameters : ejecta mass explosion energyMej, ESN,ISM number density magnetic fieldnISM, B0,CSM mass-loss rate wind velocity magnetization ratio·M, Vw, σw

(i) (ii)

↪︎ fixed from calibration test using observation data of SNRs except nISM, ·M

★Main results

These trends are affected by 2 factors : (i) shocked mass i.e. density (ii) energy-loss by

synchrotron i.e. B-field

②�Can�we�see�the�trend�in�observed�γ-ray?①�Whatʼs�the�origin�of�γ-ray�from�SNR?

③�What�makes�these�trend�if�exists?

top related