ama1007 (calculus and linear algebra) …...the hong kong polytechnic university department of...

Post on 08-Jul-2020

42 Views

Category:

Documents

7 Downloads

Preview:

Click to see full reader

TRANSCRIPT

The Hong Kong Polytechnic University

Department of Applied Mathematics

AMA1007 (Calculus and Linear Algebra)

Assignment 04 (Solution)

Question 1

( a ) 1 1 1

1 1 1

2 2 2n n nn n n

n

n n

1

1

2nn n

converges by the comparison test: 1 1

2 2n nn and

1

1

2nn

is a

convergent geometric series. 1

1

2nn

n

n

converges.

( b ) Diverges by the comparison test: 1 1 1

ln ln(ln )n n n and

3

1

n n

diverges.

( c ) Converges by the ratio test:

1

1 1

1 3 5 (2 1) (2 1) 4 2 !lim lim

4 2 ( 1)! 1 3 5 (2 1)

n n

n

n nn nn

a n n n

a n n

2 1 1lim 1

8( 1) 4n

n

n

( d ) Diverges by the ratio test:

1 3 3

1

3 1 3

3 2 3 3lim lim lim 1

( 1) 2 3 2( 1) 2

n n

n

n nn n nn

a n n

a n n

( e ) Converges by the integral test:

1 1

ln32 23 ln3

1/limsec sec (3)

2(ln ) ln 1 1

t

t

n dudx u

n n u u

( f ) Converges by the alternating series test:

Since ( 1 ) 2

1 1 2( ) '( ) 0

1 2 ( 1)

x x xf x f x

x x x

( )f x is decreasing.

and ( 2 ) 1

lim lim 01

nn n

na

n

.

( g ) Converges absolutely by the ratio test:

1

1 (100) ! 100lim lim lim 0 1

( 1)! (100) 1

n

n

nn n nn

a n

a n n

( h ) Converges by the integral test:

1

2 2 2 01 1 0

1 1/lim tan

(1 ln ) 1 ln 1 2

t

t

n dudx dx u

n n n u

( i ) Converges by the alternating series test:

Since ( 1 ) 1 1

( ) ln 1 '( ) 0( 1)

f x f xx x x

for 0x .

( )f x is decreasing for 0x

and ( 2 ) 1 1

lim limln 1 ln lim 1 ln1 0nn n n

an n

.

Question 2

( a ) ( ) 2xf x (1) 2f

'( ) ln 2 2xf x '(1) ln 2 2f 2''( ) (ln 2) 2xf x 2''(1) (ln 2) 2f 3'''( ) (ln 2) 2xf x 3'''(1) (ln 2) 2f

( ) ( ) (ln 2) 2n n xf x ( ) (1) (ln 2) 2n nf

Taylor series at 1x : 2 3

2 3

0

2(ln 2) 2(ln 2) 2(ln 2) ( 1)2 (2ln 2)( 1) ( 1) ( 1)

2! 3! !

n n

n

xx x x

n

( b ) 3 2( ) 2 3 8f x x x x (1) 2f 2'( ) 6 2 3f x x x '(1) 11f

''( ) 12 2f x x ''(1) 14f

'''( ) 12f x '''(1) 12f

( ) ( ) 0nf x for 4n ( ) (1) 0nf for 4n

Taylor series at 1x :

2 3 2 314 122 11( 1) ( 1) ( 1) 2 11( 1) 7( 1) 2( 1)

2! 3!x x x x x x

Question 3

( a ) 2( ) (1 ) xf x x e (0) 1f 2'( ) (3 2 ) xf x x e '(0) 3f 2''( ) (8 4 ) xf x x e ''(0) 8f

2'''( ) (20 8 ) xf x x e '''(0) 20f

Maclaurin’s polynomial (up to degree 3):

2 3 2 3''(0) '''(0) 10(0) '(0) 1 3 4

2 6 3

f ff f x x x x x x

( b ) ( ) ln(3 )xf x e (0) ln 4f

'( )3

x

x

ef x

e

1'(0)

4f

2

3''( )

(3 )

x

x

ef x

e

3''(0)

16f

2

3

9 3'''( )

(3 )

x x

x

e ef x

e

3'''(0)

32f

Maclaurin’s polynomial (up to degree 3):

2 3 2 3''(0) '''(0) 1 3 1(0) '(0) ln 4

2 6 4 32 64

f ff f x x x x x x

Question 4

( a ) By Sarrus’ Rule:

2 1 4

3 5 7 ( 20 7 72) (20 84 6) 65

1 6 2

( b ) Expand along the second row:

1 3 2 51 3 5 1 3 2

0 0 3 2( 3) 1 5 0 (2) 1 5 4

1 5 4 01 2 1 1 2 1

1 2 1 1

By Sarrus’ Rule:

( 3) (5 0 10) (25 0 3) (2) (10 8 3) (5 12 4) 39

( c ) Expand along the third row:

0 1 2 11 2 1 0 1 2

4 3 3 5(1) 3 3 5 ( 1) 4 3 3

1 0 0 11 0 1 1 1 0

1 1 0 1

By Sarrus’ Rule:

(1) (3 10 0) ( 3 0 6) (1) (0 3 8) ( 6 0 0) 5

Question 5

4 1 01 0 4 0 4 1

det( 4 ) 0 4 1 (0) ( 4) (1) 017 4 4 4 4 17

4 17 4

A I .

4 is a root of det( ) 0x A I .

1 01 0 0 1

0 1 (0) ( ) (1)17 8 4 8 4 17

4 17 8

xx x

x xx x

x

3 2 2( )( )(8 ) (1)(17 4) 8 17 4 ( 4)( 4 1)x x x x x x x x x x

2det( ) ( 4)( 4 1) 0 4, 2 3x x x x x A I .

Question 6

( a )

1

2

3

2 4 6 1

4 6 2 3

6 2 4 5

x

x

x

.

2 4 6

4 6 2 144

6 2 4

( 0) .

1

1 4 6

3 6 2 132

5 2 4

, 2

2 1 6

4 3 2 12

6 5 4

, and 3

2 4 1

4 6 3 12

6 2 5

.

By Cramer’s rule, we have 11

132 11

144 12x

, 22

12 1

144 12x

, and

33

12 1

144 12x

.

( b )

1 2 3

1 2 3

1 2 3

2 2 3

3 4 2 1

8 3 4

x x x

x x x

x x x

11

491

49x

, 22

491

49x

, and 33

491

49x

.

Question 7

( a ) 3 3 3 2 2 2( )( ) ( )( ) I I I A I A I A A I A I A A 1 2( ) I A I A A

( b ) 3 3 2 1 2( ) A A I 0 I A A A I A A I A

Question 8

1 2

1 2

( ) ( )

( ) ( )

f x f xdW d

g x g xdx dx

1 2 2 1( ) ( ) ( ) ( )d

f x g x f x g xdx

1 2 1 2 2 1 2 1'( ) ( ) ( ) '( ) '( ) ( ) ( ) '( )f x g x f x g x f x g x f x g x

1 2 2 1 1 2 2 1'( ) ( ) '( ) ( ) ( ) '( ) ( ) '( )f x g x f x g x f x g x f x g x

1 2 1 2

1 2 1 2

'( ) '( ) ( ) ( )

( ) ( ) '( ) '( )

f x f x f x f x

g x g x g x g x

2013-2014 Sem 1 Final Exam Q6

2013-2014 Sem 1 Final Exam Q7

2013-2014 Sem 1 Final Exam Q9

2013/14 Sem2 Final Exam Q3

2013/14 Sem2 Final Exam Q5

top related