a management challenge€¦ · limnology: inland water ecosystems. prentice hall, upper saddle...

46
A Management Challenge: Eugene Braig, Program Director, Aquatic Ecosystems OSU Extension, School of Environment and Natural Resources Water Quality in Stormwater/ Homeowners Association Ponds

Upload: others

Post on 17-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

A Management Challenge:

Eugene Braig, Program Director, Aquatic Ecosystems

OSU Extension, School of Environment and Natural Resources

Water Quality in Stormwater/ Homeowners Association Ponds

Page 2: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Some practical pond-management

references • Austin, M. et al. 1996. Pond management handbook: a

guide to managing ponds for fishing and attracting wildlife. Ohio Department of Natural Resources, Division of Wildlife, Columbus, OH. – Once available in its glorious entirety from a nicely organized

and information-rich ODNR web site. Currently out of print and unavailable in any format.

• Many Ohio pond-management fact sheets available under “Natural Resources” at: – http://ohioline.osu.edu/lines/ennr.html

• Occasional articles posted to – http://senr.osu.edu/extensionoutreach/ponds-fisheries-aquatics

Page 3: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

The Outline:

• The nature of the challenge

• Stratification as a nutrient source

• Management considerations

– Stratification

– Vegetation

– Optional fisheries

A Management Challenge: Water Quality in Stormwater Ponds

Page 4: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

The Outline:

• The nature of the challenge

• Stratification as a nutrient source

• Management considerations

– Stratification

– Vegetation

– Optional fisheries

A Management Challenge: Water Quality in Stormwater Ponds

Page 5: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

• Watersheds usually thoroughly developed.

– Often large proportions of impervious surface.

– Often heavily fertilized.

• Basin designed to absorb problem pollutants (sedimentation, excessive nutrients, contaminants, etc.) from the landscape before they can enter natural surface waters.

Wet extended detention pond (Ohio Department of Natural Resources 2014)

Stormwater Ponds: The Challenge

Page 6: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

• Excessive sedimentation: – Functionally “ages” a pond.

– Prematurely reduces pond volume and thus capacity for storage.

– Becomes a nutrient and contaminant sink; can be released to the water column in low-oxygen conditions.

– Will require periodic dredging.

Stormwater Ponds: The Challenge

Foxwood Villas (City of Toledo Engineering Services 2015)

Page 7: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

• Excessive nutrient loading: – Functionally “ages” a pond.

– Can promote nuisance coverages of otherwise beneficial submerged vegetation.

– Can fuel the growth of nuisance organisms: e.g., duckweeds, filamentous algae, or potentially toxic harmful algal blooms.

– Excessive growth of green things can lead to wide oxygen fluctuations.

A homeowners association lake in Geauga Co. with some substantial nutrient issues

(Keith Anderson 2014)

Stormwater Ponds: The Challenge

Page 8: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Successful pond management

Nutrient management

• In freshwater aquatic systems, phosphorus (P), tends to be rare and thus is the primary limiting nutrient.

Little phosphorus = few problems.

Page 9: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

The Outline:

• The nature of the challenge

• Stratification as a nutrient source

• Management considerations

– Stratification

– Vegetation

– Optional fisheries

A Management Challenge: Water Quality in Stormwater Ponds

Page 10: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Limnology 101: Stratification basics

• The hypothetical pond-basin schematic:

Page 11: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Limnology 101: Stratification basics

• Spring turnover (mixed):

39 °F 39 °F 39 °F 39 °F 39 °F 39 °F 39 °F

Wind

Page 12: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Limnology 101: Stratification basics

• Pop quiz! Which is denser/“heavier”: warm or cold water?

– For the most part, water’s density increases (water gets “heavier”) with decreasing temperature.

– The most important temperature in the world: However, water is densest at approx. 39 °F, density again decreasing as temperature falls below that level. This fact makes life possible. Why?

– Freezing at 32 °F, ice is less dense than cold water and floats rather than freezing from the bottom up.

Page 13: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Limnology 101: Stratification basics

• Late spring (initial stratification):

60 °F 60 °F 58 °F 54 °F 50 °F 46 °F 46 °F

Wind

Thermocline

Epilimnion

Hypolimnion

Page 14: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Limnology 101: Stratification basics

• Summer (strongly stratified):

76 °F 76 °F 64 °F 54 °F 50 °F 46 °F 46 °F

Wind

Thermocline

Epilimnion

Hypolimnion

Page 15: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Limnology 101: Stratification basics

• Fall turnover (mixed):

50 °F 50 °F 50 °F 50 °F 50 °F 50 °F 50 °F

Wind

Page 16: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Limnology 101: Stratification basics

• Winter (stratified):

32 °F 34 °F 36 °F 38 °F 39 °F 39 °F 39 °F

Ice cover

Page 17: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Limnology 101: Stratification basics

• Factors affecting stratification:

– Pond depth: Likelihood or strength of

stratification increases with depth.

• Shallow ponds (perhaps < 8 feet) may not stratify

or may only stratify occasionally and briefly.

• Deeper ponds (perhaps > 12 feet) almost always

stratify.

Page 18: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Limnology 101: Stratification basics

• Factors affecting stratification:

– Wind: Stratification delayed, thermocline driven deeper, or seasonal mixing initiated earlier with increasing wind energy.

• Orientation of fetch (i.e., the length of open water across which wind can build up) to prevailing winds influences wind energy imparted to pond.

• Even deep ponds (perhaps to 16 feet) may not stratify if fully open to regular, strong winds.

• Even very shallow ponds are likely to stratify every season if strongly sheltered.

Page 19: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Limnology 101: Stratification basics

• Factors affecting stratification:

– Weather. • During calm, hot summers, the interaction of

temperature and lack of wind lead almost all ponds (even if very shallow) to stratify.

• Premature/Early turnover: Sudden, cold rainfall with late summer storms can chill epilimnetic water, increasing density and forcing it deeper into the water column, thus displacing and driving up hypolimnetic water.

– Symptom is often dark grayish or blackish cloudiness of pond water as organic muck/sediment is stirred up with movement of bottom water.

Page 20: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Kalff, J. 2002. Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ.

Internal sources of excessive P

(…where DO is dissolved oxygen)

Page 21: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

The vicious cycle (of P, that is)

Low hypolimnetic oxygen renders P in sediments more soluble.

P released to water column fuels algal blooms.

As algae die off, they settle into pond sediments, and decompose.

Decomposition consumes oxygen in hypolimnion.

Your Pond

Page 22: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

The Outline:

• The nature of the challenge

• Stratification as a nutrient source

• Management considerations

– Stratification

– Vegetation

– Optional fisheries

A Management Challenge: Water Quality in Stormwater Ponds

Page 23: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Basic management considerations

• These sites are human-made and intensively managed, so consider managing to deliberately and sustainably best serve the site’s intended goals and objectives, even where management might differ from natural system function.

• The site’s primary function—retention of water and pollutants—must take priority if it conflicts with other intended uses.

• Supplemental management actions should reflect compromise to at least partially recognize the expectations of each user/owner/stakeholder.

• Some peripheral specifics: – If at all possible, exclude Canada Geese from site!

– Only use herbicides specifically labeled for aquatic applications and strictly follow label recommendations!

Page 24: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

• Keep lawn waste out of ponds.

• Fertilize conservatively with phosphorus-free fertilizers.

• Mow lawns as tall as possible to promote root growth.

• Do not over-water (1–2 inches/week total).

• Discharge downspouts to lawns rather than impervious surfaces.

• Maintain native plants in landscape.*

• Plant rain gardens.

• Maintain 25–50-ft-wide vegetated buffer strips around ponds.*

• Pick up trash and pet waste before entering ponds or storm sewers.

• Do not dump household or automotive chemicals in yards or storm drains.

Basic management considerations

The Stormwater Coalition of the Toledo Metropolitan Area Council of Governments (May 2015)

* Some emergent/shoreline species recommendations provided by Ohio Department of Natural Resources (ODNR 2014).

Page 25: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Basic management considerations

ODNR. 2014. Rainwater and land development: Ohio’s standards for stormwater management, land development and urban stream protection, 3rd edition. ODNR Division of Soil and Water Conservation, Columbus.

Page 26: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Planning for construction

• Design ponds following ODNR (2014) guidelines for storage capacity and managing sediment loads.

• Especially if considering a fishery, at least 25% of the main basin ≥ 12-ft deep in the north of Ohio; ≥ 8-ft deep elsewhere in the state (Austin et al. 1996 and

differs slightly from ODNR 2014).

• If possible, align fetch of pond to take advantage of prevailing winds.

• Plan landscaping to again to take advantage of prevailing winds; plan trees along eastern/ northeastern shores (here, I differ slightly from ODNR 2014).

Page 27: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

The Outline:

• The nature of the challenge

• Stratification as a nutrient source

• Management considerations

– Stratification

– Vegetation

– Optional fisheries

A Management Challenge: Water Quality in Stormwater Ponds

Page 28: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Not all aerators are created equal!

Minimal nutrient-management benefits (but is potentially useful to

introduce dissolved oxygen directly…and it is kinda pretty)

Maximum nutrient-management benefits: Cheaper, efficient, and

effective

Page 29: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Kalff, J. 2002. Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ.

Not all aerators are created equal!

Page 30: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Why aerate?

• Specifically, regarding moderately coarse-bubble/pneumatic diffusers: – Bubbles themselves directly introduce some oxygen, but

contribution tends to be negligible. • The finer/smaller the bubble, the greater the surface area of

bubbles en masse and the more oxygen directly introduced.

– Coarser bubbles driving up from the bottom tend to drag water mass with them, creating circulation and disrupting stratification.

• While very fine bubbles introduce more oxygen directly, they cannot move enough water to disrupt stratification.

– Without the physical barrier imposed by dense hypolimnion, atmospheric oxygen is potentially able to penetrate to bottom waters, potentially eliminating anoxia in the hypolimnion.

Page 31: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Why aerate?

• Oxygenating bottom sediments: – Enhances production and efficiency of aerobic bacteria,

thereby increasing efficient decomposition (slowing the accumulation of organic muck) and shifting the nitrogen cycle towards harmless nitrate.

– Reduces possibility of summer and winter fish kills.

– Reduces or eliminates internal cycling of phosphorus.

• Circulating water mass: – Circulates and suspends nutrients for rapid uptake into the

planktonic food web.

– Reduces nuisance algae and duckweed abundance through rapid nutrient uptake by planktonic algae (fueling beneficial food webs).

Page 32: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Why aerate?

How many? • Ideally, 2–3 diffusers per acre positioned along

deep water.

How much? • Estimate pond volume: i.e., surface area x

average depth.

• Check manufacturer specs: – Recommendation range: 3.5–30 hours for one

complete turnover of pond volume.

– Relatively common objective: turn over pond volume twice per day (i.e., 12 hours/turnover).

Page 33: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Shall we begin?

• Implement any aeration program (and, really, any large-scale change in management) when waters are cool, namely in the spring.

– Disrupting waters that have already strongly stratified for the season—paradoxically, even via aeration—has the potential to bring hypoxic/ anoxic water to the surface, causing premature turnover, oxygen crash, and a summer fish kill.

• Ideally, fire up system in the spring, run all day every day throughout warm months, and shut down in autumn.

Page 34: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

The Outline:

• The nature of the challenge

• Stratification as a nutrient source

• Management considerations

– Stratification

– Vegetation

– Optional fisheries

A Management Challenge: Water Quality in Stormwater Ponds

Page 35: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Submerged aquatic vegetation

• Tolerating the right coverage by a diverse assemblage is good for water quality and fishes, perhaps: – 5–20% of the site’s area for

managing fisheries.

– As much as 30% for functions where fisheries aren’t a consideration.

• Maintaining the right coverage will likely require a commitment to active management. Westlake (Eugene Braig 2015)

Page 36: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

• The right coverage provides: – Nutrient storage: beneficial

competition against serious nuisance organisms (like toxic “blue-green algae,” filamentous algae, and duckweeds).

– A more stable source of dissolved oxygen than planktonic algae can.

– Habitat for forage and cover to balance predator–prey fish interactions.

Westlake (Eugene Braig 2015)

Submerged aquatic vegetation

Page 37: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Plant-management options

• Dyes.

• Mechanical

removal.

• Grass Carp/White

Amur.

• Herbicide/Algaecide

applications.

Page 38: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

A few words on herbicide use • To limit liability concerns, private individuals should not apply

herbicides to homeowners association sites; only licensed applicators should (Ohio pesticide applicator certification category 3a).

• Only use chemicals labeled for aquatic applications, very strictly adhering to all label requirements for application, safety, and storage.

• Identify the algae/plant correctly, and select a product likely to be effective.

• Consider any water-use restrictions associated with selected product (listed on label).

• Differentiate between treatment strategies: – Whole-water treatment: early growing season and cool water only to

calculated volume of pond water.

– Spot treatment: selective by area including for limited warmer season treatments.

• Differentiate between contact and systemic herbicides.

• Feel free to contact me for resources as necessary.

Page 39: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Aquatic herbicide chemical Name Absorption Selectivity Water-Use Restrictions

Copper (copper sulfate and copper chelates) Contact Broad Minimal

Sodium carbonate peroxyhydrate Contact Broad Minimal

Diquat Contact Broad Moderate

Flumioxazin* Contact Broad Moderate

Carfentrazone-ethyl* Contact Broad Moderate

Endothall (amine salt and potassium salt) Contact Broad Moderate

Glyphosate Systemic Broad Minimal

Imazamox Systemic Broad Moderate

Fluridone Systemic Selective Moderate

Penoxsulam* Systemic Selective Moderate

Bispyribac* Systemic Selective Extended

Imazapyr Systemic Selective Extended

Triclopyr Systemic Selective Extended

2,4-D Systemic Selective Extended

For details, see OSU fact sheet “Chemical Control of Aquatic Plants” (excepting *).

Page 40: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Contact Herbicide Control (not limited to…)

• Copper sulfate and copper chelates (a vast many: e.g., Cutrine brands, etc.): mostly algae (some submersed).

• Sodium carbonate peroxyhydrate (e.g., GreenClean, Pak 27, Phycomycin, etc.): near-surface and shallow algae.

• Diquat (e.g., Reward, Weedtrine-D, Aquastrike [Endothall-dipotassium blend], etc.): submersed plants and some filamentous algae.

• Flumioxazin* (e.g., Clipper): misc. submersed and free-floating plants, especially duckweeds and watermeal.

• Carfentrazone-ethyl* (e.g., Stingray): misc. floating and emergent plants.

• Endothall (e.g., Aquathol, Hydrothol, Evac Biocide, Aquastrike [Diquat blend]): submersed plants and algae.

• Karmex*/Diuron*, etc.: Do not use! Not labeled for aquatic applications.

For details, see OSU fact sheet “Chemical Control of Aquatic Plants” (excepting *).

Page 41: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Systemic Herbicide Control (not limited to…)

• Glyphosate (e.g., Rodeo, Aquamaster, AquaPro, Eraser AQ, etc.): emergent plants.

• Imazamox (e.g., Clearcast): very broad effectiveness, including several submersed invasives.

• Fluridone (e.g., Sonar, Avast, Whitecap, etc.): primarily submersed and free-floating plants.

• Penoxsulam* (e.g., Galleon): emergent and some floating weeds including on exposed pond sediments.

• Bispyribac* (e.g., Tradewind): misc., esp. floating and submersed.

• Imazapyr (e.g., Habitat, Arsenal, etc.): emergent (esp. grasses) & some floating weeds.

• 2,4-D (e.g., AquaKleen, Navigate, Aquacide, Sculpin G, Weedar 64, etc.): specific plant species such as Eurasian watermilfoil, coontail, and limited effectiveness on waterlilies.

• Triclopyr (e.g., Renovate, Garlon 3A, Navitrol, etc.): selective effectiveness similar to 2,4-D.

For details, see OSU fact sheet “Chemical Control of Aquatic Plants” (excepting *).

Page 43: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

The Outline:

• The nature of the challenge

• Stratification as a nutrient source

• Management considerations

– Stratification

– Vegetation

– Optional fisheries

A Management Challenge: Water Quality in Stormwater Ponds

Page 44: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Pond fisheries

• The nature of smallness: limited space and lack of habitat diversity. A pond cannot function like Lake Erie in supporting a fishery! – Keep fisheries extremely

simple! …Usually a single level of predator–prey interaction.

– Largemouth Bass–Bluegill (supplementing with Channel Catfish if desired) is our region’s tried and true.

A Delaware Co. pond (Steve Collignon 2014)

Page 45: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

OHIO STATE UNIVERSITY EXTENSION

Questions?

Page 46: A Management Challenge€¦ · Limnology: Inland water ecosystems. Prentice Hall, Upper Saddle River, NJ. Internal sources of excessive P (…where DO is dissolved oxygen) OHIO STATE

A Management Challenge: Water Quality in Stormwater Ponds

Eugene Braig,

Program Director,

Aquatic Ecosystems

614-292-3823

[email protected]