dual fuel engines latest developments

Post on 12-Feb-2017

260 Views

Category:

Documents

8 Downloads

Preview:

Click to see full reader

TRANSCRIPT

DUAL FUEL ENGINES

LATEST DEVELOPMENTS

Oskar Levander, Director, Concept design, MLS

HAMBURG, 27.9.2011

27 September 2011 1 © Wärtsilä Oskar Levander

Content

• Environmental and market drivers

• LNG as a marine fuel

• DF engines

• RoRo concept design

• Machinery and fuel comparison

• Conclusions

27 September 2011 2 © Wärtsilä Oskar Levander

Factor trends: Environment

27 September 2011 3 © Wärtsilä

LOCAL

GLOBAL

LOCAL

LOCAL

Acid rains

Tier II (2011)

Tier III (2016) NOx

Greenhouse effect

Under evaluation by IMO CO2

Acid rains

Sulphur content in fuel SOx

Direct impact on humans

Locally regulated

Particulate matter

Oskar Levander

Until now…..

27 September 2011 4 © Wärtsilä Oskar Levander

From now on….

Established Emissions Controlled Areas

Emissions Controlled Areas under consideration

27 September 2011 5 © Wärtsilä Oskar Levander

NOx reduction – IMO requirements and methods

0 200 400 600 800 1000 1200 1400 1600 1800 2000

6

8

10

12

14

16

18

2

0

Specific NOx emissions (g/kWh)

Rated engine speed (rpm)

Tier II (global 2011) Ships keel laid 2011 onwards

Engines > 130 kW

Tier III (ECAs 2016) Ships in designated

areas, keel laid 2016

onwards

Engines > 130 kW

Tier I (present) Ships built 2000 onwards

Engines > 130 kW

Retrofit: Ships built

1990 – 2000

Engines > 90 litres/cylinder

and > 5000 kW

Wärtsilä: RTA, W46, W64

Dry methods (engine optimization) - Concepts are ready

4

- SCR Catalyst

- Alternative pathways under

investigation (Combined measures)

27 September 2011 6 © Wärtsilä Oskar Levander

IMO Sulphur Limits

0,1%

4,5%

3,5%

1,5%

1,0%

0,5%

20

08

20

09

20

10

20

11

20

12

20

13

20

14

20

15

20

16

20

17

20

18

20

19

20

20

20

21

20

22

World

EU in ports

ECA

27 September 2011 7 © Wärtsilä Oskar Levander

Machinery options

Main options for operations inside ECA

– MGO + SCR

– HFO + Scrubber + SCR

– LNG

27 September 2011 Oskar Levander 8 © Wärtsilä

Greenhouse emission reductions

The society is demanding lower CO2 emissions from ships

IMO is trying to respond the demand by introducing guidelines for:

– Energy Efficiency Design Index (EEDI)

– Energy Efficiency Operational Index (EEOI)

– Market based instruments

– …

27 September 2011 9 © Wärtsilä Oskar Levander

Fuel prices

Sources: www.lngoneworld.com, www.bunkerworld.com, LR Fairplay

27 September 2011 10 © Wärtsilä Oskar Levander

0

5

10

15

20

25

30

35

Oct

-01

Feb-

02

Jun-

02

Oct

-02

Feb-

03

Jun-

03

Oct

-03

Feb-

04

Jun-

04

Oct

-04

Feb-

05

Jun-

05

Oct

-05

Feb-

06

Jun-

06

Oct

-06

Feb-

07

Jun-

07

Oct

-07

Feb-

08

Jun-

08

Oct

-08

Feb-

09

Jun-

09

Oct

-09

Feb-

10

Jun-

10

Oct

-10

Feb-

11

Jun-

11

US

D/M

Btu

LNG Japan average [USD/MBtu]

NG Henry hub [USD/MBtu]

HFO 380cst Rotterdam [USD/MBtu]

MGO Rotterdam [USD/MBtu]

Cleaner Exhaust Emissions with LNG

• 25-30% lower CO2

– Thanks to low carbon to hydrogen ratio of fuel

• 85% lower NOX

– Lean burn concept (high air-fuel ratio)

• No SOX emissions

– Sulphur is removed from fuel

when liquefied

• Very low particulate emissions

• No visible smoke

• No sludge deposits

27 September 2011 11 © Wärtsilä Oskar Levander

DF ENGINES

27 September 2011 12 © Wärtsilä Oskar Levander

Fuel spray

Otto or Diesel cycles: effects on NOX

Nikolaus August

Otto

Rudolf Christian Karl

Diesel

Flame front propagation

NOX formation

27 September 2011 13 © Wärtsilä

Otto or Diesel cycles: effects on NOX

Big temperature

difference

NOx formation!

Otto, max flame temp.

Diesel, max flame temp.

27 September 2011 14 © Wärtsilä

Select the right technology

* * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * *

* *

GAS INJECTION

GAS INJECTION

GAS INJECTION

DUAL-FUEL (DF) Meets IMO Tier III

SPARK-IGNITION GAS (SG) Meets IMO Tier III

No redundancy

No HFO flexibility

GAS-DIESEL (GD) Does NOT meet IMO Tier III

High gas pressure

27 September 2011 15 © Wärtsilä Oskar Levander

DUAL-

FUEL (DF)

GAS-DIESEL

(GD)

Gas burning technologies

SPARK-IGNITION

GAS (SG)

1987 1992 1995

27 September 2011 16 © Wärtsilä Oskar Levander

The marine favourite technology?

* * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * *

* *

GAS INJECTION

GAS INJECTION

GAS INJECTION

DUAL-FUEL (DF) Meets IMO Tier III

SPARK-IGNITION GAS (SG) Meets IMO Tier III

No redundancy

No HFO flexibility

GAS-DIESEL (GD) Does NOT meet IMO Tier III

High gas pressure

27 September 2011 17 © Wärtsilä Oskar Levander

Wärtsilä‘s choice

* * * * * * * * * * *

GAS INJECTION

DUAL-FUEL (DF) Meets IMO Tier III

1 IMO Tier III compliant

2 Low pressure gas

3 Fuel flexibility; GAS, MDO and HFO

27 September 2011 18 © Wärtsilä Oskar Levander

Dual-fuel engine characteristics

– High efficiency

– Low gas pressure

– Low emissions, due to: • High efficiency

• Clean fuel

• Lean burn combustion

– Fuel flexibility • Gas mode

• Diesel mode

– Three engine models • Wärtsilä 20DF

• Wärtsilä 34DF

• Wärtsilä 50DF

27 September 2011 19 © Wärtsilä Oskar Levander

Dual-fuel engine range

0 5 10 15

34DF

20V34DF 9.0 MW

12V34DF 5.4 MW

9L34DF 4.0 MW

6L34DF 2.7 MW

16V34DF 7.2 MW

18V50DF 17.55 MW

16V50DF 15.6 MW

12V50DF 11.7 MW

9L50DF 8.8 MW

8L50DF 7.8 MW

6L50DF 5.85 MW 50DF Higher output for 60Hz / Main engines

20DF

9L20DF 1.5 MW

8L20DF 1.4 MW

6L20DF 1.0 MW

27 September 2011 20 © Wärtsilä Oskar Levander

Wärtsilä successfully tests new

2-stroke dual-fuel gas engine technology

Wärtsilä Corporation, Trade & Technical press release, 23 September 2011:

“Wärtsilä successfully tests new 2-stroke dual-fuel gas engine

technology to comply with IMO Tier III emission limits“

“The on-going tests show that the Wärtsilä 2-stroke gas engine

performance is in compliance with the upcoming IMO Tier III NOx

emission limits, thereby setting a new benchmark for low-speed

engines running on gas.”

27 September 2011 Oskar Levander 21 © Wärtsilä

Dual-Fuel advantages

Main advantages of the Dual-Fuel 4-stroke engine compared to SG:

• Redundancy, backup without interruptions in power or speed.

• Able to operate on liquid fuel outside ECA-area (incl HFO)

• Simple system, no PTI/”take me home” or double gas system needed.

• Vessel re-routing possible, gas supply not a limitation

27 September 2011 22 © Wärtsilä Oskar Levander

Dual-Fuel applications – References

4 segments 140 installations > 3’000’000 running hours

Power

Plants

DF Power Plant

49 installations

155 engines

Online since1997

Merchant

LNGC

• 68 vessels

• 254 engines

• 950’000 rh

Conversion

• 1 Chem. Tanker

• 2 engines conv.

• Complete gas

train

• Complete design

Offshore

PSVs/FPSOs

• 22 vessels

• 78 engines

• Online from 1994

Cruise

and Ferry

LNG ferries

• 1+1 vessels

• 4 engines per

vessels

• Complete gas

train

• 2800 passengers

• In service in 2013

Navy

Costal Patrol

• Coming…

27 September 2011 23 © Wärtsilä Oskar Levander

The industry's most environmentally

sound and energy efficient large

passenger vessel to date.

Main particulars:

Overall length: 214.0 m

Breadth, moulded: 31.8 m

Cruising speed 22 knots

Passengers: 2800

Class: LR

Ice class: 1A

In service: 2013

Shipyard: STX Finland Oy

Ship Owner: Viking Line

Viking Line 2800 Pax Cruise Ferry

27 September 2011 24 © Wärtsilä Oskar Levander

Machinery:

Main Engines: 4 x Wärtsilä 8L50DF

Output: 4 x 7600 kW

LNGPac 200 2 x 200 m3

Integrated tank – and aux. rooms

Bunkering system, Safety systems

GVU in enclosure

Cold recovery for HVAC

Conversion of Bit Viking

27 September 2011 Oskar Levander 25 © Wärtsilä

Conversion of Bit Viking

27 September 2011 Oskar Levander 26 © Wärtsilä

LNGpac Main Components

27 September 2011 27 © Wärtsilä

GVU

Bunkering

Station

Tank room Main Engine Room Gas

Valve

Bunkering line,

insulated pipes

Bottom tank

filling

Pressure build

up evaporator

LNG – gas evaporator

Water/Glycol

system

Oskar Levander

Gas Valve Unit in enclosure

Main features

• Can be located in the same engine

room, dedicated compartment not

needed

• Compact design and easy installation

(plug-and-play concept)

• Integrated ventilation system when

combined with LNGPac

27 September 2011 28 © Wärtsilä Oskar Levander

LNGPac: A turn key solution

Tank room –

All cryogenic valves

Auxiliary equipment

room

Length minimized

27 September 2011 29 © Wärtsilä Oskar Levander

LNGPac

27 September 2011 30 © Wärtsilä Oskar Levander

LNG storage

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

Diesel LNG (10bar)

Volume relative to MDO in DE

Fuel Tank Tank Room

Storage volume (Relative)

27 September 2011 31 © Wärtsilä Oskar Levander

Conventional tank location

27 September 2011 32 © Wärtsilä Oskar Levander

LNG tanks located outside

The LNG tanks can be located outside

• Does not take up space inside ship

• Good ventilation

• No ventilation casing needed

trough accommodation

• Visible location for good PR

27 September 2011 33 © Wärtsilä Oskar Levander

LNG storage in trailers

27 September 2011 34 © Wärtsilä Oskar Levander

LNG Container feeder LNG Tug LNG Ferry LNG Ro-Lo

LNG Feeder

LNG Terminal

LNG distribution chain

LNG logistics is a key

question for introduction

of LNG as a marine fuel

27 September 2011 35 © Wärtsilä Oskar Levander

Marine LNG terminals

Existing or

under construction

Proposed

As per September 2009

27 September 2011 36 © Wärtsilä Oskar Levander

Bunkering from LNG truck

27 September 2011 37 © Wärtsilä Oskar Levander

LNG bunker barge/tanker

27 September 2011 38 © Wärtsilä Oskar Levander

LNG barge carrier – operation principle

27 September 2011 39 © Wärtsilä Oskar Levander

LNG barge carrier – operation principle

27 September 2011 40 © Wärtsilä Oskar Levander

LNG distribution

NG pipe line

Large scale LNG liquefaction plant

/ LNG import terminal

Local LNG

liquefaction plant

Local distribution

LNG terminal

LNG tank in port LNG tank on barge

Small ships Small & large ships

PO

RT

D

IST

RIB

UT

ION

LNG

27 September 2011 41 © Wärtsilä Oskar Levander

Total Concept Optimization

Wärtsilä engineers solutions for LNG delivery, storage, transportation and

utilization onboard.

27 September 2011 42 © Wärtsilä Oskar Levander

RORO CONCEPT FOR ECA

27 September 2011 Oskar Levander 43 © Wärtsilä

RoRo trends

27 September 2011 44 © Wärtsilä Oskar Levander

RoRo trends

– Growing capacity

• Efficiency of scale

– Slowing down

• Reducing fuel costs

– Flexible cargo intake

– Designed for operation inside ECA areas

27 September 2011 45 © Wärtsilä Oskar Levander

RoRo concept

RoRo vessel for European routes in ECA

– Operation area: European SECA area

– RoRo cargos

• Double stack containers on main deck

• Trailers and mafis on upper deck and in lower hold

• Containers on upper deck

– Focus on environmental and economical performance

• Operation inside SECA area

• IMO tier III NOx compliant

27 September 2011 46 © Wärtsilä Oskar Levander

RoRo main particulars

• Size 22 000 GT

• Length 190.0 m

• Length, bp 180.0 m

• Beam, wl 26.6 m

• Draft (design) 6.5 m

• Depth, main deck 8.3 m

• Speed, service ~19 knots (incl. 15% SM)

• Lane meters 2 800 m

• Deadweight (desgin) 10 500 tons

• Propulsion power 10 800 – 11 400 kW (installed)

• Aux power ~2 100 kW (installed)

• Drivers 12 pax

27 September 2011 47 © Wärtsilä Oskar Levander

Propulsion

• Single screw

– Simple and well proven

– Good ice performance

– Low cost

• Energopac rudder

27 September 2011 48 © Wärtsilä Oskar Levander

Machinery alternatives for comparison

1. MGO

– Operates on MGO

– SCR to reduce NOx to tier III limit

27 September 2011 Oskar Levander 49 © Wärtsilä

MDO HFO

2. HFO + Scrubber

– Operates on HFO

– Scrubber removes SOx

– SCR to reduce NOx to tier III limit

MDO HFO

MDO LNG

3. DF - LNG

– Operates on LNG

– No exhaust cleaning needed

MGO

27 September 2011 50 © Wärtsilä

MDO

G 6L20

PTO

3 MW

G 6L20

MSB

2 x 1 MW 1 MW

Auxpac 1 050 kW

GEAR

EnergoPac

rudder

9L46F

10 800 kW

SCR SCR SCR SCR needed for IMO

tier III compliance

9L46F

Auxpac 1 050 kW

Installed propulsion power: 10.8 MW

Installed aux power: 2.1 MW

Oskar Levander

HFO + Scrubber

27 September 2011 51 © Wärtsilä

MDO HFO

G 6L20

PTO

3 MW

G 6L20

MSB

2 x 1 MW 1 MW

Auxpac 1 050 kW

GEAR

SCRUBBER

10 800 kW

SCR SCR SCR SCR needed for IMO

tier III compliance

9L46F

Auxpac 1 050 kW

EnergoPac

rudder

Installed propulsion power: 10.8 MW

Installed aux power: 2.1 MW

Oskar Levander

Marine Fresh Water Scrubber System

Scrubber

pH

pH

NaOH unit

Fresh water

Water Treatment

Cooling

Exhaust

Gas

Seawater

Closed loop works with

freshwater, to which

NaOH is added for the

neutralization of SOx.

CLOSED LOOP

=

Zero discharge

in enclosed area

Process tank Holding tank

Sludge tank

27 September 2011 52 © Wärtsilä Oskar Levander

Containerships VII - scrubber installation

27 September 2011 53 © Wärtsilä Oskar Levander

DF - LNG

27 September 2011 54 © Wärtsilä

MDO

G 6L20DF

PTO

3 MW

G

MSB

2 x 1 MW 1 MW

6L20DF

1 056 kW

GEAR

11 400 kW EnergoPac

rudder

12V50DF

6L20DF

1 056 kW

L N G

6L20DF

Installed propulsion power: 11.4 MW

Installed aux power: 2.1 MW

Oskar Levander

LNG storage in trailers

27 September 2011 55 © Wärtsilä

3 x LNG trailers = 150 m3 of LNG

Oskar Levander

LNG tank capacity (LNG trucks on deck)

• Target for autonomy 2 days

• Daily consumption (acc. to profile) 19 tons

• Total consumption 38 tons

84 m3

• + 15% Margin + 13 m3

• Total tank capacity demand 97 m3

• Volume capacity of one truck 50 m3

Two LNG trucks loaded every second day

27 September 2011 56 © Wärtsilä Oskar Levander

LNG storage in trailer

27 September 2011 57 © Wärtsilä Oskar Levander

Assumed fuel prices

USD/ton EUR/ton USD/MBtu

HFO 635 455 16.5

MGO 950 680 23.4

LNG 740 530 16.0

Source: www.bunkerworld.com (September 2011), LNG price estimated

1 EUR = 1.4 USD

For reference: NG market price in US: <5 $/MBTU

27 September 2011 58 © Wärtsilä Oskar Levander

Operation profile

0%

10%

20%

30%

40%

50%

60%

Port Man 12,0 18,5

Ru

nn

ing

ho

urs

Operation mode

27 September 2011 59 © Wärtsilä Oskar Levander

Annual fuel consumption and cost (relative)

100,0 %

105,4 %

100,6 % 100,0 %

77,1 %

68,8 %

0 %

20 %

40 %

60 %

80 %

100 %

120 %

MGO HFO + Scrubber LNG

Energy consumption Fuel cost

27 September 2011 60 © Wärtsilä Oskar Levander

Annual fuel, lube oil and consumables cost (k€)

0

1.000

2.000

3.000

4.000

5.000

6.000

MGO HFO + Scrubber LNG

Senitec chemicals

Fresh Water

NaOH

Urea

Lube oil

Fuel

27 September 2011 61 © Wärtsilä Oskar Levander

10 years

6% interest

Machinery Investment cost

0

2.000

4.000

6.000

8.000

10.000

12.000

MGO HFO + Scrubber LNG

Ma

ch

ine

ry fir

st co

st

Scrubbers

SCR

Fuel system (LNG tank etc.)

HFO system

Steering

Propulsion train

Engines

Propulsion engine

27 September 2011 62 © Wärtsilä Oskar Levander

Annual machinery cost

0

1000

2000

3000

4000

5000

6000

7000

8000

MGO HFO + Scrubber LNG

An

nu

al m

ach

ine

ry r

ela

ted

co

st [k

EU

R]

Scrubber operating costs (NaOH + FW + Senitec Chem)

SCR operating costs

Maintenance costs

Lubrication oil costs

Fuel costs

Annual capital costs

27 September 2011 63 © Wärtsilä Oskar Levander

Concept payback time (compared to MGO)

0

0,5

1

1,5

2

2,5

3

3,5

MGO HFO + Scrubber LNG

Pa

yb

ack T

ime

[Y

ea

rs]

27 September 2011 64 © Wärtsilä Oskar Levander

Net present value (NPV) – 10 years of operation

0

2000

4000

6000

8000

10000

12000

MGO HFO + Scrubber LNG

Ne

t P

rese

nt V

alu

e [

kE

UR

]

27 September 2011 65 © Wärtsilä Oskar Levander

Exhaust emissions

0 %

20 %

40 %

60 %

80 %

100 %

120 %

HFO - IMO tier II MGO HFO + Scrubber LNG

CO2 NOx SOx

Inside ECA, IMO tier III compliant REF. outside ECA

27 September 2011 66 © Wärtsilä Oskar Levander

IMO Energy Efficiency Design Index (EEDI)

27 September 2011 67 © Wärtsilä Oskar Levander

EEDI

0

5

10

15

20

25

MGO HFO + Scrubber LNG

27 September 2011 68 © Wärtsilä Oskar Levander

Operating part time in SECA

27 September 2011 69 © Wärtsilä Oskar Levander

Machinery alternatives for comparison – part time in ECA

1. MGO - HFO

– Operates on MGO inside SECA

– and HFO outside SECA

– SCR used only in port and inside NECA

27 September 2011 Oskar Levander 70 © Wärtsilä

MDO HFO

2. HFO + Scrubber

– Operates on HFO

– Scrubber only used inside SECA

– SCR used only in port and inside NECA

MDO HFO

MDO LNG

3. DF - LNG

– Operates on LNG all the time

– No exhaust cleaning needed

Annual fuel costs – part time in ECA

0

1.000

2.000

3.000

4.000

5.000

6.000

HFO - MGO HFO + Scrubber DF-LNG

Annual costs

[k€]

0

1.000

2.000

3.000

4.000

5.000

6.000

HFO - MGO HFO + Scrubber DF-LNG

0

1.000

2.000

3.000

4.000

5.000

6.000

HFO - MGO HFO + Scrubber DF-LNG

Annual costs

[k€]

0

1.000

2.000

3.000

4.000

5.000

6.000

HFO - MGO HFO + Scrubber DF-LNG

27 September 2011 71 © Wärtsilä

Inside ECA

33%

67%

Outside ECA

100%

100% 67%

33%

Oskar Levander

Annual costs – part time in ECA

0

2.000

4.000

6.000

8.000

HFO - MGO HFO + Scrubber

DF-LNG

Annual costs

[k€]

0

2.000

4.000

6.000

8.000

HFO - MGO HFO + Scrubber

DF-LNG

SCR operating costs

Scrubber operating costs

Maintenance costs

Lubrication oil costs

Fuel costs

Annual capital costs

0

2.000

4.000

6.000

8.000

HFO - MGO HFO + Scrubber

DF-LNG

SCR operating costs

Scrubber operating costs

Maintenance costs

Lubrication oil costs

Fuel costs

Annual capital costs 0

2.000

4.000

6.000

8.000

HFO - MGO HFO + Scrubber

DF-LNG

Annual costs

[k€]

27 September 2011 72 © Wärtsilä

Inside ECA

33%

67%

Outside ECA

100%

100% 67%

33%

Oskar Levander

Conclusions

DF engines – a well proven technology

DF engines running on LNG has great potential

– Best NPV

– Lowest emissions

– Short payback time

27 September 2011 73 © Wärtsilä Oskar Levander

top related