10. an introduction to nanomedicine-2 - extendsim · chapter 10 an introduction to nanomedicine ......

20
Page |1 Chapter 10 An Introduction to Nanomedicine Amber Bhargava, Janet Cheung, Mary Eshaghian-Wilner, Wan Lee, Mike Schlesinger, Abhishek Uppal 1 Abstract: In this paper we present the status of research in nanomedicine for the treatment of cancer as well as other biological diseases. We analyze the development of nanomedicine research based on – but not limited to – recent studies in the detection of diseased cells (including cancerous cells), drug delivery, and nanorobotics. The same approach may also be adopted in other respects, such as the targeting and removal of plaque and/or cholesterol in arteries as well as repairing damaged cells. Many of these approaches to nanomedicine can be simulated through the use of computer models. We will discuss one such model from the University of Southern California. Outstanding issues relating to the preliminary stage of nanomedical research will be covered as well, along with various approaches for cancer treatment using nanotechnology. Current challenges associated with these treatment approaches, as well as possible solutions for these challenges, will be discussed. We conclude with a discussion of biocompatibility, nanoscale power, and the current state of research in the field. 1. Introduction Nanotechnology promises a host of innovative solutions in medicine through precise, targeted operations on the cellular level. For more than a decade, researchers have been searching for ways to realize these solutions and overcome the difficulties encountered when attempting to use nanotechnology for the treatment of various ailments. Recently, researchers have begun to look into nanorobotics, a relatively new subset of nanotechnology that involves the control of multifunctional nanosystems. Nanorobots could integrate the diagnosis and treatment of cancer into a cohesive, potentially non-invasive unit. Although the field of nanorobotics remains largely theoretical, a number of advances have been made in the past few years that lead us to believe that a multifunctional medicinal nanorobot could be possible. In order to achieve this goal, we need to know what has already been achieved and what still remains to be done. Nanotechnology as a whole is a relatively recent development in scientific research. First defined by Norio Taniguchi from the Tokyo Science University in 1974, nanotechnology “mainly consists of the process of separation, consolidation, and deformation of materials by one atom or molecule [1].” Prior to the year 2000, nanotechnology focused on passive nanostructures; now, active nanostructures and systems such as targeted drugs and nanorobots are being studied. Today, a widely accepted definition for nanotechnology is “engineering of functional systems at the molecular scale,” according to the 1 Authors are listed alphabetically by last name, as opposed to by order of contribution

Upload: lekhue

Post on 25-Jul-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 10. An Introduction to Nanomedicine-2 - ExtendSim · Chapter 10 An Introduction to Nanomedicine ... exciting and novel applications in medicine ... as it applies to medicine, different

Page|1

Chapter10

AnIntroductiontoNanomedicine

Amber Bhargava, Janet Cheung, Mary Eshaghian-Wilner, Wan Lee, Mike Schlesinger, Abhishek Uppal1

Abstract:Inthispaperwepresentthestatusofresearchinnanomedicineforthetreatmentofcancer as well as other biological diseases. We analyze the development of nanomedicineresearch based on – but not limited to – recent studies in the detection of diseased cells(includingcancerouscells),drugdelivery,andnanorobotics. Thesameapproachmayalsobeadopted inother respects, suchas the targetingand removalof plaqueand/or cholesterol inarteriesaswellasrepairingdamagedcells.Manyoftheseapproachestonanomedicinecanbesimulated through the use of computer models. We will discuss one such model from theUniversity of Southern California. Outstanding issues relating to the preliminary stage ofnanomedical research will be covered as well, along with various approaches for cancertreatment using nanotechnology. Current challenges associated with these treatmentapproaches,aswellaspossiblesolutionsforthesechallenges,willbediscussed. Weconcludewithadiscussionofbiocompatibility,nanoscalepower,andthecurrentstateofresearchinthefield.

1. Introduction

Nanotechnologypromisesahostofinnovativesolutionsinmedicinethroughprecise,targetedoperationsonthecellularlevel.Formorethanadecade,researchershavebeensearchingforwaystorealizethesesolutionsandovercomethedifficultiesencounteredwhenattemptingtousenanotechnologyforthetreatmentofvariousailments.Recently,researchershavebeguntolookintonanorobotics,arelativelynewsubsetofnanotechnologythatinvolvesthecontrolofmultifunctionalnanosystems.Nanorobotscouldintegratethediagnosisandtreatmentofcancerintoacohesive,potentiallynon-invasiveunit.Althoughthefieldofnanoroboticsremainslargelytheoretical,anumberofadvanceshavebeenmadeinthepastfewyearsthatleadustobelievethatamultifunctionalmedicinalnanorobotcouldbepossible.Inordertoachievethisgoal,weneedtoknowwhathasalreadybeenachievedandwhatstillremainstobedone.

Nanotechnologyasawholeisarelativelyrecentdevelopmentinscientificresearch.FirstdefinedbyNorioTaniguchifromtheTokyoScienceUniversityin1974,nanotechnology“mainlyconsistsoftheprocessofseparation,consolidation,anddeformationofmaterialsbyoneatomormolecule[1].”Priortotheyear2000,nanotechnologyfocusedonpassivenanostructures;now,activenanostructuresandsystemssuchastargeteddrugsandnanorobotsarebeingstudied.Today,awidelyaccepteddefinitionfornanotechnologyis“engineeringoffunctionalsystemsatthemolecularscale,”accordingtothe

1 Authors are listed alphabetically by last name, as opposed to by order of contribution

Page 2: 10. An Introduction to Nanomedicine-2 - ExtendSim · Chapter 10 An Introduction to Nanomedicine ... exciting and novel applications in medicine ... as it applies to medicine, different

Page|2

CenterforResponsibleNanotechnology(CRN)[2].Themolecularscaleornanoscalereferstotechnologysmallerthan100nanometers.

Nanomedicineisasub-disciplineofnanotechnologyfirstdefinedinlate1999andearly2000.RobertA.Freitasfirstcomprehensivelyaddressedthetopicinhisbook,Nanomedicine,whichaddressesthetechnicalissuesinvolvedinthemedicalapplicationsofmolecularnanotechnologyandmedicalnanodevices.Currently,thereisnointernationallyagreedupondefinitionfornanomedicine.Forthepurposesofthispaper,weapplytheaccepteddefinitionofnanotechnologytomedicine.Wedefinenanomedicineastheuseofnanoscaledevicesormaterialsfordiagnosingandcuringdiseasesbyactivelyinteractingatthemolecularlevelwithinacellularsystem.Thisdefinitionisfairlybroad,sowefurtherrestrictourselvesbyincludingonlythosemedicineswhoseactiveingredientswerespecificallyengineeredwiththeintentoffunctioningonthenanoscale.Thisrequirementrejectsmedicationssuchaschapstickorsunscreen,whichwerenotdesignedwithafocusonthenanoscale.Webelievethisdefinitionadheresmostcloselytotheoriginalintentoftheterm.Nanomedicineisabroadfieldthatencompassesmultipletopicsfromdetection,drugdelivery,andnanodevicestonanoimagingandclinicalissues,allofwhichwewilladdressindetail.

Nanomedicineisexcitingbecausemanyofitsfindings–thoughoftenbasedonpreliminaryoreventheoreticalexperimentation–promiseresultsthatareimpossibleatthemacroscale.Forexample,manydevicesandmaterialsbeingstudiedexperimentallymaybeusedtodetectfaultycellsviaantibodyconjugation.Carbonnanotubes,forinstance,arecapableofdetectingparticularDNAmutationsequencesthatcouldgiverisetocancer.Anotherviableapplicationofnanoparticlesinmedicineismolecularimaging.Specificbiomoleculescanbetaggedandquantitativelyanalyzedviananoparticlesthatglowunderinfraredlight.Bothoftheseapproacheshaveexcitingandnovelapplicationsinmedicine,buttheyonlyscratchthesurfaceofhownanotechnologycanpotentiallyinfluencethefutureofmedicine.Inordertoimaginethetruescope,wemustlookatactivenanostructures,ornanorobotics.

Nanoroboticsisamultidisciplinaryfieldthatrequiresknowledgeofphysics,chemistry,biology,computerscience,andelectricalengineering.Nanorobotsmustpossessthecapabilityofactuation,control,communication,andinterfacingbetweentheorganic,inorganicandbioticrealms[3].Therearemanydirectionsfromwhichtoapproachtheproblemofcreatingaviablenanorobot.SomeresearchersfocusesonbionanoroboticsystemsmadeofbiologicalcomponentssuchasproteinsandDNA,whileothersfocusoninorganicmaterialslikeCMOSandcarbonnanotubesatthecellularlevel.Stillotherschoosetofocusonhybridnanosystems,combiningtheorganicandinorganicdomainstogetherinordertothebestofbothdomainsintoonenanorobot.

Thispaperwilladdressthetypesofdiseasesinvestigatedandthenanotechnologyinvolvedinmedicaltreatment.Next,itwilldiscussthecurrentdetectionandtreatmentmethodsusedbyresearchers.Thepaperwillthenconcludewithcurrentnanotechnologyusedincancertreatment,issueswithbiocompatibility,andcurrentresearch.Specificexamplesofcomputermodelingwillbediscussedindepth.

Page 3: 10. An Introduction to Nanomedicine-2 - ExtendSim · Chapter 10 An Introduction to Nanomedicine ... exciting and novel applications in medicine ... as it applies to medicine, different

Page|3

2. NanomedicalTechnology

Inthissectionwewilldiscussnanotechnologyasitappliestomedicine,includingdifferenttypesofnanorobotsandsomeofthechallengesinherenttobuildingrobotsonthenanoscale.

Nanoroboticsisanemergingtechnologicalfieldthatcomprisesthedevelopmentofrobotswhosecomponentsareatorclosetothenanometerscale[4].Nanorobotsdesignedtooperateinsidethehumanbodyshouldbelessthan800µmindiameterinordertotraversethebloodstream[5].Sofar,nocomplexnanorobothasbeenfabricated-currentmedicalrobotsareconstrainedtothemillimeterlevel.Thus,inorganicnanorobotconstructionatthenanoscaleisonlyatheoreticalmodel.Inthissectionwepresentashortoverviewofmedicalnanotechnology,includingnanorobots,nanoparticles,andcarbonnanotubes(CNTs)asnanodevicesrelatedtomedicine.Wealsotakealookatmicroscaledevicesthatrepresentthecurrentstate-of-the-artinmedicalimplantableandnon-invasivetechnology.

Figure2.1:Sizeofnanorobotsrelativetoredbloodcells

Treatmentsbasedonnanorobotsareexpectedtohavetwomajoradvantagesovertraditionalapproaches:concentrationandprecision.Theseadvantagesenabletherapiestobecomemoreefficientandcausefewersideeffectsbecauseoftheirabilitytoconcentratedrugsonasingletissueareaorcell.Nanorobotscanalsoworktogetherinresponsetoenvironmentalstimuliandpre-programmedfunctionalityintheircontrolunit.

Therearetwomainapproachestodevelopinganassemblednanorobotsystem:organicandinorganic.Organicnanorobotsarebasedonadenosinetriphosphate(ATP)andDNAmolecularassemblyandfunction.Anothersubsetoforganicnanorobotsisnanorobotsbasedonbacteria,whichhavebeenproposedexperimentallyfordrugdelivery.Inorganicnanorobotsareessentiallynano-electromechanicalsystems(NEMS).Astechnologyhasdeveloped,someapproacheshavebeguntocombinebothorganicandinorganicelements,creatingamoreadvancedrobotsystemknownasahybridnanosystem.Althoughsomenanorobotshavealreadybeentested,themajorityofthecurrentresearchisstillinatheoreticalsimulationstage.Mostofthesubpartsofnanorobotsarebeingstudiedasindividualentities,or‘modular-wise,’ratherthanasentiresystems,sincetheelementsofnanoroboticsarestillprimarilyintheresearchphase.

Webelievethatinorganicnanorobotsarebestsuitedascandidatesfornanomedicine,andsowewillconcentrateoursurveyoninorganicnanorobots.Thereareseveraldifferencesbetweeninorganicandorganicnanorobots,whichdeterminehowthesetwosubsetswillapproachthemanyproblemsinherent

Page 4: 10. An Introduction to Nanomedicine-2 - ExtendSim · Chapter 10 An Introduction to Nanomedicine ... exciting and novel applications in medicine ... as it applies to medicine, different

Page|4

tomedicalnanorobots.Forexample,inorganicnanorobotscouldlocatetheexactpositionofacellusingtheintensifiedmagneticpropertyfromtheforceofattractioninsidethehumanbody.Inotherwords,theycanisolateatargetcellfromanormalcellandatthesametimeallowfortargeteddrugdeliveryviaananorobotatthatdestination.AnorganicnanorobotmaybeabletoperformthesametaskusingDNAbiomarkers.However,theinherentprogrammabilityofinorganicnanorobotsbasedonCMOStechnologyandtheabilitytoleveragetheexistingcontrolstructuresofmacro-sizedrobotsmakesinorganicnanorobotsthemostlikelytosucceedinperformingthecomplex,precisetasksrequiredofmedicalnanorobots.

Still,therearemanychallengestobuildingamulti-functionalinorganicnanorobot.Inordertocreatearobotinthenanoscale,wemusttakeintoaccountsensing,actuation,control,datatransmission,power,andinterfacingacrossspatialscalesaswellasbetweentheorganic/inorganicandbiotic/abioticrealms[6].

Althoughinorganicrobotsdonotexistinthenanoscaletoday,wecanlookatmicroscaleandlargermedicalrobotsthatcanbeusedastestcasesforextendingfunctionalityintothenanoscale.Additionally,researchonsurgicallyimplanteddevicescanprovideinformationonhownanorobotsmaybeabletosolvetheproblemsofbiocompatibility,energytransfer,anddatatransfer.

Onesuchareaisdiagnosticmedicineinthedigestivetract.Medicaldevicecompanieshaveusedcapsuleendoscopesforviewinganddiagnosingdiseases.Thesedevicesareconsideredmicrorobots–onthescaleofaone-centimeterdiameterbytwocentimeterslength–andhaveonboardcamerasandLEDs,andcansendvideowirelesslyoutofthebody[7].However,theyarestilllimitedinscopeastheypassthroughthebodywithoutself-propulsion,drawnsolelythroughperistalticpressure,andthereforecannotcompletetaskssuchastrulytargetedmedicationorathoroughsearchforcancerousregions.Therearegroupssearchingforwaystoovercomethesechallenges,however,bydevelopingmotors[7],controllingseveralmicrorobotsinasystem[8],andlookingatthepotentialformicrorobotsthatcoulddispensemedicineintothestomachformonthsatatime[9].

Althoughmicroscaleandnanoscalerobotsfaceverydifferentproblemsintermsofmotionandenergysupply[10],microscalemedicaldevicesareimportanttotheemergingfieldofnanoroboticsbothasatechnologicalprecursorandasatestinggroundforthehumansideofmedicalnanorobotics.Microrobotsopenthediscussionofthelegalissuesofdatasecurityandhowthemedicalanddevice-makingcommunitywilldealwithimplantabledevicesthatareconstantlystreamingimportantpersonaldata.

Today,nanoroboticsisrapidlybecomingareality.PennStatepublishedanarticleinFebruary2014showingnanomotorsindividuallycontrolledinsidelivingcells[11].Thisisanimportantstep,asitaddressesbothcontrolmethodsandbiocompatibility.However,therearestillmanystepstobetakenbeforenanorobotsareviableinsidethehumanbody.

Currentnanorobotcomponents,controlmethods,anddevelopingmanufacturingmethodsprovideplatformsandpossibilitiesforbuildingmultifunctionalnanorobotsthatmaybeabletoswimthrough

Page 5: 10. An Introduction to Nanomedicine-2 - ExtendSim · Chapter 10 An Introduction to Nanomedicine ... exciting and novel applications in medicine ... as it applies to medicine, different

Page|5

vessels,detectanddestroycancercells,orsendpicturesbacktoitscontrollingdevicewithaccuracy,controllability,andprecision.Aspreviouslystated,wewishtodevelopnanorobotsinordertoperformprecisedrugdelivery.

3. Detection

Inthelastsectionwelookedatnanotechnologyasitappliestomedicine,differenttypesofnanorobots,andwhywechosetofocusthischapteroninorganicnanorobots.Inthefollowingsection,wewilldiscussanumberofdifferentnanostructureswecanusetodetectthepresenceofcancerorotherdiseasesinthebody.

Nanomedicinecanassistinthetreatmentofawiderangeofdiseases.Ourresearchfocusesonthosethatcanbetreatedbynanorobotsinthebloodstream,includingdiabetes,cardiovasculardisease,neurodegenerativedisease,andcancer,amongothers.Whileamajorpartofnanomedicalresearchisstillinitsinfantstages,significantresearchandexperimentshavebeenperformedontheseandotherdiseases.Whileallofthesediseasesareathreattopublichealthandcouldpotentiallybetreatedorcuredbynanomedicine,ourresearchfocusesspecificallyoncancer.

Cancerisagroupofdiseasescharacterizedbyuncontrolledcellgrowth.Thebodydoesnotregulatecancercellsasitdoeshealthycells,therebyallowingthemtoreplicateatarapidratewithoutbeingkilledoffastheynormallywould.Cancercellsreplicatesouncontrollablyduetodamageddeoxyribonucleicacid(DNA),whichpreventsthecell’snaturaldeathandcauseschangesinmaterial(physical,electrical,orchemical)propertieswithinthecell.

Earlydetectionandpreventionarethebestcuresforanydisease,includingcancer.Currently,earlydetectionisaccomplishedbyidentifyingbiomarkers,anindicatorofabiologicalstateofdisease.BiomarkerscanbeDNA,RNA,oraproteinanditsfragments.Inthefuture,evenearlierdetectionmaybepossiblethankstoubiquitouscomputingandconstantmonitoringofat-riskpatients.Today’sdetectiontools,however,functioninresponsetochangesinmaterialproperties,suchasthosecausedbythedamagedDNAincancercells.Detectiontoolsunderdiscussioninthispaperarenanowires,carbonnanotubes,nanoscalecantilevers,variousnanoparticles(goldandmagnetic,amongothers),quantumdots,andnanorobots.Inthissection,detectiontoolsforbiomarkersarediscussed.

3.1 Nanowires

Nanowiresinherentlyhaveexcellentselectivityandspecificityproperties.Forexample,nanowirescanbelaiddownacrossamicrofluidicchannel,notunlikeafilteroraspider’sweb.Ascellsorparticlesflowthroughit,nanowirescansenseandpickuptumorcells.Nanowirescanbecoatedwithaprobesuchasanantibodyoroligonucleotide–ashortstretchofDNAthatcanbeusedtorecognizespecificDNA/RNAsequences–thatbindstoatargetproteinontheenemycell.Proteinsthatbindtotheantibodywillchangethenanowire’selectricalconductance,whichcanbemeasuredbyadetector[12].

3.2 CarbonNanotubes

Page 6: 10. An Introduction to Nanomedicine-2 - ExtendSim · Chapter 10 An Introduction to Nanomedicine ... exciting and novel applications in medicine ... as it applies to medicine, different

Page|6

CarbonnanotubesarealsobeingusedasDNAbiosensors.TheyscandownDNAandlookforsinglepolymorphicnucleotidesthatcanleadtoapossibledetectionofanindividualwhomaydevelopdiseasesinthefuture.Thisapplicationusesself-assembledcarbonnanotubesandsearchesforcovalentlybondedDNAoligonucleotides.WhenhybridizationbetweentheprobeandthetargetDNAsequenceoccurs,thevoltammetricpeakpicksupthechange[13].DNAbiosensorsbeingdevelopedforfutureusearemoreefficientandmoreselectivethancurrentdetectionmethods.

3.3 NanoscaleCantilevers

Anotherpotentialtoolisthenanoscalecantilever.Similarinstructuretorowsofdivingboards,thesecantileversareconstructedusingsemiconductorlithographictechniques[14]andcoatedwithantibodiesthatspecificallytargetmoleculesproducedbycancercells.Thesetargetmoleculesbindtotheantibodiesonthecantilever,causingachangeinitsphysicalproperties.Forquantitativeanalysis,researcherscanstudythebindinginrealtime.ThesecantileversareexceptionallysensitiveandcandetectsinglemoleculesofDNAorprotein,henceprovidingprecisedetectionmethodsforcancerrelatedmolecules.Figure3.1belowshowshownanoscalecantileversdetectproteinsproducedbycancercells.

Figure3.1:Detectionofcancercellsbynanoscalecantilevers

3.4 GoldNanoparticles

Goldnanoparticles(GNPs)havebeenemergingaspowerfulimaginglabelsandcontrastagents–henceeffectivedetectives.GNPsreadilygetconjugatedtoantibodiesandotherproteinsduetotheaffinityofthefunctionalgroup(-SH)fortheirgoldsurface.Theyareespeciallyeffectivewhentargetingcancercells[15].GNPsareusedforphotothermaltherapy,wheretunableopticalpropertiescausethemtoconvertlaserlightintoheatanddestroycancercells[16,17].InadditiontosphericalGNPs,goldnanoshellsandgoldnanorodshavebeenappliedtobiomarkerdetection[18-20].Theycanabsorbandemitlightatnearinfraredregion,providingdeeptissuepenetration.

3.5 MagneticNanoparticlesandMagneto-ElectricNanoparticles

Magneticnanoparticleshavebeenwidelyusedasanimagingtool.Sincetransverserelaxationtimedecreasesduetoaggregationofmagneticnanoparticleswhentargetmoleculesarepresent,theconcentrationofcancerbiomarkerscanbemeasured.Thisallowsforinvivo,localmonitoringforcancerbiomarkersandpossiblecontinuousmonitoring.Magneto-electricnanoparticleshavealsoproventobeapromisingnewtechnology.Inonespecificstudy,researchershavebeenabletoisolatea

Page 7: 10. An Introduction to Nanomedicine-2 - ExtendSim · Chapter 10 An Introduction to Nanomedicine ... exciting and novel applications in medicine ... as it applies to medicine, different

Page|7

cancerouscellbasedondifferencesintheelectricpropertiesofitsmembrane[21].Thismethodofdetectionhasbeenproveneffectiveasappliedtoovariancancercells,butmaypotentiallybeappliedtoothertypesofcanceraswell.Moreonthistopiccanbefoundinchapter11ofthisbook.

3.6 QuantumDots

Quantumdotscanbelinkedtoantibodiesandcombinedtocreatearraysthatarecapableofdetectingmultiplesubstancessimultaneously.TheycanbeusedtomeasurelevelsofcancermarkerssuchasbreastcancermarkerHer-2,actin,microfibrilproteins,andnuclearantigens[14].Quantumdotsarerobustandverystablelightemitters.Thephotochemicalstabilityandtheabilitytotunebroadwavelengthsmakequantumdotsextremelyusefulforbiolabelling[22].

3.7 TheMedicalNanorobot

Theultimatetoolofnanomedicineisthemedicalnanorobot–arobotthesizeofabacteriumcomposedofmultiplemechanicalparts[23].Althoughstillahypotheticalconcept,themedicalnanorobotisapromisingtoolforthefutureofthefieldofmedicine–afutureinwhichartificiallyintelligentnanorobotscanbefabricatedtorepairtissues,cleanbloodvesselsandairways,andtransformphysiologicalcapabilities.Amorein-depthdiscussionofthetechnologybehindnanorobotscanbefoundinthepreviousnanomedicaltechnologysectionofthischapter,aswellaschapter2ofthisbook.Thenextsectionwilldealwithactuallytreatingthediseasecellsoncetheyaredetected.

4. Treatment

Intheprevioussection,weidentifiedsixmethodsofcancerdetection.Inthefollowingsectionwediscusstheproblemswithcurrentcancertreatments,aswellasmethodsthatcanbeusedtotreatdiseaseatthecellularlevelwithinthebody.

Moderncancertreatmentisanythingbutideal.Conventionaltreatmentssuchaschemotherapy,radiation,surgery,andimmunotherapydestroymalignanttissue,butalsodamagebenigntissue.Thesemethodsarefoundtobeusefulinremission,butdependontheconcentrationanddeliveryofthedrug.Highlytoxicdrugconcentrationsthatdestroythetumorcellscanpotentiallykillthepatient.Thus,theaggressivenessofchemotherapytreatmentisusuallydeterminedbythedosagethatthepatientcanwithstand,ratherthanthedosageneededtoeliminateallcancerouscells.

Amoreefficientapproachtocancertreatmentwouldbethedestructionofcancercellswithlittletonosideeffectsonhealthycells.Withthecurrenttrendofrapiddevelopmentsinnanomedicine,itseemsthatthistechnologycanbeusedfordetection,analysis,anddestructionofcancercellsmoreeffectivelyandwithmoreprecisionthanispossiblewithcurrenttreatments.

Asstated,thekeyproblemsofconventionaltechnologyarethemethodofdrugdeliveryandtheconcentrationofthedrugcocktailrequiredtodestroythecancerouscells–problemsthatcanbeeasilyovercomebynanotechnology,astheparticlesizehasaneffectonserumlifetimeandpatternofdeposition.Thisallowsdrugsonthenanoscaletobeusedinlowerconcentrations,whichresultsinan

Page 8: 10. An Introduction to Nanomedicine-2 - ExtendSim · Chapter 10 An Introduction to Nanomedicine ... exciting and novel applications in medicine ... as it applies to medicine, different

Page|8

earlieroutsetofaction.Nanotechnologyalsoallowsdrugstobedirectedtotheexactlocationwherecancerouscellshavebeenobserved,thuskillingmalignanttissuewhileleavinghealthytissuerelativelyunaffected.Therehavebeenseveralstudiesdoneintotheindividualtreatmentofcancercells.Thissectionwillexploresomeofthesetreatmentsinmoredetail.

4.1 NanoparticleHeatingMethod

Thenanoparticleheatingmethodforcancertherapyhasgreatpotentialfortreatingselectivecancertissue.Theconceptisveryefficient.Inthismethod,thenanoparticlesconjugatedwithantibodiesareinjectedintothehumanbodyandareallowedtopositionthemselvesaroundthecancertissue.Theseparticlesarethenheatedbyanexternalnon-invasiveheatingsource,destroyingthetargetedcancertissuesviathermalnecrosis[24].CapacitivelycoupledRFfieldsources[25]andNear-InfraredLightsources(NIR)[26]aretwooftheheatingsourcesthatcouldbeusedtoheatupthesenanoparticles.Amajoradvantageofthistechniqueisitslackofdependenceontraditionaldrugs.Asinvadingbacteriabecomelessandlesssensitivetoantibioticsandotherdrugs,anewsolutionmaysoonberequiredtotreatthesebacterialinfections.Nanoparticleheatingmaywellbeonesolution.Twotreatmentsthatemploythenanoparticleheatingmethodbywayofinfraredandlaserlightarediscussedbelow.

4.1.1 GoldNanoparticles

Asdiscussedinsection3.1.4,oneofthemostresearchednanomedicicalapplicationsisgoldnanoparticles(GNPs).Thesenanoparticlesbindtocertainproteinsthatonlycancercellsproduce.Goldnanoparticlescanalsobeseenas“thedrugsthatdeliverthemselves”fortheirspecialheatingability,which,whenexposedtolaserlight,killscellswithwhichthenanoparticleinteracts.Thedownsideofthismethodisthatunlessproperlycoated,theimmunesystemwouldattacksuchparticlesbecausethebodywouldtreatthemasunwantedforeignagents.Seesection5.1onbiocompatibilityformoreinformationonimmunereactionsandimmunosuppression.

4.1.2 MetalNanoshells

Anothernovelapproachusesmetalnanoshells.Theseshellshavetheabilitytocaptureandabsorblight,andarecoatedwithabioactivesubstancethatbindsthemtocancercells[27-29].Near-infraredlightisusedtoheatuptheseshells,leadingtothedestructionofthecancercellswithminimaldamagetoadjacenthealthycells.Theadvantagesofhighsensitivity,specificity,andcost-effectivenesshavemademetallicnanoshellsaparticularlyattractivechoiceformodern-daycancertreatment.AlamandMassoudhavedevelopedanaccurateanalyticalclosed-formmodelforthefrequencyresonanceandscatteringcharacteristicsofasinglenanoshell[16].

4.2 SupermagneticBeads

Apartfromgoldnanoparticlesandmetalnanoshells,anothermethodthatemphasizesthedestructionoftargetedcancercellsusesmono-sizedsupermagneticbeads.Thebeadsaremacroporousparticleshavingnarrowporesthatcontainmagneticmaterials(Fe203andFe3O4)distributedthroughouttheirentirevolume.Instudies,twodifferenttypesofbeadshavingdifferentmagneticmasssusceptibility

Page 9: 10. An Introduction to Nanomedicine-2 - ExtendSim · Chapter 10 An Introduction to Nanomedicine ... exciting and novel applications in medicine ... as it applies to medicine, different

Page|9

anddifferentdiameterswereused:DynabeadsPanMouseIgG(diameter4.5±.2um,magneticsusceptibility(16±3)x10-5m3/kg)andDynabeadsProteinG(diameter2.8±.2um,magneticmasssusceptibility(10±2.5)x10-5m3/kg).Thesemagnetizablebeadsaggregateunderinstantaneouspulsedmagneticforcesandpenetrateforcefullytoeffectivelydestroythecancerouscells[21].

4.3 MagneticManipulation

Magneticmanipulationisanotherviablemethodtoefficientlydelivermedication.Recently,scientistshavesuccessfullyusedadirectcurrentmagneticfieldtomanipulatethemembranesofmagneto-electricparticles.Theythenusedthisabilitytoloadthesamemagneto-electricparticleswithpaclitaxel,acommoncancerdrug,anddeliverittoamixofhealthyandcancerouscellsin-vitro.Thedrugs,whenreleasedbytheparticles,passedthroughthemembranesofthecancercellsandkilledonlythetargetedcells.Thehealthycellswereleftalive[30].Inthesamestudyaspreviouslymentionedinsection3.5ofthischapter,magneto-electricnanoparticleswereusedtomanipulatethemagneticfieldofthemembraneofthetumorcelltoallowlargequantitiesofmedicationtopassthroughintothecell.Thediseasedcellwaskilledwithnoharmatalltosurroundinghealthycells[21],ascanbeseeninmoredetailinthefollowingchapter.Theseresultsshowearlypromiseinspecifictargetingofcancercellswithinthehumanbody,andcertainlydeservefurtherresearch.

4.4 E-cadherin

NanorobotscanalsobeusedtoanalyzelevelsofE-cadherininthebodyandtargetcancercellsbasedonthevaryingE-cadherinlevelsfromonecelltothenext[31,32].E-cadherinisacalcium-regulatedadhesionexpressedinmostnormalepithelialtissues.E-cadherinisassociatedwithglandformation,stratification,andepithelialpolarization.PerturbationorselectivelossofthisE-cadherinfunctionresultsinthelossofintercellularadhesion,withpossibleconsequentcellulartransformationandtumorgeneration.Theefficientuseofnanorobotsbypropercontrolmethodologiesisoneofthemethodsunderstudyforthetreatmentofcancercells,asitisquitecapableofdifferentiatingnormalcellsfrommalignantcellsbycheckingsurfaceantigens.Thisinturngreatlyreducestheprobabilityofdestroyingnormalcells.

4.5 TreatmentsforOtherDiseases

Whilethispaperdoesfocusprimarilyoncancertreatment,therearealsomanyothernanoscaletechniquesfortreatingdiseasesotherthancancer.Thefollowingsubsectionswilldescribethreeofthembriefly.

4.5.1 Transfection

Asopposedtothemethodsofdrugdeliverydiscussedthroughouttherestofthissection,transfectionisamethodofgenedelivery.Transfectioncanbeaccomplishedbybothchemicalandnon-chemicalprocesses.Chemical-basedtransfectioncanbedividedintoseveralcategories,includingcyclodextrin,polymers,liposomes,andnanoparticles.Therearevariousnon-chemicalprocessesaswell,includingelectroporation,sonoporation,andimpalefection.Impalefectionisdifferentfromtheseothernon-

Page 10: 10. An Introduction to Nanomedicine-2 - ExtendSim · Chapter 10 An Introduction to Nanomedicine ... exciting and novel applications in medicine ... as it applies to medicine, different

Page|10

chemicalmethodsinthatDNAisintroducedintothecellthroughtheuseofnanomaterials.Inthisprocess,nanowiresandsimilarnanoparticlesareusedastransportsystems.VerticalarraysofnanowiresarepreparedbyphotolithographyandplasmaenhancedchemicalvapordepositionbeforetheyarecoatedinDNAcontainingthesequencemeantfordelivery.Targetcellsareculturedonthesenanowirearrays,whichproceedtoimpalethetargetcellsastheysettleonthesurfaceofthenanowires.ThismethodisabletodeliverDNAdirectlytothecellcytoplasmofthenucleusofthecell,whichthenbeginstoactinaccordancewiththenewlyintroducedsequenceofDNA.Appropriately,theterm“transfection”isacombinationofboth‘impalement’and‘infection[33-36].’

4.5.2 TissueEngineering

Nanomedicaltechnologyisbeinginvestigatedasapossiblemethodtofurtherthefieldoftissueengineering.Nanotechnologycouldpotentiallybeusedtohelprepairdamagedtissuethroughtheuseofsuitablenanomaterial-basedscaffoldsandgrowthfactors.Ifsuccessful,tissueengineeringmaybeabletoreplaceconventionaltreatmentssuchasorgantransplantsandartificialimplants.Nanoparticlessuchasgraphene,CNTs,molybdenumdisulfide,andtungstendisulfidearebeinginvestigatedaspotentialreinforcingagentstomakestrong,biodegradablepolymericnanocompositesforbonetissueengineeringapplications.Asaresultoftheadditionofthesenanoparticlesintothepolymermatrixatlowconcentrationsofabout0.2%byweight,thecompressiveandflexuralmechanicalpropertiesofpolymericnanocompositesaresignificantlyincreased.Thesenanocompositescouldpotentiallybeusedtofurthernanonephrology(definedasnanomedicineofthekidney),createstrong,lightweightcompositeboneimplants,orevenweldarteriesduringsurgery[37,38].

4.5.3 Monitoring

Medicalmonitoringisthepracticeofobservingapatienttoeithermakesuretheyremainhealthyorgatheringdatatoassistindiagnosisortreatment.Traditionally,thishasbeendoneprimarilyincontrolledenvironmentswhereadoctoracphysicallyobservethepatient.Usingcurrenttechnology,however,doctorscanobservepatientsfromanywherebywayofasmallchipeitherimplantedunderthepatent’sskin,swallowedinpillform,orintroducedtothebodybyothermeans.Thisisamajorimprovementoverin-personmonitoring,duetothefactthatitenablesconstantmonitoring.Constantmonitoringofthepatientallowsdoctorstogathermoredatafromthepatient,allwhilethepatientgoesabouttheirnormaldailyroutine.Bothofthesebenefitscanresultinfaster,moreaccuratediagnosisandtreatmentofdisease.Unfortunately,duetotherelativelylargesizeofthesemodernimplantsascomparedtoobjectsonthenanoscale,theycanonlybeimplementedinlimitedlocationsthroughoutthebody.Thisrestrictstheiraccesstocertaindatathatcanonlybeobtainedinlocationsinwhichtheycannotbeutilized.Nanomedicaltechnologyhasthepotentialtoovercomethisobstaclebyproducingnanoscaleimplantsthatcanbeutilizedvirtuallyanywherewithinthebody.Usingtheconceptofananoscalelab-on-chipimplant,scientistscanpotentiallygatherdatafromtestsrangingfromcontinuousevaluationofbloodsugarlevelsandneuroimagingtopredictingbothhypoandhyperglycemicstatesaswellasseizures.InVivoBioMEMSbasedbiosensorsandserotoninbiosensorsmayalsobeusedinpreventinganearlydetectionofmentalhealthdisorders,suchasdepression[39,40].

Page 11: 10. An Introduction to Nanomedicine-2 - ExtendSim · Chapter 10 An Introduction to Nanomedicine ... exciting and novel applications in medicine ... as it applies to medicine, different

Page|11

Thissectiondiscussedjustsomeofthemultitudeoftreatmentoptionscurrentlyunderinvestigation.Inthenextsection,wewillexplorechallengesintroducedwhenintroducinganyoftheseforeignagentsintothehumanbody–atopicknownasbiocompatibility.

5. Biocompatibility

Inpastsections,wehavecoveredmethodstodetectandcurecanceronthenanoscale.Achievingatreatment,however,ismoredifficultthanthat.Thenanorobotsneedtobeabletosurvivewithinthebodyforlongenoughtoarriveatthecancerouscellsanddelivertheirmedication.Inthefollowingsectionwediscussthechallengespresentedbythisrequirement,commonlyknownasbiocompatibility.

Biocompatibility,or“theabilityofamaterialtoperformwithanappropriatehostresponseinaspecificsituation,”[41]isanimportantfactorinthedevelopmentofnanomedicalrobots.Anynanorobotdesignedtoenterthehumanbodymustbebiocompatibleinordertofunctioncorrectly,oritsintroductionwilltriggerunwantedimmuneresponsesinthebody.Biocompatibilityhastraditionallybeenanimportantconsiderationinprostheticsandorgantransplants,asarejectedtransplantcanhaveseriouscomplications.Biocompatibilityinnanomedicine,however,inpartduetoitslargesurfaceareatovolumeratio,introduceschallengesuniquetoitsscale[42].Thissectionwilladdressbothpossibleeffectsofnanorobotsonthebodyandfactorsthatdeterminebiocompatibilityonthenanoscale.

5.1 Immunostimulation

Ifmedicalnanorobotsarenotappropriatelybiocompatible,thereisariskofanumberofcomplicationswithinthehost.Thetwoverybroadcategoriesofimmuneresponsestonanoparticlesareimmunostimulationandimmunosuppression.Ifthenanorobotstriggeranimmuneresponsewithinthehost,thereactioncanbeconsideredoneofimmunostimulation[43].Itisimportanttonoteherethatbiocompatibilityrequiresanimmunereactionappropriatetothedesiredfunction,notsimplyanon-reaction.Immunostimulationisnotnecessarilyanegativereaction;itcan,infact,bethedesiredeffect.Forexample,nanoparticlescanbeinjectedintothebloodstreamtoaidtheimmunesysteminfightingoffadisease[42,43].Infact,thismethodhasbeenusedsincetheadventofvaccineswithnon-nanoscalematerialsknownasimmunologicadjuvants[44,45].Immunostimulationcan,however,beharmfultobothhostandnanorobots.Immunostimulationproducessideeffectsincludinghypersensitivitytoallergens,inflammation,fever,andotherflu-likesymptoms[43].Itcanalsoaggravateotherconditions,suchasautoimmunity.Immunostimulationalsoresultsintheincreasedproductionofmacrophages,whichcanattackanddestroynanorobotsbeforetheyareabletoaccomplishtheirtaskwithinthebody.

5.2 Immunosuppression

Introducingnanoparticlesintothebodydoesnotalwayscauseimmunostimulation–itcanalsotriggerimmunosuppression.Asitsnamesuggests,immunosuppressionistheoppositeofimmunostimulation:itisdefinedas“suppressionofthebody'simmunesystemanditsabilitytofightinfectionsandotherdiseases[46].”Immunosuppressionisvitaltosuccessfulorgantransplantsandskingrafts,aswellas

Page 12: 10. An Introduction to Nanomedicine-2 - ExtendSim · Chapter 10 An Introduction to Nanomedicine ... exciting and novel applications in medicine ... as it applies to medicine, different

Page|12

autoimmunitytreatments.Immunosuppressioncanmakeiteasierfordrug-deliverynanorobotstoaccomplishtheirjobsinthebody,butalsohasthepotentialtoharmorevenkillthehost[43].Immunosuppressionleavesthebodyopentoattack,andisthesymptomofdiseaseslikeHIVandAIDSthateventuallyleadstodeath.Whennanorobotsareusedasdrugdeliverydevices,asisthefocusofthispaper,theywilllikelybemosteffectiveiftheyareseenasnativeentitieswithnoimmunostimulationorimmunosuppression[44].Thisisthegoalofnanoscalebiocompatibility.

5.3 FactorsofNanobiocompatibility

Intheprevioussubsections,wediscussedtwomajoreffectsthattheintroductionofforeignnanorobotscanhaveontheimmunesystem–theimmunostimulationandimmunosuppressionreactions.Inthissubsection,wepresentmanyofthefactorsthatcaninfluencethesereactions.Biocompatibilityonthenanoscalepresentschallengesnotfacedintraditionalprostheticsortransplants.Onthenanoscale,biocompatibilityisdeterminedbyanumberoffactors:size,amount,density,location,duration,geometricsurfaceplanes,andmaterial,amongothers[34-36].Materialmaybethelargestfactorindeterminingbiocompatibility.Somematerials,suchasmetaltracesincertaincarbonnanotubes[42],areknowntocauseundesiredimmunereactions,whileothers,suchasdiamond[47,48]andpossiblygraphene[43],havebeenshowntohaveminimalbiocompatibilityissuesinanimals.Sizeisakeyfactoraswell–evenifamaterialisconsideredbiocompatibleonalargerscale,nanoparticlesofthesamematerialcanpotentiallyprovetobecarcinogenic[48].Also,thesmallertheparticle,thelongertheytendtosurviveinthebloodstream.AccordingtoBastúsetal,thisisanobservable,universaltrend[44].Surfaceorientationplaysalargeroleindeterminingbiocompatibilityaswell,aseachgeometricplanepresentsadifferentphysicalstructuretothesurroundingenvironment.Immuneresponsesdifferbetweenplanes,causingbiocompatibilitytovaryevenwithinnanoparticlesofthesamematerial[47].Biocompatibilityalsodiffersbasedonlocation.Forexample,nanorobotswillencounterverydifferentbiologicalconditionsifinjecteddirectlyintothebloodstream,asopposedtobeingingestedorallyorinhaled.Eachsetofconditionswillaffectthenanorobotdifferently,sothesamenanorobotmaybebiocompatibleinthebloodstream,butnotinthestomach.Durationisalsoamajor–ifoftenoverlooked–factorinbiocompatibility.Nanorobotsmusthaveapre-plannedwaytoleavethebodyoncetheyaccomplishtheirtask.Theymaybeexcretednormally,mimicpathogenssoastoberemovedbytheimmunesystem,ormakeuseofotherexittechniques[43].Ifthereisnoexitstrategynanorobotscanbuildupinvitalinternalorgans,suchastheliverorspleen,causingsideeffectsincludingliverfailureandcancer[42-44].

Nanomedicinedoeshavethepotentialtorevolutionizethewaymedicineispracticedaroundtheworld,butitisclearthatbiocompatibilityonthenanoscaleisoneofmanymajorchallengesthatmustbeovercomebeforenanomedicinecanbesafelyimplementedonalargescale.

6. Power

Intheprevioussection,wediscussedbiocompatibilityandthedifficultiespresentedbythisconcept.Butevenifananorobotcandetectcancer,treatcancer,andbefullybiocompatible,itstillneedsawaytopoweritself.Inthissection,wewilldiscussrecentprogressinwirelesspowerandhowthisideacanbe

Page 13: 10. An Introduction to Nanomedicine-2 - ExtendSim · Chapter 10 An Introduction to Nanomedicine ... exciting and novel applications in medicine ... as it applies to medicine, different

Page|13

directlyappliedtonanomedicine.

Unlessthenanorobotsofthefuturearedesignedtobetotallypassive–relyingonlyonoutsidesourcesforallmovementandactions–theywillneedasourceofpower.Poweringananorobotwithwiresasitcirculatesthroughthehumanbloodstreamisobviouslyimpractical,andnanoscalebatterieswouldlikelyholdonlyaverylimitedchargeanddonotcurrentlyexistinformsusefulinnanomedicicalapplications.Ignoringexternalwiresandinternalbatteriesleavesuswithaverylikelysolutiontonanorobotpower:wirelessinductivepower.

Whenpoweringadevicelikeananorobotremotely,afour-partsystemconsistingofatransmitter,rectifier,bandgapreferencecircuit,andmatchingnetworkisrequired.ThetransmittertransmitsACpower,whichisconvertedtoDCpowerbytherectifier.ThebandgapreferencecircuitandaregulatoruseanalogcircuitrytechniquestotransformthisDCvoltageintoastable,non-temperaturedependentvoltagesourceusablebythedevice.Thenetworkmustbeimpedancematchedfortheparticularoperatingtominimizepowerloss,therebyprovidingmorepowertothechip[41].Therearemanyknowndesignsforwirelessinductivepowersystemsthatcouldpotentiallybeadaptedforimplantabledevices,someofwhichhavebeenshowntooperatewithupto72%powerefficiency[42].TheCaltechNanofabricationlabdevelopedonesuchdevice,a1.4mmby1.4mmglucosemonitoringimplantthatispoweredbyanexternalRFsignalat900Mhzanduses5μWofpower[43].

Figure6.1:Basicblockdiagramofafour-partwirelesspowersystem

Inductivepowerisnotperfect.Thecoilsmustbebothmatchedperfectlyandinperfectalignmentwitheachothertorealizemaximumrange,whichisstillnormallyonlyamatterofcentimeters.ResearchersatMIT,however,havedevelopedasolutiontotheseproblemsknownashighlyresonantwirelesspowertransfer.Usingthistechnology,theydevelopedasystemtoefficientlytransmit60wattsovertwometers[44].Thistechnologycouldbehugelybeneficialinlonger-termimplants,suchascochlearimplantsorpacemakers,whicharecurrentlybatterypoweredandrequireinvasivesurgerytoreplacethebatterywhenitbeginstofail.Highlyresonantwirelesspowercouldalsobeusedtomoreeasilypowernanomedicaldevices.Assumingashortlifespanfornanorobotsinthebody,thepatientmaybeabletostayeasilywithinrangeofahospitaltransmitterimplantedintheirbedorwallfortheentireprocedure–potentiallyeliminatingthecomplicationsintroducedbytherangeandalignmentrequirementsofmoretraditionalinductivepower.

Otherrecentexamplesofstudiesusingwirelesspowerincludethedesignofatelemetrysystembased

Page 14: 10. An Introduction to Nanomedicine-2 - ExtendSim · Chapter 10 An Introduction to Nanomedicine ... exciting and novel applications in medicine ... as it applies to medicine, different

Page|14

onwirelesspowertransmissionforphysiologicalparametermonitoring[41]andamethodoftrackingoptimalefficiencyofmagneticresonancewirelesspowertransfersystemforbiomedicalcapsuleendoscopy[42].Intheformer,animplantedtelemetrysystemforexperimentalanimalscanbeusedtocontinuouslymonitorphysiologicalparameters.Thissystemissignificantnotonlyinthestudyoforganismsbutalsointheevaluationofdrugefficacy,artificialorgans,andauxiliarydevices.Thesystemiscomposedofaminiatureelectroniccapsule,awirelesspowertransmissionmodule,adata-recordingdevice,andaprocessingmodule.Anelectrocardiograph,atemperaturesensor,andapressuresensorareintegratedintheminiatureelectroniccapsule,inwhichthesignalsaretransmittedinvitrobywirelesscommunicationafterfiltering,amplification,andA/Dsampling.Toovercomethepowershortageofbatteries,awirelesspowertransmissionmodulebasedonelectromagneticinductionwasdesigned.Inthelatter,researcherswerelookingforasolutiontotheproblemoflimitedbatterycapacityincommercializedcapsuleendoscopy.TheirpaperpresentsatheoryfortrackingtheoptimalefficiencyofanMR-WPT(ResonantWirelessPowerTransfer)system,alongwithitsexperimentalverification.Asystemwitha9-mm-diameterreceiverisimplemented,whichissmallenoughtofitinthecurrentcapsuleendoscope.

Thecurrentadvancesinwirelesspowertechnologyareessentialforthefuturedevelopmentofnanomedicalrobots.However,powerisonlyonepieceofthepuzzle.Untilwecanassembleacompletenanorobotfortestingpurposes,wemustrelyonothermethodstodeterminehowdifferentdesignsinteractwiththehumanbody.Inthefollowingsection,wewilldiscussonesuchmethod:computermodeling.

7. ComputerModeling

Inprevioussections,wehavediscussedmanyofthebasicrequirementsforcancer-treatingnanorobots.Inthefollowingsection,wewalkthroughoneattempttomodelallofthesesystemstogetherwithinthehumanbodythroughtheuseofcomputers.

Inordertocreateviablenanorobotsformedicalpurposes,allofthesesystemsmustcometogetherinoneunit.Becausewearenotyetabletophysicallyproducerobotsontherequiredscale,wecanusecomputermodelingtoattempttodeterminehowspecificcombinationsofalloftheabovesystemswillfunctiononceintroducedintothebody.Inonerecentexampleofcomputermodelingfornanomedicine,aresearchteamattheUniversityofSouthernCaliforniahasdevelopedasystemthatmodelsnanoscaledrugdeliverythroughthebloodstream.Ithastheabilitytorepresentbothactiveandpassivetargetingnanorobots.Itsimulatestheflowofnanorobotsthroughthebloodstreamuntiltheydetectcancercells,atwhichpointtheymaneuvertothetumorandbegintheprocessofdrugdelivery.Thismodelaccountsforvariouspossibledrugdeliveryfailures,suchasearlyrelease,delayedrelease,non-release,powerfailure,andimmunostimulation.Uponfailure,therepresentationofthenanorobotexitsthemodel.Eachfaileddeliverycanbeviewedinabargraphbytypeoffailure.Whenananorobotsuccessfullyattachestoacancercell,therepresentativenanorobotinthemodelincurslatency,whichaccountsforattachingtothecancercellandtheactualactofdrugdeployment.Thenumberofsuccessfuldeliveriesascomparedtothenumberoffaileddeliveriescanbeseeninanotherbargraph.

Page 15: 10. An Introduction to Nanomedicine-2 - ExtendSim · Chapter 10 An Introduction to Nanomedicine ... exciting and novel applications in medicine ... as it applies to medicine, different

Page|15

Figure7.1showsanexampleoftheincludedPositionTrackingScatterPlot,whichdisplaysthelocationofeachnanoparticleornanorobotcurrentlyinthebody.Thefigureshowsthisplotimmediatelybeforenanorobotsarefirstintroducedtothebody.

Themodelalsotakesintoaccountdrugtoxicityandbiocompatibilityissues,topicsdiscussedinthebiocompatibilitysectionofthischapter.Thesetopicscanbeimpracticaltotestforinthelab,duetothedifficultyofintroducingdifferentplanesofdifferentmaterialstoarealistichumanimmunesystemwithoutendangeringanyoneintheprocess.Whilemodeloutputsarenotasdefinitiveaslabresults,computermodelscancheaplysimulatetheintroductionofdifferentmaterialsintothehumanbloodstreamtowithinanacceptabledegreeofaccuracy.Inthisspecificmodelthebodyhasanassumedtoxicitycapacity,whichisthedensityoftoxinsitcancontainandstillbehealthy.Eachdrughasitsowntoxicitylevel,whichcanbethoughtofasgenerallyanti-proportionaltoitsbiocompatibility.Thenanorobotsreleasetheirtoxinsintothebloodstreameverytimetheyfaildrugdeliveryinspecificways.Thisgraduallyincreasesthecurrentconcentrationoftoxinsinthebodybasedontheamountreleased,thetimebetweensubsequentreleases,thedistancebetweensubsequentreleases,andthetoxicityvalueassignedtothemedicineinquestion.Oncethetoxicitylevelistoogreat,thesimulationendsinfailure.

Figure7.1:PositionTrackingScatterPlotbeforeintroductionofnanorobots

ThismodelwascreatedinExtendSim9,aprogramdesignedspecificallyforcreatingdynamicsystemmodels.ThesoftwarewasrununderaneducationalgrantprovidedbyImagineThat!,thecreatorsofExtendSim.Figure7.2showsaflowchartofthemodeldesignwithinExtendSim9.

Page 16: 10. An Introduction to Nanomedicine-2 - ExtendSim · Chapter 10 An Introduction to Nanomedicine ... exciting and novel applications in medicine ... as it applies to medicine, different

Page|16

Figure7.2:FlowchartofmodelasseenwithinExtendSim9

Datafromthismodelcanpointscientiststowardmaterialsandmolecularplanesthatareviablecandidatesforsuccessfulintroductiontothehumanbody,whichcanthenbetestedinthelab.Thismodelcanalsopredictboththeoverallamountanddensityofaspecificmedicationcanbesafelyreleasedintothebloodstreambeforetheconcentrationduetonanorobotfailuresishighenoughtobedangeroustothepatient.

Thismodelhasbeenpurposelydesignedtogrowwiththeincreaseofknowledgewithinthestillrelativelynewfieldofnanomedicine.Asmoreresearchisdoneandnewresultsbecomeavailable,thisdatacanbeaddedtothemodel.Thiswillfurtherrefinetheresults,makingthismodel–intheory–incrediblyaccurateovertime.Aswelearnmoreaboutnanomedicine,Datafromthismodelcanpointscientiststowardmaterialsandmolecularplanesthatareviablecandidatesforsuccessfulintroductiontothehumanbody,whichcanthenbetestedinthelab.Theinformationcollectedcanalsohelpscientistsdevelopappropriatedosagesfortreatmentordesignmoreefficientnanorobotswithahigherdeliverysuccessrate.

8. ResearchInstitutions

Inprevioussections,wehaveexploredsomeofthespecificsofnanomedicalresearchforcancer.Inthefollowingsection,wewilldiscusstheorganizations,centers,universities,andscientistsactuallydoingtheresearchasofthefallof2014.

Fundingfornanomedicalresearchhasbeengrowingsteadily.Researchinstitutionsarereceivingfundingtostudynanomedicineandnanotechnologyaroundtheworld.TheNationalInstituteofHealth(NIH)hasformedanationalnetworkofnanomedicinecentersintheUnitedStates.ThisnetworkiscomprisedofeightNanomedicineDevelopmentCenters.Thesecenters,orNDCs,werecreatedtobothadvancethefieldofnanomedicinethroughresearchand“begintrainingthenextgenerationofstudentsin[the]emergingfield[ofnanomedicine][55].”

TheNIHfocusestheireffortsonunderstandingtheinnerworkingsofcellsonthenanoscaleandusing

Page 17: 10. An Introduction to Nanomedicine-2 - ExtendSim · Chapter 10 An Introduction to Nanomedicine ... exciting and novel applications in medicine ... as it applies to medicine, different

Page|17

thatknowledgeto“developnewtechnologiesthatcouldbeappliedtotreatingdiseases,and/orleveragethenewknowledgetofocusworkdirectlyontranslationalstudiestotreatadiseaseorrepairdamagedtissue[56].”Theprogramrunsfortenyears,from2005to2015.TheNIHcountsNewYorkUniversity,theUniversityofCaliforniaSanFrancisco,andtheUniversityofCaliforniaBerkeleyamongitseightNDClocations.Asof2014,currentresearchatNewYorkUniversityincludes“developingculturesystemstoimproveadoptiveimmunotherapy[57],”throughgrowingculturesofmemoryTcellsinculturesbeforeinjectingthemintothebodytostimulateimmuneresponsetospecificpathogens.Meanwhile,theNanomedicineCenterforNucleoproteinMachinesatGeorgiaTechisresearchingproteincreationandDNAmodificationwiththehopesofusingthatknowledgetoeithermoreeffectivelytreatorevencuresicklecelldisease[58],andtheUniversityofCalifornia,SanFranciscoistryingtocreateentirelynewnanotechnologicalsystemstodiagnoseandtreatdiseaseslikecancer[59].

InEurope,theEuropeanCommissioncreatedtheEuropeanTechnologyPlatformonNanomedicine(ETPN)in2005withthegoalsoffocusingresearchandraisingmoneyforfunding.Theirthreepriorityfocusareasarenanotechnology-baseddiagnosticsincludingimaging,targeteddrugdeliveryandrelease,andregenerativemedicine[60].Current(2014)researchundertheETPNincludesNANOCI,orNanotechnologyBasedCochlearImplants,whoareworkingonjustthat–creatingcochlearimplantsthatconnectdirectlytoauditorynervefibers,solvingmultipleproblemswithcurrentassistiveaudiotechnologyatonce[61,62].Anothergroup,NANOFOL,isworkingtodesignnanorobotstocureinflammatorydiseasessuchasrheumatoidarthritis[61,63].

BoththeNIHandtheETPN,alongwithotherinstitutionsworldwide,haveseenthepotentialfornanomedicinetoforeverchangethelandscapeofmodernmedicine.Onlywithcontinuedfundingandresearch,however,willwedevelopthetechnologytorealizetheincrediblepotentialofnanomedicine.

9. Conclusion

Althoughnanomedicinehasthetheoreticalpotentialtorepairorgans,restorelostspinalfunction,andevenreversetheagingprocess,forthispaperwehavefocusedspecificallyontheroleofnanorobots,nanoparticles,carbonnanotubes,andothernanoscaledevicesinthetreatmentofdisease.Thoughmanyoftheabovescenariosarecurrentlyonlyhypothetical,modernnanomedicalresearchprovidesasolidfoundationforfutureadvancesinnanoscalehealthcaretechnology.

10. Acknowledgements

WewouldliketothankSamitsubhroBanerji,YixinCai,SauravChowdhury,BiyiFang,WanlingJiang,KrishnaSureshReddyPadala,PadminiPrakash,IshanPurohit,KarthikRajamane,YeshaShah,YilinXu,andSantoshYerrapragadafortheircontributionstothispaper.

Page 18: 10. An Introduction to Nanomedicine-2 - ExtendSim · Chapter 10 An Introduction to Nanomedicine ... exciting and novel applications in medicine ... as it applies to medicine, different

Page|18

References

[1]S.Sepeur,Nanotechnology:TechnicalBasicsandApplications.VincentzNetworkGmbH&CoKG,2008.

[2](2008).WhatisNanotechnology?.Available:http://www.crnano.org/whatis.htm.

[3]S.KaranandD.D.Majumder.Molecularmachinery-ananoroboticscontrolsystemdesignforcancerdrugdelivery.PresentedatRecentTrendsinInformationSystems(ReTIS),2011InternationalConferenceon.2011,.

[4]G.Vanderheiden.Overthehorizon:Potentialimpactofemergingtrendsininformationandcommunicationtechnologyondisabilitypolicyandpractice.NationalCouncilonDisability2006.

[5]M.Al-Fandi,M.A.Jaradat,M.Al-RousanandS.Jaradat.Alivingbiologicalnanorobotasself-navigatorsensorfordiseases.PresentedatBiomedicalEngineering(MECBME),20111stMiddleEastConferenceon.2011,.

[6]A.A.Requicha.Nanorobots,NEMS,andnanoassembly.ProcIEEE91(11),pp.1922-1933.2003.

[7]S.P.WoodsandT.G.Constandinou.Wirelesscapsuleendoscopefortargeteddrugdelivery:Mechanicsanddesignconsiderations.BiomedicalEngineering,IEEETransactionson60(4),pp.945-953.2013.

[8]Y.Zhang,D.Wang,X.Ruan,S.JiangandJ.Lu.Controlstrategyformultiplecapsulerobotsinintestine.ScienceChinaTechnologicalSciences54(11),pp.3098-3108.2011.

[9]S.YimandM.Sitti.Shape-programmablesoftcapsulerobotsforsemi-implantabledrugdelivery.Robotics,IEEETransactionson28(5),pp.1198-1202.2012.

[10]S.Sengupta,M.E.IbeleandA.Sen.Fantasticvoyage:DesigningSelf-Powerednanorobots.AngewandteChemieInternationalEdition51(34),pp.8434-8445.2012.

[11]K.Weidner.(2014,Feb10).Nanomotorsarecontrolled,forthefirsttime,insidelivingcells.Available:http://news.psu.edu/story/303296/2014/02/10/research/nanomotors-are-controlled-first-time-inside-living-cells.

[12]C.Zandonella.Cellnanotechnology:Thetinytoolkit.Nature423(6935),pp.10-12.2003.

[13]S.Wang,R.Wang,P.SellinandQ.Zhang.DNAbiosensorsbasedonself-assembledcarbonnanotubes.Biochem.Biophys.Res.Commun.325(4),pp.1433-1437.2004.

[14]B.Leonard,CancerNanotechnology:GoingSmallforBigAdvances:UsingNanotechnologytoAdvanceCancerDiagnosis,PreventionandTreatment.DIANEPublishing,2009.

[15]Y.Choi,J.KwakandJ.W.Park.Nanotechnologyforearlycancerdetection.Sensors10(1),pp.428-455.2010.

[16]D.GardnerandD.Shoback,Greenspan'sBasicandClinicalEndocrinology.McGrawHillProfessional,2011.

[17]B.Kim,S.L.TrippandA.Wei.Tuningtheopticalpropertiesoflargegoldnanoparticlearrays.PresentedatMRSProceedings.2002,.

[18]A.M.Gobin,M.H.Lee,N.J.Halas,W.D.James,R.A.DrezekandJ.L.West.Near-infraredresonantnanoshellsforcombinedopticalimagingandphotothermalcancertherapy.NanoLetters7(7),pp.1929-1934.2007.

[19]M.P.Melancon,W.Lu,Z.Yang,R.Zhang,Z.Cheng,A.M.Elliot,J.Stafford,T.Olson,J.Z.ZhangandC.Li.Invitroandinvivotargetingofhollowgoldnanoshellsdirectedatepidermalgrowthfactorreceptorforphotothermalablationtherapy.Mol.Cancer.Ther.7(6),pp.1730-1739.2008..DOI:10.1158/1535-7163.MCT-08-0016[doi].

[20]X.Huang,I.H.El-Sayed,W.QianandM.A.El-Sayed.Cancercellimagingandphotothermaltherapyinthenear-infraredregionbyusinggoldnanorods.J.Am.Chem.Soc.128(6),pp.2115-2120.2006.

[21]R.Guduru,P.Liang,C.Runowicz,M.Nair,V.AtluriandS.Khizroev.Magneto-electricnanoparticlestoenablefield-controlledhigh-specificitydrugdeliverytoeradicateovariancancercells.ScientificReports32013.

Page 19: 10. An Introduction to Nanomedicine-2 - ExtendSim · Chapter 10 An Introduction to Nanomedicine ... exciting and novel applications in medicine ... as it applies to medicine, different

Page|19

[22]P.Alivisatos.Theuseofnanocrystalsinbiologicaldetection.Nat.Biotechnol.22(1),pp.47-52.2003.

[23](2012,June19).DARPAtouseImplantableSensorstoMonitorSoldiersintheBattlefield.Available:http://www.real-agenda.com/2012/06/19/darpa-to-use-implantable-sensors-to-monitor-soldiers-in-the-battlefield/.

[24]H.Lee,J.Lee,S.OhandC.Chung.InductivelycoupledRFheatingofnano-particlefornon-invasiveandselectivecancercelldestruction.Presentedat10thIEEEInternationalConferenceonNanotechnology.2010,.

[25]C.J.Gannon,P.Cherukuri,B.I.Yakobson,L.Cognet,J.S.Kanzius,C.Kittrell,R.B.Weisman,M.Pasquali,H.K.SchmidtandR.E.Smalley.Carbonnanotube-enhancedthermaldestructionofcancercellsinanoninvasiveradiofrequencyfield.Cancer110(12),pp.2654-2665.2007.

[26]P.Chakravarty,R.Marches,N.S.Zimmerman,A.D.Swafford,P.Bajaj,I.H.Musselman,P.Pantano,R.K.DraperandE.S.Vitetta.Thermalablationoftumorcellswithantibody-functionalizedsingle-walledcarbonnanotubes.Proc.Natl.Acad.Sci.U.S.A.105(25),pp.8697-8702.2008..DOI:10.1073/pnas.0803557105[doi].

[27]M.AlamandY.Massoud.Anaccurateclosed-formanalyticalmodelofsinglenanoshellsforcancertreatment.PresentedatCircuitsandSystems,2005.48thMidwestSymposiumon.2005,.

[28]A.Lin,L.Hirsch,M.Lee,J.Barton,N.Halas,J.WestandR.Drezek.Nanoshell-enabledphotonics-basedimagingandtherapyofcancer.TechnolCancerResTreat3(1),pp.33-40.2004.

[29]M.L.Brongersma.Nanoscalephotonics:Nanoshells:Giftsinagoldwrapper.NatureMaterials2(5),pp.296-297.2003.

[30]M.Ogiue-Ikeda,Y.SatoandS.Ueno.Destructionoftargetedcancercellsusingmagnetizablebeadsandpulsedmagneticforces.Magnetics,IEEETransactionson40(4),pp.3018-3020.2004.

[31]M.VenkatesanandB.Jolad.Nanorobotsincancertreatment.PresentedatEmergingTrendsinRoboticsandCommunicationTechnologies(INTERACT),2010InternationalConferenceon.2010,.

[32]R.Singhai,V.W.Patil,S.R.Jaiswal,S.D.Patil,M.B.TayadeandA.V.Patil.E-cadherinasadiagnosticbiomarkerinbreastcancer.N.Am.J.Med.Sci.3(5),pp.227-233.2011..DOI:10.4297/najms.2011.3227[doi].

[33]Biology-online.org,'LifeScienceReference-BiologyOnline',2015.[Online].Available:http://www.biology-online.org.[Accessed:02-Jun-2015].

[34]Ntnu.edu,'NorwegianUniversityofScienceandTechnology-NTNU',2015.[Online].Available:http://www.ntnu.edu.[Accessed:02-Jun-2015].

[35]J.Bonadio,'Review:LocalGeneDeliveryforTissueRegeneration',e-biomed:TheJournalofRegenerativeMedicine,vol.1,no.2,pp.25-29,2000.

[36]T.McKnight,A.Melechko,D.Hensley,D.Mann,G.GriffinandM.Simpson,'TrackingGeneExpressionafterDNADeliveryUsingSpatiallyIndexedNanofiberArrays',NanoLetters,vol.4,no.7,pp.1213-1219,2004.

[37]G.Lalwani,A.Henslee,B.Farshid,L.Lin,F.Kasper,Y.Qin,A.MikosandB.Sitharaman,'Two-DimensionalNanostructure-ReinforcedBiodegradablePolymericNanocompositesforBoneTissueEngineering',Biomacromolecules,vol.14,no.3,pp.900-909,2013.

[38]G.Lalwani,A.Henslee,B.Farshid,P.Parmar,L.Lin,Y.Qin,F.Kasper,A.MikosandB.Sitharaman,'Tungstendisulfidenanotubesreinforcedbiodegradablepolymersforbonetissueengineering',ActaBiomaterialia,vol.9,no.9,pp.8365-8373,2013.

[39]J.Genz,B.Haastert,G.Meyer,A.Steckelberg,H.Müller,F.Verheyen,D.Cole,W.Rathmann,B.Nowotny,M.Roden,G.Giani,A.Mielck,C.OhmannandA.Icks,'Bloodglucosetestingandprimarypreventionofdiabetesmellitustype2-evaluationoftheeffectofevidencebasedpatientinformation',BMCPublicHealth,vol.10,no.1,p.15,2010.

[40]E.Jovanov,A.O'DonnellLords,D.Raskovic,P.Cox,R.AdhamiandF.Andrasik,'Stressmonitoringusingadistributedwirelessintelligentsensorsystem',IEEEEng.Med.Biol.Mag.,vol.22,no.3,pp.49-55,2003.

[41]Z.Jia,G.YanandB.Zhu,'Designofatelemetrysystembasedonwirelesspowertransmissionforphysiologicalparametermonitoring',AIP

Page 20: 10. An Introduction to Nanomedicine-2 - ExtendSim · Chapter 10 An Introduction to Nanomedicine ... exciting and novel applications in medicine ... as it applies to medicine, different

Page|20

Advances,vol.5,no.4,p.041320,2015.

[42]K.Na,H.Jang,H.MaandF.Bien,'TrackingOptimalEfficiencyofMagneticResonanceWirelessPowerTransferSystemforBiomedicalCapsuleEndoscopy',IEEETransactionsonMicrowaveTheoryandTechniques,vol.63,no.1,pp.295-304,2015.

[43]D.F.Williams.Onthemechanismsofbiocompatibility.Biomaterials29(20),pp.2941-2953.2008.

[44]K.Riehemann,S.W.Schneider,T.A.Luger,B.Godin,M.FerrariandH.Fuchs.Nanomedicine—challengeandperspectives.AngewandteChemieInternationalEdition48(5),pp.872-897.2009.

[45]S.Naahidi,M.Jafari,F.Edalat,K.Raymond,A.KhademhosseiniandP.Chen.Biocompatibilityofengineerednanoparticlesfordrugdelivery.J.ControlledRelease166(2),pp.182-194.2013.

[46]N.GómeziBastús,E.SánchezTilló,S.PujalsRiatós,J.Comenge,E.GiraltLledó,A.CeladaCotarelo,J.LloberasCaveroandV.Puntes.Inorganicnanoparticlesandtheimmunesystem:Detection,selectiveactivationandtolerance.ProceedingsoftheSocietyofPhoto-OpticalInstrumentationEngineers,2012,Vol.8232,p.823217-1-823217-142012.

[47]NCIDictionaryofCancerTerms:immunologicaladjuvant.Available:http://www.cancer.gov/dictionary?cdrid=43987.

[48]NCIDictionaryofCancerTerms:Immunosuppression.Available:http://www.cancer.gov/dictionary?cdrid=45727.

[49]R.A.FreitasJr.,"Proteinadsorptionondiamondsurfaces,"inNanomedicine,VolumeIIA:Biocompatibility,1sted.AnonymousLandesBioscience,2003,.

[50]R.A.FreitasJr.,"Biocompatibilityofdiamondparticles,"inNanomedicine,Vol.IIA:Biocompatibility,1sted.AnonymousLandesBioscience,2003,.

[51]A.Yakovlev,S.KimandA.Poon.Implantablebiomedicaldevices:Wirelesspoweringandcommunication.CommunicationsMagazine,IEEE50(4),pp.152-159.2012.

[52]G.YilmazandC.Dehollaini.Anefficientwirelesspowerlinkforimplantedbiomedicaldevicesviaresonantinductivecoupling.PresentedatRadioandWirelessSymposium(RWS),2012IEEE.2012,.

[53]A.Scherer,"Fromlab-on-a-chiptolab-in-the-body:Theroleofnanotechnologyintheminiturizationofmedicaldiagnostictools,"inEE-ElectrophysicsSeminar,UniversityofSouthernCalifornia,LosAngeles,CA,2014,March5,.

[54](2013,June20).WirelessPowerForMedicalDevices.Available:http://www.mddionline.com/article/wireless-power-medical-devices.

[55]NationalEyeInstitute,"NIHcompletesformationofnationalnetworkofnanomedicinecenters,"NationalInstitutesofHealth,Oct.2006.

[56](2014,Feb20).Nanomedicine.Available:https://commonfund.nih.gov/nanomedicine/index.

[57](2013,Aug22).NanomedicineCenterforMechanobiologyDirectingtheImmuneResponse.Available:https://commonfund.nih.gov/nanomedicine/devcenters/mechanicalbiology.

[58](2010).TechnicalOverview.Available:http://www.nucleoproteinmachines.org/overview.html.

[59](2013,Aug22).EngineeringCellularControl:SyntheticSignalingandMotilitySystems.Available:https://commonfund.nih.gov/nanomedicine/devcenters/cellularcontrol.

[60]AboutETPN.Available:http://www.etp-nanomedicine.eu/public/about.

[61](2014).EuropeanFunding.Available:http://www.etp-nanomedicine.eu/public/about-nanomedicine/european-funding.

[62](2013).TheConceptofNANOCI.Available:http://nanoci.org/project/index.php.

[63]ScientificandTechnicalObjectives.Available:http://www.nanofol.eu/index.php?id=152.