amir ahmadian m2 m communications as part of wireless sensor networks-final version

56
M2M Communications as Part of Wireless Sensor Networks A Seminar Presented by : Amir Mehdi Ahmadian [email protected] Tampere University Of Technology (TUT), 19.04.13 , TB224 @ 14:15 1

Upload: amir-mehdi-ahmadian

Post on 10-May-2015

544 views

Category:

Business


0 download

TRANSCRIPT

Page 1: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M Communications as Part of Wireless Sensor Networks

A Seminar Presented by :

Amir Mehdi Ahmadian [email protected]

Tampere University Of Technology (TUT), 19.04.13 , TB224 @ 14:15

1

Page 2: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

Outline

1. Introduction2. M2M Application Categories3. M2M System Architecture & Standards4. M2M challenges and Future Developments5. Conclusion

2

Page 3: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

1. Introduction

3

Page 4: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M: The Next Big ThingImportant historical events:

• Early 1990s: digital technology drove deployment of Supervisory control and data acquisition systems (SCADA) as industrial control system with multiple sites and large distances.

• 1995: Siemens set up a dedicated department inside its mobile phones business unit to develop and launch a GSM data module called “M1”[7] based on the Siemens mobile phone S6 for M2M industrial applications, enabling machines to communicate over wireless networks.

• 2000: the modules department formed a separate business unit inside Siemens called "Wireless Modules" which in June 2008 became a standalone company .The first M1 module was used for early point of sale (POS) terminals, in vehicle telematics, remote monitoring and tracking and tracing applications.

• 2009 : AT&T and Jasper Wireless entered into an agreement to support the creation of M2M devices jointly. They have stated that they will be trying to drive further connectivity between consumer electronics and M2M wireless networks, which would create a boost in speed and overall power of such devices.

• 2010: in the U.S., AT&T, KPN, Rogers, Telcel / America Movil and Jasper Wireless began to work together in the creation of a M2M site, which will serve as a hub for developers in the field of M2M communication electronics

4

Page 5: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M: The Next Big Thing

Definition:Information exchange between devices without any human interaction (sensors,smart meters,…)

Is M2M hype or the future of our information society?

M2M in the context of the mobile Inernet has been a subject of intense discussion over the past three years

Next technology revolution after computer and The Internet cautious with wait-and-see attitude

5

Page 6: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M: The Next Big Thing

Predictions and statistics:

• Revenues of US $300 billion [ Harbor Research 2009]

• 50 million connected devices by 2020 [AT&T] or only 100M true M2M deployments exist today along with over 1 million innovators are working on smart devices [Intel]

• Use of M2M devices will grow to 100 devices per person [Wirefree at TIA 2012]

• Big industry players (Ericson, Samsung, Alcatel-Lucent ,….)• Interest from governments world-wide (DOE,NIST, EPRI, …)

6

Page 7: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M Market Growth

7

Page 8: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M Market Growth

8

Page 9: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M Market Growth

9

Page 10: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M & IoT

10

Page 11: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M & IoT

11

Page 12: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M Trends

1. Device functionality and usage models

1.1.Indirect nodes and sensors : provide monitoring services , and frequently use WPAN 802.11 wireless communication.

1.2. Direct nodes: operates in a stand-alone capacity to send & receive data.

1.3. Gateways: aggregate data from indirect nodes and sensors and deliver commands back using multiple radio technologies.

12

Page 13: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M Trends

2. Innovative solutions from horizontal providers:

M2M Application Platforms (MAP) are enabling over-the-air provisioning and software updates for devices as well as implementing the policy and security to protect data and policy. Key functions are Dashboards, Enterprise connectivity , and Secure Remote Access.

3. Vertical markets are expanding : Initial M2M deployments have been focused on the energy industry and smart meter

deployments. This has been accelerated by the European Commission mandates for Smart Grid and Smart Metering technology. Video infotainment and auto telemetry are growing markets. Industrial, building and home automation industries are expected to begin deploying M2M as well. Another important vertical market is the medical equipment industry where there will most likely be subset markets that deploy M2M; for example in-home patient care versus in hospital care or assisted living options.

13

Page 14: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M Trends3. Vertical markets are expanding :

Initial M2M deployments have been focused on the energy industry and smart meter deployments. This has been accelerated by the European Commission mandates for Smart Grid and Smart Metering technology. Video infotainment and auto telemetry are growing markets. Industrial, building and home automation industries are expected to begin deploying M2M as well. Another important vertical market is the medical equipment industry where there will most likely be subset markets that deploy M2M; for example in-home patient care versus in hospital care or assisted living options

14

Page 15: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M Elements3 key elements at the core of M2M:1.Mobility:

the distribution and consumption model of these services will primarily be mobile. so the need for a platform and architecture to securely mobilize the data into consumable consumer and enterprise applications becomes critical.

2.Big Data:

connecting the physical world is creating a data exhaust of incredible volume. With the addition of social channels like Facebook and twitter, the Big Data challenge must deal with unstructured data in addition to the structured data generated by devices, sensors, and machines. the key challenge is to convert this data into information and wisdom. This will require entirely new software platforms, tools, and techniques, including in-memory analytics, device connectivity, event-driven execution, and dynamic user experiences to enable this brave new world.

15

Page 16: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M Elements

3.The Cloud:

Best developments of M2M communications to manage hundreds of devices are implemented in the cloud. This allows providers to manipulate more effectively the knowledge derived from the Big Data without extra infrastructure.Communication solution providers (CPSs) are positioned to take a leadership role in this marketplace.

16

Page 17: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

2.M2M Applications and Usage models

17

Page 18: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M Applications An increasingly useful way of assessing the market opportunities in M2M is by categorizing M2M applications into three different types:

1.After Market :

category of applications usually involve retrofitting connectivity to products already installed and working in the field, for example connecting vending machines and monitoring environmental conditions. They tend to automate operations already running and are typically introduced to gain operational cost savings. These applications occur in all business sectors and require high levels of technical support to implement. As a result, they tend to be relatively low to medium volumes and medium to high cost per unit.

2.Regulatory :

applications are created by the introduction of new regulations, usually associated with particular applications. Road pricing for Heavy Goods Vehicles in Germany and congestion charging in London are typical applications, as are smart metering applications in a growing number of countries

18

Page 19: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M Applications An increasingly useful way of assessing the market opportunities in M2M is by categorizing M2M applications into three different types:

3.Line Fit/OEM:

are most often driven by product manufacturers, acting either in concert with partners or on their own, to create new services opportunities related to their products . These applications can apply to almost any product in any sector, so the opportunities are particular broad. A classic example of this is OnStar Telematics in the US.

19

Page 20: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M Applications

20

Page 21: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M Usage Models1.Utilities (Smart Grids) :

Smart grid integrates communication capabilities with utility generation (e.g., electric power, gas,water) and delivery infrastructure to automate monitoring and control. Significant savings in resource consumption when utility supply is dynamically matched with demand like smart metering, distribution network automation.

M2M-enabled smart meter : to collects utility usage information from home appliances via short-range radio or a home area network.

The M2M aggregation device : collects information from many smart meters inthe area and sends the aggregated information to the M2M application server.

2.Vehicular Telematics :

Most vehicular M2M applications can be categorized into one of the following: safety and security, Information and navigation, diagnostics, or entertainment. An example of a safety and security service is Automatic Crash Notification. This service utilizes various crash sensors on the vehicle to report the location and extent of damage to the vehicle in the event of a crash.

21

Page 22: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M Usage Models3.Healthcare (M-Health) :

M-Health is a nascent market aimed at improving the quality of patient care and reducingHealthcare costs like telemedicine to improve patient care by virtue of more accurate and faster reporting of changes in the patient’s physical condition,Or remote patient monitoring and care, wherein a patient wears bio-sensors to record health and fitness indicators such as blood pressure, body temperature, heart rate , and weight. These sensors forward their collected data to an M2M device (e.g., a patient’s cellphone) that acts as an information aggregator And forwards the data to the M2Mapplication server in the cloud.

22

Page 23: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M Usage Models4. Secured Access & Surveillance / Public safety

M2M applications meant to prevent theft of vehicles and insecure physical access into buildings. Buildings and vehicles can be outfitted with M2M devices that forward data in real time to the M2M serve whenever movement is detected. An alert signal can then be sent to the M2M user whenever car tampering or building intrusion has occurred. M2M devices can also be configured to trigger M2Mequipped Surveillance cameras to record and transmit video in real-time to the M2M server when movement is detected.

5. Tracking, Tracing, and Recovery

Mainly related to services that rely on location-tracking information. For example, in order to provide vehicular tracking services such as navigation, traffic information, road tolling, automatic emergency call, pay as you drive, etc. tracking/tracing/recovery of animals,persons, leisure vehicles (boats, RVs,etc.), construction equipment, plant machinery, shipments, and fleet vehicles. WAN M2M services allow a company totrack its fleet, get breakdowns of miles covered, analyze average speeds and identify/respond to driver issues.

23

Page 24: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M Usage Models

24

Page 25: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

3. M2M Standards & Architecture

25

Page 26: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

Standards for M2M

Industry has become more active in standardizing M2M

Because of the market demandMultitude of technical solutions result in slow development of M2M marketCost-effective solutionsEssential for long term development of technologyFor interoperability of networksAbility to “roam” M2M services over international frontiersReduced complexity

Due to potentially heavy use of M2M devices and thus high loads onto networks, interest from

ETSI TC M2M and recently oneM2M Partnership Project3GPP (GSM, EDGE GPRS, UMTS, HSPA, LTE)IEEE 802.16 (WiMAX)

The starting point is to have popular M2M applications identified and then refine scenarios in each application to identify the areas needing standards.

26

Page 27: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

Examples: EU Mandates

European Commission Mandate 411March 2009: to build standards for European smart meters, (electricity / water / heat / gas) allowing interoperability and Consumer actual consumption awareness. Reaching completion with a final set of standards expected Q1 2013

European Commission Mandate 490March 2011: to build standard European Smart Grids. Entering Phase 2, with issues identified for Security and privacy of sensitive data – ICT standards have been included in the list of referenced standards.

ETSI TC M2M is coordinating work inside ETSI and contributing to the mandates M411 and M490.

27

Page 28: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

ETSI: TC M2M

2009: Technical Committee (TC) created for M2M service level standardsMission: develop standards, identify gaps, and re-use existing standardsVery collaborative (e.g., with 3GPP, BBF, OMA, industry fora, etc.)Participants: (2009 figures)

28

Page 29: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

ETSI: TC M2M Milestones

September 2010: 1st Workshop on M2M Communications26-27 October 2011: 2nd Workshop on M2M. Agora, Sophia Antipolis

Present the M2M Release 1 SpecificationsFuture requirements for M2M standardizationFeedback from early M2M solutions

Published first release of M2M Standards in 20th February 2012Press Release: http://www.etsi.org/WebSite/NewsandEvents/2012_02_M2M_standards_release.aspx

23-25 October 2012: 3rd Workshop on M2M. Agora, Sophia AntipolisM2M Release 2 Specifications and new use cases12 demos onsite for early implementation of M2M standards (health / energy / security application)

More info at: http://portal.etsi.org/m2m

29

Page 30: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

ETSI: TC M2M

Mission is to develop standards for M2M

Different solutions based on different technologies and standards can be interoperable

30

Page 31: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

IoT/M2M Standards

31

Page 32: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

IEEE – Embedded Standards

The IEEE usually standardizesPHY layer of the transmitterMAC protocol rules

The following IEEE standards are applicable to M2MIEEE 802.11 (technology used by WiFi)IEEE 802.15.1 (technology used e.g. by Bluetooth)IEEE 802.15.4 (technology used e.g. by ZigBee and IETF 6LowPan)IEEE 802.15.6 (technology used for medical applications)IEEE 802.16.1 (successor of WiMAX/WiBro for M2M)

Some facts and commentsultra-low power (ULP) IEEE 802.15.1 (Bluetooth) is competing … but to be seenIEEE 802.15.4 was dormant and only with .15.4e seems to become viablelow power IEEE 802.11 solutions are becoming reality?

32

Page 33: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

IEEE 802.15.4 for M2M

Task Group 4: Low-rate WPANWireless Personal Area Network

IEEE 802.15.4-2003 (Low Rate WPAN) deals with Low data rate but very long battery life (months or even years) and very low complexity

The first edition of the 802.15.4 standard was released in May 2003Several standardized and proprietary networks (or mesh) layer protocols run over 802.15.4-based networks, including

IEEE 802.15.5, ZigBee, 6LoWPAN, etc.

33

Page 34: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

IEEE 802.15.4 Amendments for M2M

Three amendments wrt M2M

MAC Amendment for Industrial Applications (4e)

Performed by Task Group 4e The intent of this amendment is to enhance and add functionality to the 802.15.4-2006 MAC to Better support the industrial markets Permit compatibility with modifications being proposed within the Chinese WPAN Specific enhancements were made to add channel hopping and a variable time slot option

These changes were approved in 2011

34

Page 35: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

IEEE 802.15.4 Amendments for M2M

Three amendments wrt M2M

PHY and MAC Amendment for Active RFID (4f)Performed by IEEE 802.15.4f Active RFID System Task Group Define new wireless Physical layer(s) and correspondent enhancements to the 802.15.4-2006 MAC For active RFID System bi-directional and location determination applications.

PHY Amendment for Smart Utility Network (4g)

Performed by EEE 802.15.4g Smart Utility Networks (SUN) Task Group Defines PHY amendment to 802.15.4

To provide a global standard that facilitates very large scale process control applications such as the utility smart-grid network capable of supporting large, geographically diverse networks with minimal infrastructure, with potentially millions of fixed endpoints

Recently new 802.15.4g standard has been released

35

Page 36: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

IETF Standards

Internet Engineering Task Forcenot approved by the US government; composed of individuals, not companies

General scope of IETFabove the wire/link and below the applicationhowever, layers are getting fuzzy -> challengeTraditional IETF protocols are not suitable for embedded networksSolution -> design new protocols taking into account layer-2 protocols (IEEE)

Same people -> IETF developments pertinent to Capillary M2M

6LoWPAN (IPv6 over Low power WPAN)ROLL (Routing Over Low power and Lossy networks)CORE (Constrained RESTful Environments)

36

Page 37: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

6LoWPAN Characteristics

A simple low throughput wireless network comprising typically low cost and low power devicesIPv6 for very low power embedded devices using IEEE 802.15.4 at PHY and MAC Devices typically send small amounts of data.

Typically constrained devices (computing, power, cost, memory, etc)Small packet size. 16-bit short or IEEE 64-bit extended media access control addressesLow bandwidth - 250/40/20 kbpsTopologies include star and meshNetworks are ad hoc & devices have limited accessibility and user interfacesInherently unreliable due to nature of devices in the wireless medium

37

Page 38: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

IETF 6LoWPAN Typical Architecture

Sensors and meters - Divided to subcategories Smart grid Environmental/Agricultural Monitoring Industrial Process Automation Attributes Indoor Healthcare System Healthcare/Fitness Home/Building Automation/Control Temperature Sensor Network

Backhaul Sensor and meter data Backhaul link for 15.4g Backhaul for industrial process automation

Extended range Wi-Fi Outdoor extended range hotspot Outdoor Wi-Fi for cellular traffic offloading

Requirements for these uses cases are totally different!!!

38

Page 39: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

6LoWPAN vs WiFi for Capillary M2M at 54Mbps

“Low-power Wi-Fi provides asignificant improvement overtypical Wi-Fi on both latency andenergy consumption counts”“LP-Wifi consumes approx the sameas 6LoWPAN for small packets but ismuch better for large packets”

© IEEE, from “Feasibility of Wi-Fi Enabled Sensors for Internet ofThings,” by Serbulent Tozlu

39

Page 40: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M-Related Standardization Bodies

40

Page 41: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M System Architecture

41

Page 42: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M System Architecture

42

Page 43: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M and WSN Architecture Convergence

43

Page 44: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

4. M2M challenges and Future Developments

44

Page 45: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M Challenges

• Cost of mass provisioning• Standards, Architecture, & Interoperability• Ability to scale• Agility & Time to market• Security: protecting sensitive data • Maturity of applications/solutions• Integration with IT Systems• Profitable business models• Fragmented supply chain and ecosystems• Innovation/R&D• Marketing/Education/Awareness• change in customer service paradigm • Standards and technologies are in development

45

Page 46: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M;from connecting everybody to connecting everything!

46

Page 47: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M;from connecting everybody to connecting everything!

47

Page 48: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M ; road to reality

48

Page 49: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M ; road to reality

49

Page 50: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M Added Values

WSN brings :

•Improve quality of M2M based business processes results in cost reduction

• energy efficiency

•Scalability in both size and functionality

50

Page 51: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

M2M Added Values

51

Page 52: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

4. Conclusion

52

Page 53: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

Conclusion• M2M presents both challenges and opportunities to the industry.

• Two things are needed for the embedded Internet vision to materialize: the development of new technologies that scale with the growth of M2M markets, and a broad standardization effort in system interfaces, network architecture, and implementation platforms.

• M2M brings operate efficiency, enabling new business models , improving customer models, complying to legislation and standards eventually lead to sustainability

•M2M is highly dependent on Wireless sensor networks both architectural , technological points of view along with standardization

53

Page 54: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

References•Geng Wu, Shilpa Talwar, Kerstin Johnsson, Nageen Himayat, and Kevin D. Johnson. 2011, M2M: From Mobile to Embedded Internet,IEEE Communications Magazine

• Vangelis Gazis, Konstantinos Sasloglou, Nikolaos Frangiadakis and Panayotis Kikiras, 2012.Wireless Sensor Networking, Automation Technologies and Machine to Machine Developments on the Path to the Internet of Things. 16th Panhellenic Conference on Informatics.

•Beecham Research Group, December 2011, M2M Market Dynamics , http://bog.m2mapps.com

•Duke-Woolley Robin, Founder & CEO, Beecham Research.Nov 2012, Global Deployments Become Reality. http://blog.m2mzone.com/m2m/2010/04/

54

Page 55: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

References•Lawton G., Sep 2004, Machine-To-Machine Technology Gears Up for Growth, IEEE Computer Society Magazine

• Zhang J., Shan L., Hu H., Yong Y., March 2012, Mobile Cellular Networks and Wireless Sensor Networks: Toward Convergence, SIMIT Chinese Academy of Science.

•Uliyar S., Feb 2013. Beyond Connectivity ; A Guidebook for Monetizing M2M in a Changing World SAP AG Magazine pp-2-13

•Morrish J. , Feb 2013 , M2M: The great challenge of vertical markets , M2M CeBIT 2013 Session 2 Presentation

• Duke-Woolley R., Nov 2012 , Session 2: M2M Stands the Revenue Model on its Head, M2M Zone Conference

55

Page 56: Amir ahmadian m2 m communications as part of wireless sensor networks-final version

Upcoming event: CTIA 2013 May 21-23 Las Vegas, NV

Thank You!Your contacts at [email protected]://ahmadiantehrani.com

56