absorção co²

Upload: luiz-henrique-v-souza

Post on 14-Apr-2018

226 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/27/2019 Absoro CO

    1/25

    Idaho National Engineering and Environmental Laboratory

    Absorption of CO2by AqueousDiethanolamine Solutions in aVortex Tube Gas-LiquidContactor and Separator

    Participants:

    INEEL: Daniel S. Wendt,

    (208-526-3996, [email protected])

    Michael G. Mc Kellar(208-526-1346, [email protected])

    Anna K. Podgorney

    Douglas E. Stacey

    Terry D. TurnerConocoPhillips Canada:

    Kevin T. Raterman

    May 6, 2003Supported by U.S. DOE (DESupported by U.S. DOE (DE--AC07AC07--99ID13727)99ID13727)

    ParticipantsPoster PresentationsPlenary SessionsTechnical SessionsMain Menu

  • 7/27/2019 Absoro CO

    2/25

    Idaho National Engineering and Environmental Laboratory

    Project Objectives: Low capital cost due to compact, simple design

    High CO2capture efficiency high efficiency mass transfer

    reduced solvent regeneration requirements

    Operationally flexible

    turn-down & scale-up with parallel design

    easily accommodates variable flow rates and gas

    compositions

    low maintenance/portable configuration Works equally well for physical / chemical absorbents

  • 7/27/2019 Absoro CO

    3/25

    Idaho National Engineering and Environmental Laboratory

    Jet type absorbers highly efficientReactor Type kl a ( s-1 x 100)

    Packed tower 7

    Sieve plate 40

    Venturi reactor 25

    Bubble column 24

    Impinging jet 122

    (Herskowits et. al.)

    High Shear Jet Absorber

    highly turbulent... large interfacial

    area for mass transfer

    multiple jets impingement zonecreates secondary drop breakup / greater area for mass transfer

  • 7/27/2019 Absoro CO

    4/25

    Idaho National Engineering and Environmental Laboratory

    High Efficiency Absorption. acid gas separation Co-inject chemical or physical absorbent

    COCO22 + 2R+ 2R22NHNH RR22NCOONCOO-- + R+ R22NHNH22++

    RR22NCOONCOO-- + H+ H22OO RR22NH + HCONH + HCO33

    --

    R designatesR designatesCC22HH44--OHOH

    Mass transfer rate ~ f(interfacial area, film thickness) Vortex tube

    high differential gas-liquid acceleration - small drops

    high turbulence - small film thickness GOAL achieve near equilibrium acid gas loading

  • 7/27/2019 Absoro CO

    5/25

    Idaho National Engineering and Environmental Laboratory

    Vortex Tube with Liquid Separator

    Lorey, et. al., 1998

    Cool

    Gas

    Outlet

    8 atm2 C

    Gas Inlet

    12.6 atm

    9 CHot Gas Outlet

    8.6 atm

    7 C

    Liquid

    Outlet

    J-T Temperature = 5 C

    Joule-Thomson expansion

    near sonic to supersonic velocity

  • 7/27/2019 Absoro CO

    6/25

    Idaho National Engineering and Environmental Laboratory

    Scaled Contactor Process-wellhead (~Mscfd) to full gas plant (~MMscfd)-distributed engine (~Mscfd) to centralized power plant (~MMscfd)

    Flash

    Feed CO2 MixCO2

    CO2

    StripperAbsorbent

    Clean Gas

    Parallel VortexContactors

    (Heat Regeneration if needed)Simple Process Schematic

  • 7/27/2019 Absoro CO

    7/25

    Idaho National Engineering and Environmental Laboratory

    Vortex Contactor

    Separator TubeSeparator TubeNozzleNozzle

    Boroscope / Throttle

    Vortex ContactorVortex Contactor

    Gas Exit

    Liquid inlet

    Gas Inlet

    Liquid Exit

  • 7/27/2019 Absoro CO

    8/25

    Idaho National Engineering and Environmental Laboratory

    Contactor Prototype

    60 SLPM @ 100 psia inlet

  • 7/27/2019 Absoro CO

    9/25

    Idaho National Engineering and Environmental Laboratory

    Gas - Liquid Loading Tests

    Achieve >95% gas-liquid separation for

    stoichiometric loading of a 15% volume CO2mixture

    Design parameters

    vortex inlet

    tube design

    tapered & slotted stepped with holes

    tube length

  • 7/27/2019 Absoro CO

    10/25

    Idaho National Engineering and Environmental Laboratory

    Stepped tube design exceedsgas/liquid separation target

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 200 400 600 800 1000

    Inlet Liquid Flow Rate (cm3/minute)

    Gas/Liq

    uidSeparationEfficiency

    (%)

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    Liqui

    d/GasRatio(massbasis)

    Separation Efficiency

    Liquid/Gas Ratio

    Inlet Pressure @ 100 psia

  • 7/27/2019 Absoro CO

    11/25

    Idaho National Engineering and Environmental Laboratory

    Stepped tube design exceedsgas/liquid separation target

    0

    100

    200

    300

    400

    500

    600

    700

    800

    0 200 400 600 800 1000

    Inlet Liquid Flow Rate (cm3/minute)

    Liqu

    idOutletFlow

    (cm3/min)

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    Liquid/GasRatio(ma

    ssbasis)

    liquid side

    gas side

    L/G

    Inlet Pressure @ 100 psia

  • 7/27/2019 Absoro CO

    12/25

    Idaho National Engineering and Environmental Laboratory

    CO2/DEA Baseline Test Apparatus

    CO2supply

    N2supply

    Reg Reg

    CO2 FlowController

    N2 FlowController

    P

    T

    T P

    Gas

    Chromato-graph

    P

    P

    Flowmeter

    Liquid

    T

    Exit HighFlow

    Exit LowFlow

    TescomCheck Valve

    Tescom

    Liquid Pump

    LiquidCollect-

    ionVessel

    LiquidCoalescer

    VacuumPump

    Hood

    Atmosphere

    Atmosphere

    Vortex Tube

    Air InletPress.

    Air Inlet

    Temp.

    Hot AirOutletTemp.

    Hot ExitPress.

    LiquidOutletTemp

    LiquidInlet

    Press.

    ExitPress.

  • 7/27/2019 Absoro CO

    13/25

    Idaho National Engineering and Environmental Laboratory

    CO2/DEA Baseline Testing Operation

    Operating Parameters

    100-500 cm3

    /min liquid flow rate 15-50 wt% liquid DEA composition

    80-200 psig inlet gas pressure

    5-15 mol% inlet gas CO2composition

    25-75 slpm inlet gas flow rate (dependent variable)

    Solvent loading and CO2capture efficiency unsatisfactory in

    baseline testing

    Diagnostic testing indicated increased residence time required process modifications necessary

  • 7/27/2019 Absoro CO

    14/25

    Idaho National Engineering and Environmental Laboratory

    Process Modifications Modifications to process hardware

    increase gas-liquid contact time capacity to adjust the gas-liquid contactor geometric configuration

    maintain ability to control the inlet gas pressure and CO2 : DEA

    feed stream mole ratio

    Modifications to process operating parameters

    75-350 cm3/min liquid flow rate

    30 wt% liquid DEA composition

    70 slpm inlet gas flow rate 10 mol% inlet gas CO2composition

    170-250 psig inlet gas pressure (dependent variable)

  • 7/27/2019 Absoro CO

    15/25

    Idaho National Engineering and Environmental Laboratory

    Baseline and Modified Process

    Configurations

    CO2supply

    N2supply

    Reg Reg

    CO2 FlowController

    N2 FlowController

    P

    T

    T P

    Gas

    Chromato-graph

    P

    P

    Flowmeter

    Liquid

    T

    Exit HighFlow

    Exit LowFlow

    TescomCheck Valve

    Tescom

    Liquid Pump

    LiquidCollect-

    ionVessel

    LiquidCoalescer

    VacuumPump

    Hood

    Atmosphere

    Atmosphere

    Vortex Tube

    Air InletPress.

    Air Inlet

    Temp.

    Hot AirOutletTemp.

    Hot ExitPress.

    LiquidOutletTemp

    LiquidInlet

    Press.

    ExitPress.

    CO2

    supply

    N2

    supply

    Reg Reg

    CO2 Flow

    Controller

    N2 FlowController

    P

    T

    T P

    GasChromato-

    graph

    P

    P

    Flowmeter

    LiquidSupply

    T

    Exit HighFlow

    Exit LowFlow

    Check Valve

    Liquid Pump

    LiquidCollect-

    ionVessel

    LiquidCoalescer

    VacuumPump

    Hood

    Atmosphere

    Atmosphere

    Air InletPress.

    Air InletTemp.

    Hot Air

    OutletTemp.

    Hot Exit

    Press.

    LiquidOutlet

    Temp

    LiquidInlet

    Press.

    ExitPress.

    Contactor

    TescomBack Press.Regulator

    TescomBack Press.

    Regulator

    Modified

    Contactor/

    Separator

  • 7/27/2019 Absoro CO

    16/25

    Idaho National Engineering and Environmental Laboratory

    Inlet gas pressure as a function ofliquid flow rateFouling is caused by deposits accumulating in the vortex tube nozzles

    0

    50

    100

    150

    200

    250

    300

    0 50 100 150 200 250 300 350

    Inlet Liquid Flow Rate (cm3/minute)

    InletGasPress

    ure(psia)

    0

    50

    100

    150

    200

    250

    300

    0 50 100 150 200 250 300 350

    Inlet Liquid Flow Rate (cm 3/minute)

    InletGasPress

    ure(psia)

    No Nozzle Fouling Nozzle Fouling Present

  • 7/27/2019 Absoro CO

    17/25

    Idaho National Engineering and Environmental Laboratory

    CO2capture efficiency as functionof liquid flow rate

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    0 50 100 150 200 250 300 350 400 450 500 550 600

    Inlet Liquid Flow Rate (cm3/minute)

    CO

    2CaptureEfficien

    cy(%)

    Modified Configuration 1

    Modified Configuration 2

    Modified Configuration 3

    Modified Configuration 4

    Modified Configuration 5

    Modified Configuration 6

    Modified Configuration 7

    Modified Configuration 8

    Modified Configuration 9

    Mo dified Co nfiguration 10

    Mo dified Co nfiguration 11

    Mo dified Co nfiguration 12

    30 wt%DEA, 10%C O2, 90 p sig

    15wt%DEA, 10%CO2, 90 psig

    30 wt%DEA, 10%C O2, MAX p sig

    50wt%DEA, 10%C O2, 100 ps ig

  • 7/27/2019 Absoro CO

    18/25

    Idaho National Engineering and Environmental Laboratory

    CO2capture efficiency as functionof liquid flow rate (no fouling)

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    0 50 100 150 200 250 300 350 400 450 500 550 600

    Inlet Liquid Flow Rate (cm 3/minute )

    CO

    2CaptureEfficien

    cy(%)

    Modified Configuration 1

    Modified Configuration 2

    Modified Configuration 9

    Mo dified Co nfiguration 10

    Mo dified Co nfigurat ion 11

    Mo dified Co nfigurat ion 12

  • 7/27/2019 Absoro CO

    19/25

    Idaho National Engineering and Environmental Laboratory

    CO2capture efficiency as functionof liquid flow rate (fouling present)

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    0 50 100 150 200 250 300 350 400 450 500 550 600

    Inlet Liquid Flow Rate (cm3/minute)

    CO

    2CaptureEfficiency(%)

    Mo dified C onfiguration 3

    Mo dified C onfiguration 4

    Mo dified Co nfiguration 5

    Mo dified Co nfiguration 6

    Mo dified Co nfiguration 7

    Mo dified C onfiguration 8

  • 7/27/2019 Absoro CO

    20/25

    Idaho National Engineering and Environmental Laboratory

    Solvent loading as function ofliquid flow rate

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    0.50

    0 50 100 150 200 250 300 350 400 450 500 550 600

    Inlet Liquid Flow Rate (cm3/minute)

    SolventLoading[moleCO

    2/moleDEA] Modified Configurat ion 1

    Modified Configurat ion 2

    Modified Configurat ion 3

    Modified Configurat ion 4

    Modified Configurat ion 5

    Modified Configurat ion 6

    Modified Configurat ion 7

    Modified Configurat ion 8

    Modified Configurat ion 9

    Modifie d Conf igura t ion 10

    Modifie d Configura t ion 11

    Modifie d Configura t ion 12

    30wt % DEA, 10% CO2, 9 0 psig

    15wt% DEA, 10% CO2, 90 psig

    30wt % DEA, 10% CO2, MAX psig

    50wt% DEA, 10% CO2, 100 psig

  • 7/27/2019 Absoro CO

    21/25

    Idaho National Engineering and Environmental Laboratory

    Solvent loading as function ofliquid flow rate (no fouling)

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    0.50

    0 50 100 150 200 250 300 350 400 450 500 550 600

    Inlet Liquid Flow Rate (cm3/minute)

    Solvent

    Loading[moleCO

    2/moleDEA]

    Modified Configuration 1

    Modified Configuration 2

    Modified Configuration 9

    Mo dified Co nfiguration 10

    Mo dified Co nfiguration 11

    Mo dified Co nfiguration 12

  • 7/27/2019 Absoro CO

    22/25

    Idaho National Engineering and Environmental Laboratory

    Solvent loading as function ofliquid flow rate (fouling present)

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    0.50

    0 50 100 150 200 250 300 350 400 450 500 550 600

    Inlet Liquid Flow Rate (cm3/minute)

    Solvent

    Loading[moleCO

    2/moleDEA]

    Modified Configuration 3Modified Configuration 4

    Modified Configuration 5

    Modified Configuration 6

    Modified Configuration 7

    Modified Configuration 8

  • 7/27/2019 Absoro CO

    23/25

    Idaho National Engineering and Environmental Laboratory

    Conclusions Gas/Liquid separation efficiencies in excess of 95%

    Non-optimized vortex tube testing has resulted incarbon dioxide capture efficiencies of up to 86%

    Solvent loading as high as 0.49 moles CO2/mole

    DEA

  • 7/27/2019 Absoro CO

    24/25

    Idaho National Engineering and Environmental Laboratory

    Future Research/Applications Process hardware optimization

    Scaled contactor and separator Additional solvents

    Additional CO2applications

    H2S

  • 7/27/2019 Absoro CO

    25/25

    Idaho National Engineering and Environmental Laboratory

    References Herskowits,D.; Herskowits,V.; Stephan, K .; Tamir. A.: Characterization of a two-phase

    impinging jet absorber. II. Absorption with chemical reaction of CO2 in NaOH solutions.

    Chem. Eng. Science 45 (1990) 1281-1287

    Lorey, M., Steinle, J., Thomas, K. 1998. Industrial Application of Vortex Tube Separation

    Technology Utilizing the Ranque-Hilsch Effect, presented at the 1998 SPE European

    Petroleum Conference, The Hague, Netherlands, October 20-22.

    Chakma, A., Chornet, E., Overend, R. P., and Dawson, W. H., Absorption of CO2by

    Aqueous Diethanolamine (DEA) Solutions in a High Shear Jet Absorber, The Canadian

    Journal of Chemical Engineering, Volume 68, August 1990. Lee, J. I., Otto, F. D., and Mather, A. E., Solubility of Carbon Dioxide in Aqueous

    Diethanolamine Solutions at High Pressures, Journal of Chemical and Engineering Data,

    Vol. 17, No. 4, 1972.