10. an introduction to nanomedicine-2 - extendsim · chapter 10 an introduction to nanomedicine ......

Post on 25-Jul-2018

230 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Page|1

Chapter10

AnIntroductiontoNanomedicine

Amber Bhargava, Janet Cheung, Mary Eshaghian-Wilner, Wan Lee, Mike Schlesinger, Abhishek Uppal1

Abstract:Inthispaperwepresentthestatusofresearchinnanomedicineforthetreatmentofcancer as well as other biological diseases. We analyze the development of nanomedicineresearch based on – but not limited to – recent studies in the detection of diseased cells(includingcancerouscells),drugdelivery,andnanorobotics. Thesameapproachmayalsobeadopted inother respects, suchas the targetingand removalof plaqueand/or cholesterol inarteriesaswellasrepairingdamagedcells.Manyoftheseapproachestonanomedicinecanbesimulated through the use of computer models. We will discuss one such model from theUniversity of Southern California. Outstanding issues relating to the preliminary stage ofnanomedical research will be covered as well, along with various approaches for cancertreatment using nanotechnology. Current challenges associated with these treatmentapproaches,aswellaspossiblesolutionsforthesechallenges,willbediscussed. Weconcludewithadiscussionofbiocompatibility,nanoscalepower,andthecurrentstateofresearchinthefield.

1. Introduction

Nanotechnologypromisesahostofinnovativesolutionsinmedicinethroughprecise,targetedoperationsonthecellularlevel.Formorethanadecade,researchershavebeensearchingforwaystorealizethesesolutionsandovercomethedifficultiesencounteredwhenattemptingtousenanotechnologyforthetreatmentofvariousailments.Recently,researchershavebeguntolookintonanorobotics,arelativelynewsubsetofnanotechnologythatinvolvesthecontrolofmultifunctionalnanosystems.Nanorobotscouldintegratethediagnosisandtreatmentofcancerintoacohesive,potentiallynon-invasiveunit.Althoughthefieldofnanoroboticsremainslargelytheoretical,anumberofadvanceshavebeenmadeinthepastfewyearsthatleadustobelievethatamultifunctionalmedicinalnanorobotcouldbepossible.Inordertoachievethisgoal,weneedtoknowwhathasalreadybeenachievedandwhatstillremainstobedone.

Nanotechnologyasawholeisarelativelyrecentdevelopmentinscientificresearch.FirstdefinedbyNorioTaniguchifromtheTokyoScienceUniversityin1974,nanotechnology“mainlyconsistsoftheprocessofseparation,consolidation,anddeformationofmaterialsbyoneatomormolecule[1].”Priortotheyear2000,nanotechnologyfocusedonpassivenanostructures;now,activenanostructuresandsystemssuchastargeteddrugsandnanorobotsarebeingstudied.Today,awidelyaccepteddefinitionfornanotechnologyis“engineeringoffunctionalsystemsatthemolecularscale,”accordingtothe

1 Authors are listed alphabetically by last name, as opposed to by order of contribution

Page|2

CenterforResponsibleNanotechnology(CRN)[2].Themolecularscaleornanoscalereferstotechnologysmallerthan100nanometers.

Nanomedicineisasub-disciplineofnanotechnologyfirstdefinedinlate1999andearly2000.RobertA.Freitasfirstcomprehensivelyaddressedthetopicinhisbook,Nanomedicine,whichaddressesthetechnicalissuesinvolvedinthemedicalapplicationsofmolecularnanotechnologyandmedicalnanodevices.Currently,thereisnointernationallyagreedupondefinitionfornanomedicine.Forthepurposesofthispaper,weapplytheaccepteddefinitionofnanotechnologytomedicine.Wedefinenanomedicineastheuseofnanoscaledevicesormaterialsfordiagnosingandcuringdiseasesbyactivelyinteractingatthemolecularlevelwithinacellularsystem.Thisdefinitionisfairlybroad,sowefurtherrestrictourselvesbyincludingonlythosemedicineswhoseactiveingredientswerespecificallyengineeredwiththeintentoffunctioningonthenanoscale.Thisrequirementrejectsmedicationssuchaschapstickorsunscreen,whichwerenotdesignedwithafocusonthenanoscale.Webelievethisdefinitionadheresmostcloselytotheoriginalintentoftheterm.Nanomedicineisabroadfieldthatencompassesmultipletopicsfromdetection,drugdelivery,andnanodevicestonanoimagingandclinicalissues,allofwhichwewilladdressindetail.

Nanomedicineisexcitingbecausemanyofitsfindings–thoughoftenbasedonpreliminaryoreventheoreticalexperimentation–promiseresultsthatareimpossibleatthemacroscale.Forexample,manydevicesandmaterialsbeingstudiedexperimentallymaybeusedtodetectfaultycellsviaantibodyconjugation.Carbonnanotubes,forinstance,arecapableofdetectingparticularDNAmutationsequencesthatcouldgiverisetocancer.Anotherviableapplicationofnanoparticlesinmedicineismolecularimaging.Specificbiomoleculescanbetaggedandquantitativelyanalyzedviananoparticlesthatglowunderinfraredlight.Bothoftheseapproacheshaveexcitingandnovelapplicationsinmedicine,buttheyonlyscratchthesurfaceofhownanotechnologycanpotentiallyinfluencethefutureofmedicine.Inordertoimaginethetruescope,wemustlookatactivenanostructures,ornanorobotics.

Nanoroboticsisamultidisciplinaryfieldthatrequiresknowledgeofphysics,chemistry,biology,computerscience,andelectricalengineering.Nanorobotsmustpossessthecapabilityofactuation,control,communication,andinterfacingbetweentheorganic,inorganicandbioticrealms[3].Therearemanydirectionsfromwhichtoapproachtheproblemofcreatingaviablenanorobot.SomeresearchersfocusesonbionanoroboticsystemsmadeofbiologicalcomponentssuchasproteinsandDNA,whileothersfocusoninorganicmaterialslikeCMOSandcarbonnanotubesatthecellularlevel.Stillotherschoosetofocusonhybridnanosystems,combiningtheorganicandinorganicdomainstogetherinordertothebestofbothdomainsintoonenanorobot.

Thispaperwilladdressthetypesofdiseasesinvestigatedandthenanotechnologyinvolvedinmedicaltreatment.Next,itwilldiscussthecurrentdetectionandtreatmentmethodsusedbyresearchers.Thepaperwillthenconcludewithcurrentnanotechnologyusedincancertreatment,issueswithbiocompatibility,andcurrentresearch.Specificexamplesofcomputermodelingwillbediscussedindepth.

Page|3

2. NanomedicalTechnology

Inthissectionwewilldiscussnanotechnologyasitappliestomedicine,includingdifferenttypesofnanorobotsandsomeofthechallengesinherenttobuildingrobotsonthenanoscale.

Nanoroboticsisanemergingtechnologicalfieldthatcomprisesthedevelopmentofrobotswhosecomponentsareatorclosetothenanometerscale[4].Nanorobotsdesignedtooperateinsidethehumanbodyshouldbelessthan800µmindiameterinordertotraversethebloodstream[5].Sofar,nocomplexnanorobothasbeenfabricated-currentmedicalrobotsareconstrainedtothemillimeterlevel.Thus,inorganicnanorobotconstructionatthenanoscaleisonlyatheoreticalmodel.Inthissectionwepresentashortoverviewofmedicalnanotechnology,includingnanorobots,nanoparticles,andcarbonnanotubes(CNTs)asnanodevicesrelatedtomedicine.Wealsotakealookatmicroscaledevicesthatrepresentthecurrentstate-of-the-artinmedicalimplantableandnon-invasivetechnology.

Figure2.1:Sizeofnanorobotsrelativetoredbloodcells

Treatmentsbasedonnanorobotsareexpectedtohavetwomajoradvantagesovertraditionalapproaches:concentrationandprecision.Theseadvantagesenabletherapiestobecomemoreefficientandcausefewersideeffectsbecauseoftheirabilitytoconcentratedrugsonasingletissueareaorcell.Nanorobotscanalsoworktogetherinresponsetoenvironmentalstimuliandpre-programmedfunctionalityintheircontrolunit.

Therearetwomainapproachestodevelopinganassemblednanorobotsystem:organicandinorganic.Organicnanorobotsarebasedonadenosinetriphosphate(ATP)andDNAmolecularassemblyandfunction.Anothersubsetoforganicnanorobotsisnanorobotsbasedonbacteria,whichhavebeenproposedexperimentallyfordrugdelivery.Inorganicnanorobotsareessentiallynano-electromechanicalsystems(NEMS).Astechnologyhasdeveloped,someapproacheshavebeguntocombinebothorganicandinorganicelements,creatingamoreadvancedrobotsystemknownasahybridnanosystem.Althoughsomenanorobotshavealreadybeentested,themajorityofthecurrentresearchisstillinatheoreticalsimulationstage.Mostofthesubpartsofnanorobotsarebeingstudiedasindividualentities,or‘modular-wise,’ratherthanasentiresystems,sincetheelementsofnanoroboticsarestillprimarilyintheresearchphase.

Webelievethatinorganicnanorobotsarebestsuitedascandidatesfornanomedicine,andsowewillconcentrateoursurveyoninorganicnanorobots.Thereareseveraldifferencesbetweeninorganicandorganicnanorobots,whichdeterminehowthesetwosubsetswillapproachthemanyproblemsinherent

Page|4

tomedicalnanorobots.Forexample,inorganicnanorobotscouldlocatetheexactpositionofacellusingtheintensifiedmagneticpropertyfromtheforceofattractioninsidethehumanbody.Inotherwords,theycanisolateatargetcellfromanormalcellandatthesametimeallowfortargeteddrugdeliveryviaananorobotatthatdestination.AnorganicnanorobotmaybeabletoperformthesametaskusingDNAbiomarkers.However,theinherentprogrammabilityofinorganicnanorobotsbasedonCMOStechnologyandtheabilitytoleveragetheexistingcontrolstructuresofmacro-sizedrobotsmakesinorganicnanorobotsthemostlikelytosucceedinperformingthecomplex,precisetasksrequiredofmedicalnanorobots.

Still,therearemanychallengestobuildingamulti-functionalinorganicnanorobot.Inordertocreatearobotinthenanoscale,wemusttakeintoaccountsensing,actuation,control,datatransmission,power,andinterfacingacrossspatialscalesaswellasbetweentheorganic/inorganicandbiotic/abioticrealms[6].

Althoughinorganicrobotsdonotexistinthenanoscaletoday,wecanlookatmicroscaleandlargermedicalrobotsthatcanbeusedastestcasesforextendingfunctionalityintothenanoscale.Additionally,researchonsurgicallyimplanteddevicescanprovideinformationonhownanorobotsmaybeabletosolvetheproblemsofbiocompatibility,energytransfer,anddatatransfer.

Onesuchareaisdiagnosticmedicineinthedigestivetract.Medicaldevicecompanieshaveusedcapsuleendoscopesforviewinganddiagnosingdiseases.Thesedevicesareconsideredmicrorobots–onthescaleofaone-centimeterdiameterbytwocentimeterslength–andhaveonboardcamerasandLEDs,andcansendvideowirelesslyoutofthebody[7].However,theyarestilllimitedinscopeastheypassthroughthebodywithoutself-propulsion,drawnsolelythroughperistalticpressure,andthereforecannotcompletetaskssuchastrulytargetedmedicationorathoroughsearchforcancerousregions.Therearegroupssearchingforwaystoovercomethesechallenges,however,bydevelopingmotors[7],controllingseveralmicrorobotsinasystem[8],andlookingatthepotentialformicrorobotsthatcoulddispensemedicineintothestomachformonthsatatime[9].

Althoughmicroscaleandnanoscalerobotsfaceverydifferentproblemsintermsofmotionandenergysupply[10],microscalemedicaldevicesareimportanttotheemergingfieldofnanoroboticsbothasatechnologicalprecursorandasatestinggroundforthehumansideofmedicalnanorobotics.Microrobotsopenthediscussionofthelegalissuesofdatasecurityandhowthemedicalanddevice-makingcommunitywilldealwithimplantabledevicesthatareconstantlystreamingimportantpersonaldata.

Today,nanoroboticsisrapidlybecomingareality.PennStatepublishedanarticleinFebruary2014showingnanomotorsindividuallycontrolledinsidelivingcells[11].Thisisanimportantstep,asitaddressesbothcontrolmethodsandbiocompatibility.However,therearestillmanystepstobetakenbeforenanorobotsareviableinsidethehumanbody.

Currentnanorobotcomponents,controlmethods,anddevelopingmanufacturingmethodsprovideplatformsandpossibilitiesforbuildingmultifunctionalnanorobotsthatmaybeabletoswimthrough

Page|5

vessels,detectanddestroycancercells,orsendpicturesbacktoitscontrollingdevicewithaccuracy,controllability,andprecision.Aspreviouslystated,wewishtodevelopnanorobotsinordertoperformprecisedrugdelivery.

3. Detection

Inthelastsectionwelookedatnanotechnologyasitappliestomedicine,differenttypesofnanorobots,andwhywechosetofocusthischapteroninorganicnanorobots.Inthefollowingsection,wewilldiscussanumberofdifferentnanostructureswecanusetodetectthepresenceofcancerorotherdiseasesinthebody.

Nanomedicinecanassistinthetreatmentofawiderangeofdiseases.Ourresearchfocusesonthosethatcanbetreatedbynanorobotsinthebloodstream,includingdiabetes,cardiovasculardisease,neurodegenerativedisease,andcancer,amongothers.Whileamajorpartofnanomedicalresearchisstillinitsinfantstages,significantresearchandexperimentshavebeenperformedontheseandotherdiseases.Whileallofthesediseasesareathreattopublichealthandcouldpotentiallybetreatedorcuredbynanomedicine,ourresearchfocusesspecificallyoncancer.

Cancerisagroupofdiseasescharacterizedbyuncontrolledcellgrowth.Thebodydoesnotregulatecancercellsasitdoeshealthycells,therebyallowingthemtoreplicateatarapidratewithoutbeingkilledoffastheynormallywould.Cancercellsreplicatesouncontrollablyduetodamageddeoxyribonucleicacid(DNA),whichpreventsthecell’snaturaldeathandcauseschangesinmaterial(physical,electrical,orchemical)propertieswithinthecell.

Earlydetectionandpreventionarethebestcuresforanydisease,includingcancer.Currently,earlydetectionisaccomplishedbyidentifyingbiomarkers,anindicatorofabiologicalstateofdisease.BiomarkerscanbeDNA,RNA,oraproteinanditsfragments.Inthefuture,evenearlierdetectionmaybepossiblethankstoubiquitouscomputingandconstantmonitoringofat-riskpatients.Today’sdetectiontools,however,functioninresponsetochangesinmaterialproperties,suchasthosecausedbythedamagedDNAincancercells.Detectiontoolsunderdiscussioninthispaperarenanowires,carbonnanotubes,nanoscalecantilevers,variousnanoparticles(goldandmagnetic,amongothers),quantumdots,andnanorobots.Inthissection,detectiontoolsforbiomarkersarediscussed.

3.1 Nanowires

Nanowiresinherentlyhaveexcellentselectivityandspecificityproperties.Forexample,nanowirescanbelaiddownacrossamicrofluidicchannel,notunlikeafilteroraspider’sweb.Ascellsorparticlesflowthroughit,nanowirescansenseandpickuptumorcells.Nanowirescanbecoatedwithaprobesuchasanantibodyoroligonucleotide–ashortstretchofDNAthatcanbeusedtorecognizespecificDNA/RNAsequences–thatbindstoatargetproteinontheenemycell.Proteinsthatbindtotheantibodywillchangethenanowire’selectricalconductance,whichcanbemeasuredbyadetector[12].

3.2 CarbonNanotubes

Page|6

CarbonnanotubesarealsobeingusedasDNAbiosensors.TheyscandownDNAandlookforsinglepolymorphicnucleotidesthatcanleadtoapossibledetectionofanindividualwhomaydevelopdiseasesinthefuture.Thisapplicationusesself-assembledcarbonnanotubesandsearchesforcovalentlybondedDNAoligonucleotides.WhenhybridizationbetweentheprobeandthetargetDNAsequenceoccurs,thevoltammetricpeakpicksupthechange[13].DNAbiosensorsbeingdevelopedforfutureusearemoreefficientandmoreselectivethancurrentdetectionmethods.

3.3 NanoscaleCantilevers

Anotherpotentialtoolisthenanoscalecantilever.Similarinstructuretorowsofdivingboards,thesecantileversareconstructedusingsemiconductorlithographictechniques[14]andcoatedwithantibodiesthatspecificallytargetmoleculesproducedbycancercells.Thesetargetmoleculesbindtotheantibodiesonthecantilever,causingachangeinitsphysicalproperties.Forquantitativeanalysis,researcherscanstudythebindinginrealtime.ThesecantileversareexceptionallysensitiveandcandetectsinglemoleculesofDNAorprotein,henceprovidingprecisedetectionmethodsforcancerrelatedmolecules.Figure3.1belowshowshownanoscalecantileversdetectproteinsproducedbycancercells.

Figure3.1:Detectionofcancercellsbynanoscalecantilevers

3.4 GoldNanoparticles

Goldnanoparticles(GNPs)havebeenemergingaspowerfulimaginglabelsandcontrastagents–henceeffectivedetectives.GNPsreadilygetconjugatedtoantibodiesandotherproteinsduetotheaffinityofthefunctionalgroup(-SH)fortheirgoldsurface.Theyareespeciallyeffectivewhentargetingcancercells[15].GNPsareusedforphotothermaltherapy,wheretunableopticalpropertiescausethemtoconvertlaserlightintoheatanddestroycancercells[16,17].InadditiontosphericalGNPs,goldnanoshellsandgoldnanorodshavebeenappliedtobiomarkerdetection[18-20].Theycanabsorbandemitlightatnearinfraredregion,providingdeeptissuepenetration.

3.5 MagneticNanoparticlesandMagneto-ElectricNanoparticles

Magneticnanoparticleshavebeenwidelyusedasanimagingtool.Sincetransverserelaxationtimedecreasesduetoaggregationofmagneticnanoparticleswhentargetmoleculesarepresent,theconcentrationofcancerbiomarkerscanbemeasured.Thisallowsforinvivo,localmonitoringforcancerbiomarkersandpossiblecontinuousmonitoring.Magneto-electricnanoparticleshavealsoproventobeapromisingnewtechnology.Inonespecificstudy,researchershavebeenabletoisolatea

Page|7

cancerouscellbasedondifferencesintheelectricpropertiesofitsmembrane[21].Thismethodofdetectionhasbeenproveneffectiveasappliedtoovariancancercells,butmaypotentiallybeappliedtoothertypesofcanceraswell.Moreonthistopiccanbefoundinchapter11ofthisbook.

3.6 QuantumDots

Quantumdotscanbelinkedtoantibodiesandcombinedtocreatearraysthatarecapableofdetectingmultiplesubstancessimultaneously.TheycanbeusedtomeasurelevelsofcancermarkerssuchasbreastcancermarkerHer-2,actin,microfibrilproteins,andnuclearantigens[14].Quantumdotsarerobustandverystablelightemitters.Thephotochemicalstabilityandtheabilitytotunebroadwavelengthsmakequantumdotsextremelyusefulforbiolabelling[22].

3.7 TheMedicalNanorobot

Theultimatetoolofnanomedicineisthemedicalnanorobot–arobotthesizeofabacteriumcomposedofmultiplemechanicalparts[23].Althoughstillahypotheticalconcept,themedicalnanorobotisapromisingtoolforthefutureofthefieldofmedicine–afutureinwhichartificiallyintelligentnanorobotscanbefabricatedtorepairtissues,cleanbloodvesselsandairways,andtransformphysiologicalcapabilities.Amorein-depthdiscussionofthetechnologybehindnanorobotscanbefoundinthepreviousnanomedicaltechnologysectionofthischapter,aswellaschapter2ofthisbook.Thenextsectionwilldealwithactuallytreatingthediseasecellsoncetheyaredetected.

4. Treatment

Intheprevioussection,weidentifiedsixmethodsofcancerdetection.Inthefollowingsectionwediscusstheproblemswithcurrentcancertreatments,aswellasmethodsthatcanbeusedtotreatdiseaseatthecellularlevelwithinthebody.

Moderncancertreatmentisanythingbutideal.Conventionaltreatmentssuchaschemotherapy,radiation,surgery,andimmunotherapydestroymalignanttissue,butalsodamagebenigntissue.Thesemethodsarefoundtobeusefulinremission,butdependontheconcentrationanddeliveryofthedrug.Highlytoxicdrugconcentrationsthatdestroythetumorcellscanpotentiallykillthepatient.Thus,theaggressivenessofchemotherapytreatmentisusuallydeterminedbythedosagethatthepatientcanwithstand,ratherthanthedosageneededtoeliminateallcancerouscells.

Amoreefficientapproachtocancertreatmentwouldbethedestructionofcancercellswithlittletonosideeffectsonhealthycells.Withthecurrenttrendofrapiddevelopmentsinnanomedicine,itseemsthatthistechnologycanbeusedfordetection,analysis,anddestructionofcancercellsmoreeffectivelyandwithmoreprecisionthanispossiblewithcurrenttreatments.

Asstated,thekeyproblemsofconventionaltechnologyarethemethodofdrugdeliveryandtheconcentrationofthedrugcocktailrequiredtodestroythecancerouscells–problemsthatcanbeeasilyovercomebynanotechnology,astheparticlesizehasaneffectonserumlifetimeandpatternofdeposition.Thisallowsdrugsonthenanoscaletobeusedinlowerconcentrations,whichresultsinan

Page|8

earlieroutsetofaction.Nanotechnologyalsoallowsdrugstobedirectedtotheexactlocationwherecancerouscellshavebeenobserved,thuskillingmalignanttissuewhileleavinghealthytissuerelativelyunaffected.Therehavebeenseveralstudiesdoneintotheindividualtreatmentofcancercells.Thissectionwillexploresomeofthesetreatmentsinmoredetail.

4.1 NanoparticleHeatingMethod

Thenanoparticleheatingmethodforcancertherapyhasgreatpotentialfortreatingselectivecancertissue.Theconceptisveryefficient.Inthismethod,thenanoparticlesconjugatedwithantibodiesareinjectedintothehumanbodyandareallowedtopositionthemselvesaroundthecancertissue.Theseparticlesarethenheatedbyanexternalnon-invasiveheatingsource,destroyingthetargetedcancertissuesviathermalnecrosis[24].CapacitivelycoupledRFfieldsources[25]andNear-InfraredLightsources(NIR)[26]aretwooftheheatingsourcesthatcouldbeusedtoheatupthesenanoparticles.Amajoradvantageofthistechniqueisitslackofdependenceontraditionaldrugs.Asinvadingbacteriabecomelessandlesssensitivetoantibioticsandotherdrugs,anewsolutionmaysoonberequiredtotreatthesebacterialinfections.Nanoparticleheatingmaywellbeonesolution.Twotreatmentsthatemploythenanoparticleheatingmethodbywayofinfraredandlaserlightarediscussedbelow.

4.1.1 GoldNanoparticles

Asdiscussedinsection3.1.4,oneofthemostresearchednanomedicicalapplicationsisgoldnanoparticles(GNPs).Thesenanoparticlesbindtocertainproteinsthatonlycancercellsproduce.Goldnanoparticlescanalsobeseenas“thedrugsthatdeliverthemselves”fortheirspecialheatingability,which,whenexposedtolaserlight,killscellswithwhichthenanoparticleinteracts.Thedownsideofthismethodisthatunlessproperlycoated,theimmunesystemwouldattacksuchparticlesbecausethebodywouldtreatthemasunwantedforeignagents.Seesection5.1onbiocompatibilityformoreinformationonimmunereactionsandimmunosuppression.

4.1.2 MetalNanoshells

Anothernovelapproachusesmetalnanoshells.Theseshellshavetheabilitytocaptureandabsorblight,andarecoatedwithabioactivesubstancethatbindsthemtocancercells[27-29].Near-infraredlightisusedtoheatuptheseshells,leadingtothedestructionofthecancercellswithminimaldamagetoadjacenthealthycells.Theadvantagesofhighsensitivity,specificity,andcost-effectivenesshavemademetallicnanoshellsaparticularlyattractivechoiceformodern-daycancertreatment.AlamandMassoudhavedevelopedanaccurateanalyticalclosed-formmodelforthefrequencyresonanceandscatteringcharacteristicsofasinglenanoshell[16].

4.2 SupermagneticBeads

Apartfromgoldnanoparticlesandmetalnanoshells,anothermethodthatemphasizesthedestructionoftargetedcancercellsusesmono-sizedsupermagneticbeads.Thebeadsaremacroporousparticleshavingnarrowporesthatcontainmagneticmaterials(Fe203andFe3O4)distributedthroughouttheirentirevolume.Instudies,twodifferenttypesofbeadshavingdifferentmagneticmasssusceptibility

Page|9

anddifferentdiameterswereused:DynabeadsPanMouseIgG(diameter4.5±.2um,magneticsusceptibility(16±3)x10-5m3/kg)andDynabeadsProteinG(diameter2.8±.2um,magneticmasssusceptibility(10±2.5)x10-5m3/kg).Thesemagnetizablebeadsaggregateunderinstantaneouspulsedmagneticforcesandpenetrateforcefullytoeffectivelydestroythecancerouscells[21].

4.3 MagneticManipulation

Magneticmanipulationisanotherviablemethodtoefficientlydelivermedication.Recently,scientistshavesuccessfullyusedadirectcurrentmagneticfieldtomanipulatethemembranesofmagneto-electricparticles.Theythenusedthisabilitytoloadthesamemagneto-electricparticleswithpaclitaxel,acommoncancerdrug,anddeliverittoamixofhealthyandcancerouscellsin-vitro.Thedrugs,whenreleasedbytheparticles,passedthroughthemembranesofthecancercellsandkilledonlythetargetedcells.Thehealthycellswereleftalive[30].Inthesamestudyaspreviouslymentionedinsection3.5ofthischapter,magneto-electricnanoparticleswereusedtomanipulatethemagneticfieldofthemembraneofthetumorcelltoallowlargequantitiesofmedicationtopassthroughintothecell.Thediseasedcellwaskilledwithnoharmatalltosurroundinghealthycells[21],ascanbeseeninmoredetailinthefollowingchapter.Theseresultsshowearlypromiseinspecifictargetingofcancercellswithinthehumanbody,andcertainlydeservefurtherresearch.

4.4 E-cadherin

NanorobotscanalsobeusedtoanalyzelevelsofE-cadherininthebodyandtargetcancercellsbasedonthevaryingE-cadherinlevelsfromonecelltothenext[31,32].E-cadherinisacalcium-regulatedadhesionexpressedinmostnormalepithelialtissues.E-cadherinisassociatedwithglandformation,stratification,andepithelialpolarization.PerturbationorselectivelossofthisE-cadherinfunctionresultsinthelossofintercellularadhesion,withpossibleconsequentcellulartransformationandtumorgeneration.Theefficientuseofnanorobotsbypropercontrolmethodologiesisoneofthemethodsunderstudyforthetreatmentofcancercells,asitisquitecapableofdifferentiatingnormalcellsfrommalignantcellsbycheckingsurfaceantigens.Thisinturngreatlyreducestheprobabilityofdestroyingnormalcells.

4.5 TreatmentsforOtherDiseases

Whilethispaperdoesfocusprimarilyoncancertreatment,therearealsomanyothernanoscaletechniquesfortreatingdiseasesotherthancancer.Thefollowingsubsectionswilldescribethreeofthembriefly.

4.5.1 Transfection

Asopposedtothemethodsofdrugdeliverydiscussedthroughouttherestofthissection,transfectionisamethodofgenedelivery.Transfectioncanbeaccomplishedbybothchemicalandnon-chemicalprocesses.Chemical-basedtransfectioncanbedividedintoseveralcategories,includingcyclodextrin,polymers,liposomes,andnanoparticles.Therearevariousnon-chemicalprocessesaswell,includingelectroporation,sonoporation,andimpalefection.Impalefectionisdifferentfromtheseothernon-

Page|10

chemicalmethodsinthatDNAisintroducedintothecellthroughtheuseofnanomaterials.Inthisprocess,nanowiresandsimilarnanoparticlesareusedastransportsystems.VerticalarraysofnanowiresarepreparedbyphotolithographyandplasmaenhancedchemicalvapordepositionbeforetheyarecoatedinDNAcontainingthesequencemeantfordelivery.Targetcellsareculturedonthesenanowirearrays,whichproceedtoimpalethetargetcellsastheysettleonthesurfaceofthenanowires.ThismethodisabletodeliverDNAdirectlytothecellcytoplasmofthenucleusofthecell,whichthenbeginstoactinaccordancewiththenewlyintroducedsequenceofDNA.Appropriately,theterm“transfection”isacombinationofboth‘impalement’and‘infection[33-36].’

4.5.2 TissueEngineering

Nanomedicaltechnologyisbeinginvestigatedasapossiblemethodtofurtherthefieldoftissueengineering.Nanotechnologycouldpotentiallybeusedtohelprepairdamagedtissuethroughtheuseofsuitablenanomaterial-basedscaffoldsandgrowthfactors.Ifsuccessful,tissueengineeringmaybeabletoreplaceconventionaltreatmentssuchasorgantransplantsandartificialimplants.Nanoparticlessuchasgraphene,CNTs,molybdenumdisulfide,andtungstendisulfidearebeinginvestigatedaspotentialreinforcingagentstomakestrong,biodegradablepolymericnanocompositesforbonetissueengineeringapplications.Asaresultoftheadditionofthesenanoparticlesintothepolymermatrixatlowconcentrationsofabout0.2%byweight,thecompressiveandflexuralmechanicalpropertiesofpolymericnanocompositesaresignificantlyincreased.Thesenanocompositescouldpotentiallybeusedtofurthernanonephrology(definedasnanomedicineofthekidney),createstrong,lightweightcompositeboneimplants,orevenweldarteriesduringsurgery[37,38].

4.5.3 Monitoring

Medicalmonitoringisthepracticeofobservingapatienttoeithermakesuretheyremainhealthyorgatheringdatatoassistindiagnosisortreatment.Traditionally,thishasbeendoneprimarilyincontrolledenvironmentswhereadoctoracphysicallyobservethepatient.Usingcurrenttechnology,however,doctorscanobservepatientsfromanywherebywayofasmallchipeitherimplantedunderthepatent’sskin,swallowedinpillform,orintroducedtothebodybyothermeans.Thisisamajorimprovementoverin-personmonitoring,duetothefactthatitenablesconstantmonitoring.Constantmonitoringofthepatientallowsdoctorstogathermoredatafromthepatient,allwhilethepatientgoesabouttheirnormaldailyroutine.Bothofthesebenefitscanresultinfaster,moreaccuratediagnosisandtreatmentofdisease.Unfortunately,duetotherelativelylargesizeofthesemodernimplantsascomparedtoobjectsonthenanoscale,theycanonlybeimplementedinlimitedlocationsthroughoutthebody.Thisrestrictstheiraccesstocertaindatathatcanonlybeobtainedinlocationsinwhichtheycannotbeutilized.Nanomedicaltechnologyhasthepotentialtoovercomethisobstaclebyproducingnanoscaleimplantsthatcanbeutilizedvirtuallyanywherewithinthebody.Usingtheconceptofananoscalelab-on-chipimplant,scientistscanpotentiallygatherdatafromtestsrangingfromcontinuousevaluationofbloodsugarlevelsandneuroimagingtopredictingbothhypoandhyperglycemicstatesaswellasseizures.InVivoBioMEMSbasedbiosensorsandserotoninbiosensorsmayalsobeusedinpreventinganearlydetectionofmentalhealthdisorders,suchasdepression[39,40].

Page|11

Thissectiondiscussedjustsomeofthemultitudeoftreatmentoptionscurrentlyunderinvestigation.Inthenextsection,wewillexplorechallengesintroducedwhenintroducinganyoftheseforeignagentsintothehumanbody–atopicknownasbiocompatibility.

5. Biocompatibility

Inpastsections,wehavecoveredmethodstodetectandcurecanceronthenanoscale.Achievingatreatment,however,ismoredifficultthanthat.Thenanorobotsneedtobeabletosurvivewithinthebodyforlongenoughtoarriveatthecancerouscellsanddelivertheirmedication.Inthefollowingsectionwediscussthechallengespresentedbythisrequirement,commonlyknownasbiocompatibility.

Biocompatibility,or“theabilityofamaterialtoperformwithanappropriatehostresponseinaspecificsituation,”[41]isanimportantfactorinthedevelopmentofnanomedicalrobots.Anynanorobotdesignedtoenterthehumanbodymustbebiocompatibleinordertofunctioncorrectly,oritsintroductionwilltriggerunwantedimmuneresponsesinthebody.Biocompatibilityhastraditionallybeenanimportantconsiderationinprostheticsandorgantransplants,asarejectedtransplantcanhaveseriouscomplications.Biocompatibilityinnanomedicine,however,inpartduetoitslargesurfaceareatovolumeratio,introduceschallengesuniquetoitsscale[42].Thissectionwilladdressbothpossibleeffectsofnanorobotsonthebodyandfactorsthatdeterminebiocompatibilityonthenanoscale.

5.1 Immunostimulation

Ifmedicalnanorobotsarenotappropriatelybiocompatible,thereisariskofanumberofcomplicationswithinthehost.Thetwoverybroadcategoriesofimmuneresponsestonanoparticlesareimmunostimulationandimmunosuppression.Ifthenanorobotstriggeranimmuneresponsewithinthehost,thereactioncanbeconsideredoneofimmunostimulation[43].Itisimportanttonoteherethatbiocompatibilityrequiresanimmunereactionappropriatetothedesiredfunction,notsimplyanon-reaction.Immunostimulationisnotnecessarilyanegativereaction;itcan,infact,bethedesiredeffect.Forexample,nanoparticlescanbeinjectedintothebloodstreamtoaidtheimmunesysteminfightingoffadisease[42,43].Infact,thismethodhasbeenusedsincetheadventofvaccineswithnon-nanoscalematerialsknownasimmunologicadjuvants[44,45].Immunostimulationcan,however,beharmfultobothhostandnanorobots.Immunostimulationproducessideeffectsincludinghypersensitivitytoallergens,inflammation,fever,andotherflu-likesymptoms[43].Itcanalsoaggravateotherconditions,suchasautoimmunity.Immunostimulationalsoresultsintheincreasedproductionofmacrophages,whichcanattackanddestroynanorobotsbeforetheyareabletoaccomplishtheirtaskwithinthebody.

5.2 Immunosuppression

Introducingnanoparticlesintothebodydoesnotalwayscauseimmunostimulation–itcanalsotriggerimmunosuppression.Asitsnamesuggests,immunosuppressionistheoppositeofimmunostimulation:itisdefinedas“suppressionofthebody'simmunesystemanditsabilitytofightinfectionsandotherdiseases[46].”Immunosuppressionisvitaltosuccessfulorgantransplantsandskingrafts,aswellas

Page|12

autoimmunitytreatments.Immunosuppressioncanmakeiteasierfordrug-deliverynanorobotstoaccomplishtheirjobsinthebody,butalsohasthepotentialtoharmorevenkillthehost[43].Immunosuppressionleavesthebodyopentoattack,andisthesymptomofdiseaseslikeHIVandAIDSthateventuallyleadstodeath.Whennanorobotsareusedasdrugdeliverydevices,asisthefocusofthispaper,theywilllikelybemosteffectiveiftheyareseenasnativeentitieswithnoimmunostimulationorimmunosuppression[44].Thisisthegoalofnanoscalebiocompatibility.

5.3 FactorsofNanobiocompatibility

Intheprevioussubsections,wediscussedtwomajoreffectsthattheintroductionofforeignnanorobotscanhaveontheimmunesystem–theimmunostimulationandimmunosuppressionreactions.Inthissubsection,wepresentmanyofthefactorsthatcaninfluencethesereactions.Biocompatibilityonthenanoscalepresentschallengesnotfacedintraditionalprostheticsortransplants.Onthenanoscale,biocompatibilityisdeterminedbyanumberoffactors:size,amount,density,location,duration,geometricsurfaceplanes,andmaterial,amongothers[34-36].Materialmaybethelargestfactorindeterminingbiocompatibility.Somematerials,suchasmetaltracesincertaincarbonnanotubes[42],areknowntocauseundesiredimmunereactions,whileothers,suchasdiamond[47,48]andpossiblygraphene[43],havebeenshowntohaveminimalbiocompatibilityissuesinanimals.Sizeisakeyfactoraswell–evenifamaterialisconsideredbiocompatibleonalargerscale,nanoparticlesofthesamematerialcanpotentiallyprovetobecarcinogenic[48].Also,thesmallertheparticle,thelongertheytendtosurviveinthebloodstream.AccordingtoBastúsetal,thisisanobservable,universaltrend[44].Surfaceorientationplaysalargeroleindeterminingbiocompatibilityaswell,aseachgeometricplanepresentsadifferentphysicalstructuretothesurroundingenvironment.Immuneresponsesdifferbetweenplanes,causingbiocompatibilitytovaryevenwithinnanoparticlesofthesamematerial[47].Biocompatibilityalsodiffersbasedonlocation.Forexample,nanorobotswillencounterverydifferentbiologicalconditionsifinjecteddirectlyintothebloodstream,asopposedtobeingingestedorallyorinhaled.Eachsetofconditionswillaffectthenanorobotdifferently,sothesamenanorobotmaybebiocompatibleinthebloodstream,butnotinthestomach.Durationisalsoamajor–ifoftenoverlooked–factorinbiocompatibility.Nanorobotsmusthaveapre-plannedwaytoleavethebodyoncetheyaccomplishtheirtask.Theymaybeexcretednormally,mimicpathogenssoastoberemovedbytheimmunesystem,ormakeuseofotherexittechniques[43].Ifthereisnoexitstrategynanorobotscanbuildupinvitalinternalorgans,suchastheliverorspleen,causingsideeffectsincludingliverfailureandcancer[42-44].

Nanomedicinedoeshavethepotentialtorevolutionizethewaymedicineispracticedaroundtheworld,butitisclearthatbiocompatibilityonthenanoscaleisoneofmanymajorchallengesthatmustbeovercomebeforenanomedicinecanbesafelyimplementedonalargescale.

6. Power

Intheprevioussection,wediscussedbiocompatibilityandthedifficultiespresentedbythisconcept.Butevenifananorobotcandetectcancer,treatcancer,andbefullybiocompatible,itstillneedsawaytopoweritself.Inthissection,wewilldiscussrecentprogressinwirelesspowerandhowthisideacanbe

Page|13

directlyappliedtonanomedicine.

Unlessthenanorobotsofthefuturearedesignedtobetotallypassive–relyingonlyonoutsidesourcesforallmovementandactions–theywillneedasourceofpower.Poweringananorobotwithwiresasitcirculatesthroughthehumanbloodstreamisobviouslyimpractical,andnanoscalebatterieswouldlikelyholdonlyaverylimitedchargeanddonotcurrentlyexistinformsusefulinnanomedicicalapplications.Ignoringexternalwiresandinternalbatteriesleavesuswithaverylikelysolutiontonanorobotpower:wirelessinductivepower.

Whenpoweringadevicelikeananorobotremotely,afour-partsystemconsistingofatransmitter,rectifier,bandgapreferencecircuit,andmatchingnetworkisrequired.ThetransmittertransmitsACpower,whichisconvertedtoDCpowerbytherectifier.ThebandgapreferencecircuitandaregulatoruseanalogcircuitrytechniquestotransformthisDCvoltageintoastable,non-temperaturedependentvoltagesourceusablebythedevice.Thenetworkmustbeimpedancematchedfortheparticularoperatingtominimizepowerloss,therebyprovidingmorepowertothechip[41].Therearemanyknowndesignsforwirelessinductivepowersystemsthatcouldpotentiallybeadaptedforimplantabledevices,someofwhichhavebeenshowntooperatewithupto72%powerefficiency[42].TheCaltechNanofabricationlabdevelopedonesuchdevice,a1.4mmby1.4mmglucosemonitoringimplantthatispoweredbyanexternalRFsignalat900Mhzanduses5μWofpower[43].

Figure6.1:Basicblockdiagramofafour-partwirelesspowersystem

Inductivepowerisnotperfect.Thecoilsmustbebothmatchedperfectlyandinperfectalignmentwitheachothertorealizemaximumrange,whichisstillnormallyonlyamatterofcentimeters.ResearchersatMIT,however,havedevelopedasolutiontotheseproblemsknownashighlyresonantwirelesspowertransfer.Usingthistechnology,theydevelopedasystemtoefficientlytransmit60wattsovertwometers[44].Thistechnologycouldbehugelybeneficialinlonger-termimplants,suchascochlearimplantsorpacemakers,whicharecurrentlybatterypoweredandrequireinvasivesurgerytoreplacethebatterywhenitbeginstofail.Highlyresonantwirelesspowercouldalsobeusedtomoreeasilypowernanomedicaldevices.Assumingashortlifespanfornanorobotsinthebody,thepatientmaybeabletostayeasilywithinrangeofahospitaltransmitterimplantedintheirbedorwallfortheentireprocedure–potentiallyeliminatingthecomplicationsintroducedbytherangeandalignmentrequirementsofmoretraditionalinductivepower.

Otherrecentexamplesofstudiesusingwirelesspowerincludethedesignofatelemetrysystembased

Page|14

onwirelesspowertransmissionforphysiologicalparametermonitoring[41]andamethodoftrackingoptimalefficiencyofmagneticresonancewirelesspowertransfersystemforbiomedicalcapsuleendoscopy[42].Intheformer,animplantedtelemetrysystemforexperimentalanimalscanbeusedtocontinuouslymonitorphysiologicalparameters.Thissystemissignificantnotonlyinthestudyoforganismsbutalsointheevaluationofdrugefficacy,artificialorgans,andauxiliarydevices.Thesystemiscomposedofaminiatureelectroniccapsule,awirelesspowertransmissionmodule,adata-recordingdevice,andaprocessingmodule.Anelectrocardiograph,atemperaturesensor,andapressuresensorareintegratedintheminiatureelectroniccapsule,inwhichthesignalsaretransmittedinvitrobywirelesscommunicationafterfiltering,amplification,andA/Dsampling.Toovercomethepowershortageofbatteries,awirelesspowertransmissionmodulebasedonelectromagneticinductionwasdesigned.Inthelatter,researcherswerelookingforasolutiontotheproblemoflimitedbatterycapacityincommercializedcapsuleendoscopy.TheirpaperpresentsatheoryfortrackingtheoptimalefficiencyofanMR-WPT(ResonantWirelessPowerTransfer)system,alongwithitsexperimentalverification.Asystemwitha9-mm-diameterreceiverisimplemented,whichissmallenoughtofitinthecurrentcapsuleendoscope.

Thecurrentadvancesinwirelesspowertechnologyareessentialforthefuturedevelopmentofnanomedicalrobots.However,powerisonlyonepieceofthepuzzle.Untilwecanassembleacompletenanorobotfortestingpurposes,wemustrelyonothermethodstodeterminehowdifferentdesignsinteractwiththehumanbody.Inthefollowingsection,wewilldiscussonesuchmethod:computermodeling.

7. ComputerModeling

Inprevioussections,wehavediscussedmanyofthebasicrequirementsforcancer-treatingnanorobots.Inthefollowingsection,wewalkthroughoneattempttomodelallofthesesystemstogetherwithinthehumanbodythroughtheuseofcomputers.

Inordertocreateviablenanorobotsformedicalpurposes,allofthesesystemsmustcometogetherinoneunit.Becausewearenotyetabletophysicallyproducerobotsontherequiredscale,wecanusecomputermodelingtoattempttodeterminehowspecificcombinationsofalloftheabovesystemswillfunctiononceintroducedintothebody.Inonerecentexampleofcomputermodelingfornanomedicine,aresearchteamattheUniversityofSouthernCaliforniahasdevelopedasystemthatmodelsnanoscaledrugdeliverythroughthebloodstream.Ithastheabilitytorepresentbothactiveandpassivetargetingnanorobots.Itsimulatestheflowofnanorobotsthroughthebloodstreamuntiltheydetectcancercells,atwhichpointtheymaneuvertothetumorandbegintheprocessofdrugdelivery.Thismodelaccountsforvariouspossibledrugdeliveryfailures,suchasearlyrelease,delayedrelease,non-release,powerfailure,andimmunostimulation.Uponfailure,therepresentationofthenanorobotexitsthemodel.Eachfaileddeliverycanbeviewedinabargraphbytypeoffailure.Whenananorobotsuccessfullyattachestoacancercell,therepresentativenanorobotinthemodelincurslatency,whichaccountsforattachingtothecancercellandtheactualactofdrugdeployment.Thenumberofsuccessfuldeliveriesascomparedtothenumberoffaileddeliveriescanbeseeninanotherbargraph.

Page|15

Figure7.1showsanexampleoftheincludedPositionTrackingScatterPlot,whichdisplaysthelocationofeachnanoparticleornanorobotcurrentlyinthebody.Thefigureshowsthisplotimmediatelybeforenanorobotsarefirstintroducedtothebody.

Themodelalsotakesintoaccountdrugtoxicityandbiocompatibilityissues,topicsdiscussedinthebiocompatibilitysectionofthischapter.Thesetopicscanbeimpracticaltotestforinthelab,duetothedifficultyofintroducingdifferentplanesofdifferentmaterialstoarealistichumanimmunesystemwithoutendangeringanyoneintheprocess.Whilemodeloutputsarenotasdefinitiveaslabresults,computermodelscancheaplysimulatetheintroductionofdifferentmaterialsintothehumanbloodstreamtowithinanacceptabledegreeofaccuracy.Inthisspecificmodelthebodyhasanassumedtoxicitycapacity,whichisthedensityoftoxinsitcancontainandstillbehealthy.Eachdrughasitsowntoxicitylevel,whichcanbethoughtofasgenerallyanti-proportionaltoitsbiocompatibility.Thenanorobotsreleasetheirtoxinsintothebloodstreameverytimetheyfaildrugdeliveryinspecificways.Thisgraduallyincreasesthecurrentconcentrationoftoxinsinthebodybasedontheamountreleased,thetimebetweensubsequentreleases,thedistancebetweensubsequentreleases,andthetoxicityvalueassignedtothemedicineinquestion.Oncethetoxicitylevelistoogreat,thesimulationendsinfailure.

Figure7.1:PositionTrackingScatterPlotbeforeintroductionofnanorobots

ThismodelwascreatedinExtendSim9,aprogramdesignedspecificallyforcreatingdynamicsystemmodels.ThesoftwarewasrununderaneducationalgrantprovidedbyImagineThat!,thecreatorsofExtendSim.Figure7.2showsaflowchartofthemodeldesignwithinExtendSim9.

Page|16

Figure7.2:FlowchartofmodelasseenwithinExtendSim9

Datafromthismodelcanpointscientiststowardmaterialsandmolecularplanesthatareviablecandidatesforsuccessfulintroductiontothehumanbody,whichcanthenbetestedinthelab.Thismodelcanalsopredictboththeoverallamountanddensityofaspecificmedicationcanbesafelyreleasedintothebloodstreambeforetheconcentrationduetonanorobotfailuresishighenoughtobedangeroustothepatient.

Thismodelhasbeenpurposelydesignedtogrowwiththeincreaseofknowledgewithinthestillrelativelynewfieldofnanomedicine.Asmoreresearchisdoneandnewresultsbecomeavailable,thisdatacanbeaddedtothemodel.Thiswillfurtherrefinetheresults,makingthismodel–intheory–incrediblyaccurateovertime.Aswelearnmoreaboutnanomedicine,Datafromthismodelcanpointscientiststowardmaterialsandmolecularplanesthatareviablecandidatesforsuccessfulintroductiontothehumanbody,whichcanthenbetestedinthelab.Theinformationcollectedcanalsohelpscientistsdevelopappropriatedosagesfortreatmentordesignmoreefficientnanorobotswithahigherdeliverysuccessrate.

8. ResearchInstitutions

Inprevioussections,wehaveexploredsomeofthespecificsofnanomedicalresearchforcancer.Inthefollowingsection,wewilldiscusstheorganizations,centers,universities,andscientistsactuallydoingtheresearchasofthefallof2014.

Fundingfornanomedicalresearchhasbeengrowingsteadily.Researchinstitutionsarereceivingfundingtostudynanomedicineandnanotechnologyaroundtheworld.TheNationalInstituteofHealth(NIH)hasformedanationalnetworkofnanomedicinecentersintheUnitedStates.ThisnetworkiscomprisedofeightNanomedicineDevelopmentCenters.Thesecenters,orNDCs,werecreatedtobothadvancethefieldofnanomedicinethroughresearchand“begintrainingthenextgenerationofstudentsin[the]emergingfield[ofnanomedicine][55].”

TheNIHfocusestheireffortsonunderstandingtheinnerworkingsofcellsonthenanoscaleandusing

Page|17

thatknowledgeto“developnewtechnologiesthatcouldbeappliedtotreatingdiseases,and/orleveragethenewknowledgetofocusworkdirectlyontranslationalstudiestotreatadiseaseorrepairdamagedtissue[56].”Theprogramrunsfortenyears,from2005to2015.TheNIHcountsNewYorkUniversity,theUniversityofCaliforniaSanFrancisco,andtheUniversityofCaliforniaBerkeleyamongitseightNDClocations.Asof2014,currentresearchatNewYorkUniversityincludes“developingculturesystemstoimproveadoptiveimmunotherapy[57],”throughgrowingculturesofmemoryTcellsinculturesbeforeinjectingthemintothebodytostimulateimmuneresponsetospecificpathogens.Meanwhile,theNanomedicineCenterforNucleoproteinMachinesatGeorgiaTechisresearchingproteincreationandDNAmodificationwiththehopesofusingthatknowledgetoeithermoreeffectivelytreatorevencuresicklecelldisease[58],andtheUniversityofCalifornia,SanFranciscoistryingtocreateentirelynewnanotechnologicalsystemstodiagnoseandtreatdiseaseslikecancer[59].

InEurope,theEuropeanCommissioncreatedtheEuropeanTechnologyPlatformonNanomedicine(ETPN)in2005withthegoalsoffocusingresearchandraisingmoneyforfunding.Theirthreepriorityfocusareasarenanotechnology-baseddiagnosticsincludingimaging,targeteddrugdeliveryandrelease,andregenerativemedicine[60].Current(2014)researchundertheETPNincludesNANOCI,orNanotechnologyBasedCochlearImplants,whoareworkingonjustthat–creatingcochlearimplantsthatconnectdirectlytoauditorynervefibers,solvingmultipleproblemswithcurrentassistiveaudiotechnologyatonce[61,62].Anothergroup,NANOFOL,isworkingtodesignnanorobotstocureinflammatorydiseasessuchasrheumatoidarthritis[61,63].

BoththeNIHandtheETPN,alongwithotherinstitutionsworldwide,haveseenthepotentialfornanomedicinetoforeverchangethelandscapeofmodernmedicine.Onlywithcontinuedfundingandresearch,however,willwedevelopthetechnologytorealizetheincrediblepotentialofnanomedicine.

9. Conclusion

Althoughnanomedicinehasthetheoreticalpotentialtorepairorgans,restorelostspinalfunction,andevenreversetheagingprocess,forthispaperwehavefocusedspecificallyontheroleofnanorobots,nanoparticles,carbonnanotubes,andothernanoscaledevicesinthetreatmentofdisease.Thoughmanyoftheabovescenariosarecurrentlyonlyhypothetical,modernnanomedicalresearchprovidesasolidfoundationforfutureadvancesinnanoscalehealthcaretechnology.

10. Acknowledgements

WewouldliketothankSamitsubhroBanerji,YixinCai,SauravChowdhury,BiyiFang,WanlingJiang,KrishnaSureshReddyPadala,PadminiPrakash,IshanPurohit,KarthikRajamane,YeshaShah,YilinXu,andSantoshYerrapragadafortheircontributionstothispaper.

Page|18

References

[1]S.Sepeur,Nanotechnology:TechnicalBasicsandApplications.VincentzNetworkGmbH&CoKG,2008.

[2](2008).WhatisNanotechnology?.Available:http://www.crnano.org/whatis.htm.

[3]S.KaranandD.D.Majumder.Molecularmachinery-ananoroboticscontrolsystemdesignforcancerdrugdelivery.PresentedatRecentTrendsinInformationSystems(ReTIS),2011InternationalConferenceon.2011,.

[4]G.Vanderheiden.Overthehorizon:Potentialimpactofemergingtrendsininformationandcommunicationtechnologyondisabilitypolicyandpractice.NationalCouncilonDisability2006.

[5]M.Al-Fandi,M.A.Jaradat,M.Al-RousanandS.Jaradat.Alivingbiologicalnanorobotasself-navigatorsensorfordiseases.PresentedatBiomedicalEngineering(MECBME),20111stMiddleEastConferenceon.2011,.

[6]A.A.Requicha.Nanorobots,NEMS,andnanoassembly.ProcIEEE91(11),pp.1922-1933.2003.

[7]S.P.WoodsandT.G.Constandinou.Wirelesscapsuleendoscopefortargeteddrugdelivery:Mechanicsanddesignconsiderations.BiomedicalEngineering,IEEETransactionson60(4),pp.945-953.2013.

[8]Y.Zhang,D.Wang,X.Ruan,S.JiangandJ.Lu.Controlstrategyformultiplecapsulerobotsinintestine.ScienceChinaTechnologicalSciences54(11),pp.3098-3108.2011.

[9]S.YimandM.Sitti.Shape-programmablesoftcapsulerobotsforsemi-implantabledrugdelivery.Robotics,IEEETransactionson28(5),pp.1198-1202.2012.

[10]S.Sengupta,M.E.IbeleandA.Sen.Fantasticvoyage:DesigningSelf-Powerednanorobots.AngewandteChemieInternationalEdition51(34),pp.8434-8445.2012.

[11]K.Weidner.(2014,Feb10).Nanomotorsarecontrolled,forthefirsttime,insidelivingcells.Available:http://news.psu.edu/story/303296/2014/02/10/research/nanomotors-are-controlled-first-time-inside-living-cells.

[12]C.Zandonella.Cellnanotechnology:Thetinytoolkit.Nature423(6935),pp.10-12.2003.

[13]S.Wang,R.Wang,P.SellinandQ.Zhang.DNAbiosensorsbasedonself-assembledcarbonnanotubes.Biochem.Biophys.Res.Commun.325(4),pp.1433-1437.2004.

[14]B.Leonard,CancerNanotechnology:GoingSmallforBigAdvances:UsingNanotechnologytoAdvanceCancerDiagnosis,PreventionandTreatment.DIANEPublishing,2009.

[15]Y.Choi,J.KwakandJ.W.Park.Nanotechnologyforearlycancerdetection.Sensors10(1),pp.428-455.2010.

[16]D.GardnerandD.Shoback,Greenspan'sBasicandClinicalEndocrinology.McGrawHillProfessional,2011.

[17]B.Kim,S.L.TrippandA.Wei.Tuningtheopticalpropertiesoflargegoldnanoparticlearrays.PresentedatMRSProceedings.2002,.

[18]A.M.Gobin,M.H.Lee,N.J.Halas,W.D.James,R.A.DrezekandJ.L.West.Near-infraredresonantnanoshellsforcombinedopticalimagingandphotothermalcancertherapy.NanoLetters7(7),pp.1929-1934.2007.

[19]M.P.Melancon,W.Lu,Z.Yang,R.Zhang,Z.Cheng,A.M.Elliot,J.Stafford,T.Olson,J.Z.ZhangandC.Li.Invitroandinvivotargetingofhollowgoldnanoshellsdirectedatepidermalgrowthfactorreceptorforphotothermalablationtherapy.Mol.Cancer.Ther.7(6),pp.1730-1739.2008..DOI:10.1158/1535-7163.MCT-08-0016[doi].

[20]X.Huang,I.H.El-Sayed,W.QianandM.A.El-Sayed.Cancercellimagingandphotothermaltherapyinthenear-infraredregionbyusinggoldnanorods.J.Am.Chem.Soc.128(6),pp.2115-2120.2006.

[21]R.Guduru,P.Liang,C.Runowicz,M.Nair,V.AtluriandS.Khizroev.Magneto-electricnanoparticlestoenablefield-controlledhigh-specificitydrugdeliverytoeradicateovariancancercells.ScientificReports32013.

Page|19

[22]P.Alivisatos.Theuseofnanocrystalsinbiologicaldetection.Nat.Biotechnol.22(1),pp.47-52.2003.

[23](2012,June19).DARPAtouseImplantableSensorstoMonitorSoldiersintheBattlefield.Available:http://www.real-agenda.com/2012/06/19/darpa-to-use-implantable-sensors-to-monitor-soldiers-in-the-battlefield/.

[24]H.Lee,J.Lee,S.OhandC.Chung.InductivelycoupledRFheatingofnano-particlefornon-invasiveandselectivecancercelldestruction.Presentedat10thIEEEInternationalConferenceonNanotechnology.2010,.

[25]C.J.Gannon,P.Cherukuri,B.I.Yakobson,L.Cognet,J.S.Kanzius,C.Kittrell,R.B.Weisman,M.Pasquali,H.K.SchmidtandR.E.Smalley.Carbonnanotube-enhancedthermaldestructionofcancercellsinanoninvasiveradiofrequencyfield.Cancer110(12),pp.2654-2665.2007.

[26]P.Chakravarty,R.Marches,N.S.Zimmerman,A.D.Swafford,P.Bajaj,I.H.Musselman,P.Pantano,R.K.DraperandE.S.Vitetta.Thermalablationoftumorcellswithantibody-functionalizedsingle-walledcarbonnanotubes.Proc.Natl.Acad.Sci.U.S.A.105(25),pp.8697-8702.2008..DOI:10.1073/pnas.0803557105[doi].

[27]M.AlamandY.Massoud.Anaccurateclosed-formanalyticalmodelofsinglenanoshellsforcancertreatment.PresentedatCircuitsandSystems,2005.48thMidwestSymposiumon.2005,.

[28]A.Lin,L.Hirsch,M.Lee,J.Barton,N.Halas,J.WestandR.Drezek.Nanoshell-enabledphotonics-basedimagingandtherapyofcancer.TechnolCancerResTreat3(1),pp.33-40.2004.

[29]M.L.Brongersma.Nanoscalephotonics:Nanoshells:Giftsinagoldwrapper.NatureMaterials2(5),pp.296-297.2003.

[30]M.Ogiue-Ikeda,Y.SatoandS.Ueno.Destructionoftargetedcancercellsusingmagnetizablebeadsandpulsedmagneticforces.Magnetics,IEEETransactionson40(4),pp.3018-3020.2004.

[31]M.VenkatesanandB.Jolad.Nanorobotsincancertreatment.PresentedatEmergingTrendsinRoboticsandCommunicationTechnologies(INTERACT),2010InternationalConferenceon.2010,.

[32]R.Singhai,V.W.Patil,S.R.Jaiswal,S.D.Patil,M.B.TayadeandA.V.Patil.E-cadherinasadiagnosticbiomarkerinbreastcancer.N.Am.J.Med.Sci.3(5),pp.227-233.2011..DOI:10.4297/najms.2011.3227[doi].

[33]Biology-online.org,'LifeScienceReference-BiologyOnline',2015.[Online].Available:http://www.biology-online.org.[Accessed:02-Jun-2015].

[34]Ntnu.edu,'NorwegianUniversityofScienceandTechnology-NTNU',2015.[Online].Available:http://www.ntnu.edu.[Accessed:02-Jun-2015].

[35]J.Bonadio,'Review:LocalGeneDeliveryforTissueRegeneration',e-biomed:TheJournalofRegenerativeMedicine,vol.1,no.2,pp.25-29,2000.

[36]T.McKnight,A.Melechko,D.Hensley,D.Mann,G.GriffinandM.Simpson,'TrackingGeneExpressionafterDNADeliveryUsingSpatiallyIndexedNanofiberArrays',NanoLetters,vol.4,no.7,pp.1213-1219,2004.

[37]G.Lalwani,A.Henslee,B.Farshid,L.Lin,F.Kasper,Y.Qin,A.MikosandB.Sitharaman,'Two-DimensionalNanostructure-ReinforcedBiodegradablePolymericNanocompositesforBoneTissueEngineering',Biomacromolecules,vol.14,no.3,pp.900-909,2013.

[38]G.Lalwani,A.Henslee,B.Farshid,P.Parmar,L.Lin,Y.Qin,F.Kasper,A.MikosandB.Sitharaman,'Tungstendisulfidenanotubesreinforcedbiodegradablepolymersforbonetissueengineering',ActaBiomaterialia,vol.9,no.9,pp.8365-8373,2013.

[39]J.Genz,B.Haastert,G.Meyer,A.Steckelberg,H.Müller,F.Verheyen,D.Cole,W.Rathmann,B.Nowotny,M.Roden,G.Giani,A.Mielck,C.OhmannandA.Icks,'Bloodglucosetestingandprimarypreventionofdiabetesmellitustype2-evaluationoftheeffectofevidencebasedpatientinformation',BMCPublicHealth,vol.10,no.1,p.15,2010.

[40]E.Jovanov,A.O'DonnellLords,D.Raskovic,P.Cox,R.AdhamiandF.Andrasik,'Stressmonitoringusingadistributedwirelessintelligentsensorsystem',IEEEEng.Med.Biol.Mag.,vol.22,no.3,pp.49-55,2003.

[41]Z.Jia,G.YanandB.Zhu,'Designofatelemetrysystembasedonwirelesspowertransmissionforphysiologicalparametermonitoring',AIP

Page|20

Advances,vol.5,no.4,p.041320,2015.

[42]K.Na,H.Jang,H.MaandF.Bien,'TrackingOptimalEfficiencyofMagneticResonanceWirelessPowerTransferSystemforBiomedicalCapsuleEndoscopy',IEEETransactionsonMicrowaveTheoryandTechniques,vol.63,no.1,pp.295-304,2015.

[43]D.F.Williams.Onthemechanismsofbiocompatibility.Biomaterials29(20),pp.2941-2953.2008.

[44]K.Riehemann,S.W.Schneider,T.A.Luger,B.Godin,M.FerrariandH.Fuchs.Nanomedicine—challengeandperspectives.AngewandteChemieInternationalEdition48(5),pp.872-897.2009.

[45]S.Naahidi,M.Jafari,F.Edalat,K.Raymond,A.KhademhosseiniandP.Chen.Biocompatibilityofengineerednanoparticlesfordrugdelivery.J.ControlledRelease166(2),pp.182-194.2013.

[46]N.GómeziBastús,E.SánchezTilló,S.PujalsRiatós,J.Comenge,E.GiraltLledó,A.CeladaCotarelo,J.LloberasCaveroandV.Puntes.Inorganicnanoparticlesandtheimmunesystem:Detection,selectiveactivationandtolerance.ProceedingsoftheSocietyofPhoto-OpticalInstrumentationEngineers,2012,Vol.8232,p.823217-1-823217-142012.

[47]NCIDictionaryofCancerTerms:immunologicaladjuvant.Available:http://www.cancer.gov/dictionary?cdrid=43987.

[48]NCIDictionaryofCancerTerms:Immunosuppression.Available:http://www.cancer.gov/dictionary?cdrid=45727.

[49]R.A.FreitasJr.,"Proteinadsorptionondiamondsurfaces,"inNanomedicine,VolumeIIA:Biocompatibility,1sted.AnonymousLandesBioscience,2003,.

[50]R.A.FreitasJr.,"Biocompatibilityofdiamondparticles,"inNanomedicine,Vol.IIA:Biocompatibility,1sted.AnonymousLandesBioscience,2003,.

[51]A.Yakovlev,S.KimandA.Poon.Implantablebiomedicaldevices:Wirelesspoweringandcommunication.CommunicationsMagazine,IEEE50(4),pp.152-159.2012.

[52]G.YilmazandC.Dehollaini.Anefficientwirelesspowerlinkforimplantedbiomedicaldevicesviaresonantinductivecoupling.PresentedatRadioandWirelessSymposium(RWS),2012IEEE.2012,.

[53]A.Scherer,"Fromlab-on-a-chiptolab-in-the-body:Theroleofnanotechnologyintheminiturizationofmedicaldiagnostictools,"inEE-ElectrophysicsSeminar,UniversityofSouthernCalifornia,LosAngeles,CA,2014,March5,.

[54](2013,June20).WirelessPowerForMedicalDevices.Available:http://www.mddionline.com/article/wireless-power-medical-devices.

[55]NationalEyeInstitute,"NIHcompletesformationofnationalnetworkofnanomedicinecenters,"NationalInstitutesofHealth,Oct.2006.

[56](2014,Feb20).Nanomedicine.Available:https://commonfund.nih.gov/nanomedicine/index.

[57](2013,Aug22).NanomedicineCenterforMechanobiologyDirectingtheImmuneResponse.Available:https://commonfund.nih.gov/nanomedicine/devcenters/mechanicalbiology.

[58](2010).TechnicalOverview.Available:http://www.nucleoproteinmachines.org/overview.html.

[59](2013,Aug22).EngineeringCellularControl:SyntheticSignalingandMotilitySystems.Available:https://commonfund.nih.gov/nanomedicine/devcenters/cellularcontrol.

[60]AboutETPN.Available:http://www.etp-nanomedicine.eu/public/about.

[61](2014).EuropeanFunding.Available:http://www.etp-nanomedicine.eu/public/about-nanomedicine/european-funding.

[62](2013).TheConceptofNANOCI.Available:http://nanoci.org/project/index.php.

[63]ScientificandTechnicalObjectives.Available:http://www.nanofol.eu/index.php?id=152.

top related