haruo yasuda & herman lee - ncsu

1
Haruo Yasuda & Herman Lee Department of Astronomy, Kyoto university, Japan; [email protected] 12) Time evolution of broadband non-thermal emission from supernova remnants in different circumstellar environments Introduction Method : CR-Hydrodynamics Supernova remnants (SNRs) are thought to be one of the major acceleration sites of galactic cosmic rays (CRs) and emit broadband non-thermal electromagnetic radiation owing to their interactions with the interstellar matters (ISM) or circumstellar matter (CSM). π 0 decay : interaction between CR-proton and ISM/CSM gas Inverse Compton (IC) : interaction between CR-electron and low-energy photon γ γ π 0 gas p+ CR p+ CR e- high γ low γ (Cosmic Microwave Background radiation; CMB) E peak 1 keV E peak 1 TeV × ( E e,max 10 TeV ) 2 ( B 10 μG ) 2 × ( E e,max 10 TeV ) 2 IC Synchrotron EF(E ) [ MeV cm 2 s 1 ] E [ eV ] 10 12 10 9 10 6 10 15 10 3 10 0 10 3 10 6 10 9 10 2 10 5 10 8 10 TeV ( E p,max 100 TeV ) 2 π 0 decay @ m π c 2 200 MeV CutoE peak EF(E ) [ MeV cm 2 s 1 ] E [ eV ] 10 12 10 9 10 6 10 15 10 3 10 0 10 3 10 6 10 9 10 5 10 8 10 2 spectral shape adiabatic cooling non-thermal cooling p [ m p c ] p 4 f ( p) [ cgs ] 10 3 10 3 10 0 10 6 10 21 10 18 10 24 radiation cooling n(E ) t = dE dt n(E )+ Q(E ) Synchrotron IC π 0 Brems EF(E ) [ MeV cm 2 s 1 ] E [ eV ] 10 12 10 9 10 6 10 3 10 0 10 3 10 6 10 9 10 2 10 5 10 8 non-thermal emissions P tot (x) P g (x)+ P CR (x)+ P B (x) P CR (x)= 4π 3 p max p inj p 3 vf p (x, p) dp, P B (x)= B(x) 2 8π CR magnetic feedback of CR gas γ eγ e1 P tot = γ gas γ gas 1 P gas + γ CR γ CR 1 P CR (ii) effective specific ratio : γ e(i) total pressure : P tot modify hydro eqs. & EoS using CR pressure 50 yr 500 yr 5,000 yr 1.0 cm 3 0.1 cm 3 0.01 cm 3 EF(E ) [ MeV cm 2 s 1 ] E [ eV ] 10 6 10 9 10 3 10 12 10 9 10 6 10 3 10 0 10 3 10 6 10 12 10 9 10 6 10 3 10 0 10 3 10 6 10 12 10 9 10 6 10 3 10 0 10 3 10 6 n ISM = 10 6 M /yr 10 5 M /yr 10 4 M /yr 50 yr 500 yr 5,000 yr EF(E ) [ MeV cm 2 s 1 ] E [ eV ] 10 6 10 9 10 3 10 12 10 9 10 6 10 3 10 0 10 3 10 6 10 12 10 9 10 6 10 3 10 0 10 3 10 6 10 12 10 9 10 6 10 3 10 0 10 3 10 6 · M = Calibration test https://www.nasa.gov/mission_pages/GLAST/news/cosmic-rays-source.html Cassiopeia A γ-ray γ-ray X-ray radio Multi-wavelength observation of SNRs Emission mechanisms of γ-ray i) < 1,000 yr ii) < 5,000 yr iii) > 10,000 yr EF(E ) [ MeV cm 2 s 1 ] E [ eV ] 10 12 10 9 10 7 10 15 10 3 10 5 10 8 i) < 1,000 yr : π 0 decay (hadronic)? ii) < 5,000 yr : IC (leptonic)? iii) > 10,000 yr : π 0 decay (hadronic) ● Questions : We develop the hydro code which can self-consistently solve the hydrodynamics coupling with effective particle acceleration. R sk , V sk , T age , B 0 , T 0 f p (x, p), f e (x, p) i) uniform model ii) power-law model To fix many SNR and DSA parameters, we reproduce the hydro and multi-wavelength observations at the same time. Results:time-evolution of SED ρ [ g cm 3 ] E [ eV ] R [ pc ] EF(E ) [ MeV cm 2 s 1 ] 10 25 10 23 10 24 5 4 3 2 1 10 2 10 5 10 8 10 12 10 9 10 6 10 3 10 0 10 3 10 6 Tycho (446yr) π 0 decay Synchrotron ρ [ g cm 3 ] E [ eV ] R [ pc ] EF(E ) [ MeV cm 2 s 1 ] 10 25 10 24 10 26 10 9 8 7 6 11 10 12 10 9 10 6 10 3 10 0 10 3 10 6 10 2 10 5 10 8 RX J1713 (1625yr) IC synchrotron leptonic mixed 10 6 M /yr leptonic hadronic hadronic mixed hadronic leptonic mixed 10 5 M /yr 10 4 M /yr 50 yr 5,000 yr 500 yr leptonic mixed hadronic 0.01 cm 3 0.1 cm 3 1.0 cm 3 leptonic leptonic leptonic hadronic hadronic hadronic T age = > 10,000 yr leptonic hadronic hadronic No obs. uniform ISM power-law CSM previous picture Summary constantly increase π 0 decay : shift to lower energy IC : constantly decrease π 0 decay : constantly increase IC : i) uniform model ii) power-law model (i) We find that the time-evolution of γ-ray is characterized by density and B-field of cirucmstellar environment. (ii) We acquire the relationship between γ-ray spectrum and the circumstellar environment. Environment model Full ionized gas is assumed Acknowlegment This presentation is supported by the “UCHUGAKU” project of the Unit of Synergetic Studies for Space, Kyoto University. P tot , γ eu t = P tot m E t = (P tot u) m r m = 1 4π r 2 ρ Hydrodynamics Forward shock (FS) Contact discontinuity (CD) Reverse shock (RS) ISM CSM Supernova (SN) ejecta ρ [ g cm 3 ] R [ pc ] E = 1 2 ρu 2 + P tot γ e1 code : VH-1 spherical symmetric SN-like explosion two ejecta model (i) exponential (Dwarkadas+1998) (ii) power-law (Truelove+1999) {u(x) v A (x)} f (x, p) x Q(x, p)= diffusion injection x { D(x, p) f (x, p) x } + d{u(x) v A (x)} dx p 3 f (x, p) p Nonlinear diffusive shock acceleration (NLDSA) convection K ep f MB f NT p+ e- p [ m p c ] p 4 f ( p) [ cgs ] solve diffusion-convection equation at shock using semi-analytic model (Capliori+2010a,b) “thermal-leakage” injection (Blasi+2004,2005) −∞ 0 + 0 x u(x) u 0 Upstream Downstream Precursor u u 2,TP u 1 u 2 acceleration Magnetic field amplification (MFA) (Bell+1978a,b) considering energy-loss due to (i) non-thermal radiation (ii) adiabatic expansion 4-components as emission (i) π 0 decay (ii) Synchrotron (iii) IC (iv) Bremsstrahlung We follow time-evolution of γ-ray from SNRs in different circumstellar environments. R [ pc ] ρ [ g cm 3 ] B 0 [ μG] 10 22 10 25 10 23 10 24 0 5 4 3 2 1 10 5 10 6 10 7 B(r)= B 0 ρ(r)= μ H m p n ISM R [ pc ] ρ [ g cm 3 ] B 0 [ μG] 10 22 10 25 10 23 10 24 0 5 4 3 2 1 10 5 10 6 10 7 ρ(r)= · M 4πV w 1 r 2 B(r)= (σ w · MV w ) 1/2 r We prepare two environment models (i) uniform ISM model : the environment as Type Ia SN (ii) power-law CSM model : swept by stellar wind before CC SN Free parameters : ejecta mass explosion energy M ej , E SN , ISM number density magnetic field n ISM , B 0 , CSM mass-loss rate wind velocity magnetization ratio · M, V w , σ w (i) (ii) fixed from calibration test using observation data of SNRs except n ISM , · M Main results These trends are affected by 2 factors : (i) shocked mass i.e. density (ii) energy-loss by synchrotron i.e. B-field ② Can we see the trend in observed γ-ray? ① Whatʼs the origin of γ-ray from SNR? ③ What makes these trend if exists?

Upload: others

Post on 11-May-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Haruo Yasuda & Herman Lee - NCSU

Haruo Yasuda & Herman Lee Department of Astronomy, Kyoto university, Japan; [email protected]

12) Time evolution of broadband non-thermal emission from supernova remnants in different circumstellar environments

Introduction

Method�:�CR-Hydrodynamics

Supernova remnants (SNRs) are thought to be one of the major acceleration sites of galactic cosmic rays (CRs) and emit broadband non-thermal electromagnetic radiation owing to their interactions with the interstellar matters (ISM) or circumstellar matter (CSM).

・π0 decay  : interaction between CR-proton and ISM/CSM gas

・Inverse Compton (IC)   : interaction between CR-electron and low-energy photon

γ

γ

π0

gas p+

CR p+

CR e-

high γlow γ (Cosmic Microwave Background radiation; CMB)

Epeak ∼ 1 keV

Epeak ∼ 1 TeV

× (Ee,max

10 TeV )2

( B10 μG )

2

× (Ee,max

10 TeV )2

IC

Synchrotron

EF(E

)[

MeV

cm−

2s−

1]

E [ eV ]1012109106 101510310010−310−610−9

10−2

10−5

10−8

∼ 10 TeV (Ep,max

100 TeV )2

π0 decay

@mπc2 ∼ 200 MeVCutoff

Epeak

EF(E

)[

MeV

cm−

2s−

1]

E [ eV ]1012109106 101510310010−310−610−9

10−5

10−8

10−2

spectral�shape

adiabatic cooling

non-thermal    cooling

p [ mpc ]

p4f(

p)[

cgs

]

10−3 10310010−6

10−21

10−18

10−24

radiation�cooling

∂n(E)∂t

= −dEdt

n(E) + Q(E)

Synchrotron IC

π0

Brems

EF(E

)[

MeV

cm−

2s−

1]

E [ eV ]101210910610310010−310−610−9

10−2

10−5

10−8

non-thermal�emissions

Ptot(x) ≡ Pg(x) + PCR(x) + PB(x)

PCR(x) =4π3 ∫

pmax

pinj

p3v fp(x, p) dp, PB(x) =B(x)2

CR magnetic

feedback�of�CR

gas

γeff

γeff − 1Ptot =

γgas

γgas − 1Pgas +

γCR

γCR − 1PCR

(ii)�effective�specific�ratio������:�γeff

(i)�total�pressure�������:�Ptot

・modify�hydro�eqs.�&�EoS�����������������������using�CR�pressure

50 yr 500 yr

5,000 yr1.0 cm−30.1 cm−30.01 cm−3

EF(E

)[

MeV

cm−

2s−

1]

E [ eV ]

10−6

10−9

10−3

101210910610310010−310−6 101210910610310010−310−6 101210910610310010−310−6

nISM =

10−6M⊙/yr10−5M⊙/yr 10−4M⊙/yr 50 yr

500 yr5,000 yr

EF(E

)[

MeV

cm−

2s−

1]

E [ eV ]

10−6

10−9

10−3

101210910610310010−310−6 101210910610310010−310−6 101210910610310010−310−6

·M =

Calibration�test

https://www.nasa.gov/mission_pages/GLAST/news/cosmic-rays-source.html

Cassiopeia A

γ-ray

γ-rayX-ray

radio

Multi-wavelength�observation�of�SNRs

Emission�mechanisms�of�γ-ray

i) < 1,000 yr

ii) < 5,000 yriii) > 10,000 yr

EF(E

)[

MeV

cm−

2s−

1]

E [ eV ] 1012109107 1015

10−3

10−5

10−8

i) < 1,000 yr : π0 decay (hadronic)? ii) < 5,000 yr : IC (leptonic)? iii) > 10,000 yr : π0 decay (hadronic)

●�Questions�:�

・We develop the hydro code which can self-consistently solve the hydrodynamics coupling with effective particle acceleration.

Rsk, Vsk, Tage, B0, T0fp(x, p), fe(x, p)

i) uniform model ii) power-law model

To�fix�many�SNR�and�DSA�parameters,�we�reproduce��the�hydro�and�multi-wavelength�observations�at�the�same�time.

Results:time-evolution�of�SED

ρ[

gcm

−3

]

E [ eV ]

R [ pc ]

EF(E

)[

MeV

cm−

2s−

1]

10−25

10−23

10−24

54321

10−2

10−5

10−8

101210910610310010−310−6

Tycho (446yr)

π0 decaySynchrotron

ρ[

gcm

−3

]

E [ eV ]

R [ pc ]

EF(E

)[

MeV

cm−

2s−

1]

10−25

10−24

10−26

109876 11

101210910610310010−310−6

10−2

10−5

10−8

RX J1713 (1625yr)

ICsynchrotron

leptonicmixed

10−6 M⊙/yr leptonic

hadronichadronic

mixedhadronic leptonic

mixed10−5 M⊙/yr10−4 M⊙/yr

50 yr 5,000 yr500 yr

leptonicmixed hadronic

0.01 cm−3

0.1 cm−3

1.0 cm−3

leptonicleptonicleptonic

hadronichadronichadronic

Tage = > 10,000 yr

leptonichadronic hadronicNo obs.

uniform ISM

power-law CSM

previous picture

Summary

constantly increase・π0 decay :

shift to lower energy・IC :

constantly decrease・π0 decay :

constantly increase・IC :

i) uniform model

ii) power-law model

(i) We�find�that�the�time-evolution�of�γ-ray�is�characterized�by������density�and�B-field�of�cirucmstellar�environment.(ii)�We�acquire�the�relationship�between�γ-ray�spectrum�and��������the�circumstellar�environment.

Environment�model

※ Full ionized gas is assumed

AcknowlegmentThis presentation is supported by the “UCHUGAKU” project of the Unit of Synergetic Studies for Space, Kyoto University.

Ptot, γeff

∂u∂t

= −∂Ptot

∂m

∂E∂t

= −∂(Ptotu)

∂m∂r∂m

=1

4πr2ρ

Hydrodynamics

Forward shock (FS)

Contact discontinuity (CD)

Reverse shock (RS)

ISM CSM

Supernova (SN) ejecta

ρ[

gcm

−3

]

R [ pc ]

E =12

ρu2 +Ptot

γeff − 1

・code : VH-1・spherical symmetric SN-like explosion→ two ejecta model (i) exponential (Dwarkadas+1998) (ii) power-law (Truelove+1999) {u(x) − vA(x)}

∂ f(x, p)∂x

− Q(x, p) =

diffusion

injection∂∂x {D(x, p)

∂ f(x, p)∂x } +

d{u(x) − vA(x)}dx

p3

∂ f(x, p)∂p

Nonlinear�diffusive�shock�acceleration�(NLDSA)

convection

Kep

fMB fNT p+

e-

p [ mpc ]

p4f(

p)[

cgs

]

・solve diffusion-convection equation at shock using semi-analytic model (Capliori+2010a,b)・“thermal-leakage” injection (Blasi+2004,2005)

−∞ 0+0− x

u(x)

u0

Upstream Downstream

Precursor

u1,TP

u2,TP

u1

u2

acceleration

・Magnetic field amplification (MFA) (Bell+1978a,b)

・considering energy-loss due to (i) non-thermal radiation (ii) adiabatic expansion

・4-components as emission (i) π0 decay (ii) Synchrotron (iii) IC (iv) Bremsstrahlung

・We follow time-evolution of γ-ray from SNRs in different circumstellar environments.

R [ pc ]

ρ[

gcm

−3

]

B 0[

μG]

10−22

10−25

10−23

10−24

0 54321

10−5

10−6

10−7

B(r) = B0

ρ(r) = μHmpnISM

R [ pc ]

ρ[

gcm

−3

]

B 0[

μG]

10−22

10−25

10−23

10−24

0 54321

10−5

10−6

10−7

ρ(r) =·M

4πVw

1r2

B(r) =(σw

·MVw)1/2

r

・We prepare two environment models(i) uniform ISM model : the environment as Type Ia SN (ii) power-law CSM model : swept by stellar wind before CC SN

→ Free parameters : ejecta mass explosion energyMej, ESN,ISM number density magnetic fieldnISM, B0,CSM mass-loss rate wind velocity magnetization ratio·M, Vw, σw

(i) (ii)

↪︎ fixed from calibration test using observation data of SNRs except nISM, ·M

★Main results

These trends are affected by 2 factors : (i) shocked mass i.e. density (ii) energy-loss by

synchrotron i.e. B-field

②�Can�we�see�the�trend�in�observed�γ-ray?①�Whatʼs�the�origin�of�γ-ray�from�SNR?

③�What�makes�these�trend�if�exists?