a dynamical basis for the de broglie phase wave

8
LETTI~R]~ AL NIJOVO CIM:EI~TO u 44, ~q. 8A 16 Dicembre 1985 A Dynamical Basis for the de Broglie Phase Wave. M. H. MAC Gt~EGO~ Lawrence Livermore National Laboratory (*) - Livermore, Cal. 94550 (riccvuto il 18 Luglio 1985; manoscritto revisionato ricevuto il 4 Dicembre 1985) PACS. 03.65 ~ Quantum theory; quantum mechanics. Summary. - Using the kinematic equations of perturbative special relativity (PSR), which are valid in the limit of small momentum transfers, we derive the particle-wave velocity equation vw = e 2, thereby providing a dynamical basis for the de Broglie phase wave. This samc PSR calculation also demonstrates that 1) the phase wave is accurately planar, and 2) the quanta of the phase wave are tachyons. The de BrogUe wave equation 2 ---- h/t~ was deduced on the basis of two postulates: 1) the extended Planck energy equation me 2 = hv; 2) the particle-wave velocity equa- tion vw----e 2. The de Broglie wave-length 2--~ w/v follows directly from these two postulates. The de Broglie phase wave ~(2, w, v), whose effect have been verified in a large number of experiments, is the only known phenomenon in physics that involves transmission in a vacuum at superluminal (w > e) velocities. Since this phase wave is produced by a particle that travels at subluminal (v < c) velocities, the phase wave pro- duction process ties together the separate relativistic domains of bradyons (sub- luminal particles) and tachyons (supcrluminal (~ particles )~). However, in spite of ex- tensive studies on this problem (~), the precise nature of the relativistic linking between bradyons and tachyons has not yet been delineated. As we demonstrate in the present paper, this linking appears to be provided by the kinematic equations of perturbative special relativity (PSR), which apply in the limit where the momentum transfers from the particle to the phase wave are very smali. The de Broglie equation is customarily written in the three-vector form (1) (l/~)n =p/h, (*) "Work performed under the auspices of the U. S. Department of Energy by the Lawrence Liver- more National Laboratory under contract 1~o. W-7405-ENG-48. (t) See, for example, E. ]:~ECAMI and W. I:~ODRIGUES Jr.** Tachyons: may they have a role in ele- mentary particle physics, Progress in Particle and Nuclear Physics, Vol. 15, edited by A. FAESSLER (Pergamon, Ox[ord, 1985, ill press), and references contained therein; G. D. ~r and E. I~E- CAMI: NUOVO Cimento A, 37, 85 (1980); E. RI~CAMI and 1%. ~I(~'N.~NI: I~iv. Nuovo Cimento, 4, 209 (1974); 1~. ]:[ORODECKI** NUovo Cimento B, 80, 217 (1984); ]K. C. CORt3]~N: Nuovo Cimento A, 29, 415 (1975); O. M. P. BILAN1UK, V* K. DI~SHPANDEand E. C. G. SUDAI~SHAN: .Am. J. Phys., 30, 718 (1962). 697

Upload: m-h-mac

Post on 10-Dec-2016

214 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: A dynamical basis for the de Broglie phase wave

LETTI~R]~ AL NIJOVO CIM:EI~TO u 44, ~q. 8A 16 Dicembre 1985

A Dynamical Basis for the de Broglie Phase Wave.

M. H. MAC Gt~EGO~

L a w r e n c e L i v e r m o r e N a t i o n a l L a b o r a t o r y (*) - L i v e r m o r e , Ca l . 94550

(r iccvuto il 18 Lugl io 1985; manosc r i t to rev is iona to r icevuto il 4 Dicembre 1985)

PACS. 03.65 ~ Quan tum theo ry ; q u a n t u m mechanics .

S u m m a r y . - Using the k inemat ic equa t ions of pe r tu rba t ive special r e l a t iv i ty (PSR), which are va l id in the l imi t of smal l m o m e n t u m transfers , we der ive t he par t ic le -wave ve loc i ty equa t ion v w = e 2, t he r eby p rov id ing a dynamica l basis for the de Brogl ie phase wave. This samc P S R calcula t ion also demons t ra t e s t h a t 1) t he phase w a v e is accura te ly planar , and 2) the quan ta of the phase wave are tachyons .

The de BrogUe wave equa t ion 2 ---- h/t~ was deduced on the basis of two p o s t u l a t e s :

1) t he ex tended P lanck energy equa t ion m e 2 = hv ; 2) t he par t ic le -wave ve loc i ty equa- t ion v w - - - - e 2. The de Brogl ie wave- leng th 2--~ w / v follows d i rec t ly f rom these two postula tes . The de Brogl ie phase wave ~(2, w, v), whose effect have been verif ied in a large number of exper iments , is the only known phenomenon in physics t ha t involves t ransmiss ion in a v a c u u m at super luminal (w > e) velocit ies. Since this phase w a v e is p roduced by a par t ic le t h a t t r ave l s at subluminal (v < c) velocit ies, the phase w a v e pro- duc t ion process t ies toge the r the separa te re la t iv i s t i c domains of bradyons (sub- lumina l part icles) and tachyons (supcr luminal (~ par t ic les )~). However , in spite of ex- tens ive studies on this p rob lem (~), the precise na tu re of the re la t iv i s t ic l inking be tween bradyons and tachyons has no t ye t been del ineated. As we demons t ra t e in the present paper , this l inking appears to be p rov ided by the k inemat ic equa t ions of pe r tu rba t ive special r e l a t iv i ty (PSR), which app ly in t he l imi t where the m o m e n t u m transfers f rom the par t ic le to the phase w a v e are v e r y smali .

The de Brogl ie equa t ion is cus tomar i ly wr i t t en in t he t h ree -vec tor fo rm

(1) (l/~)n =p/h,

(*) "Work performed under the auspices of the U. S. Department of Energy by the Lawrence Liver- more National Laboratory under contract 1~o. W-7405-ENG-48. (t) See, for example, E. ]:~ECAMI and W. I:~ODRIGUES Jr.** Tachyons: may they have a role i n ele- mentary particle physics, Progress in Part icle and Nuclear Physics , Vol. 15, edited by A. FAESSLER (Pergamon, Ox[ord, 1985, ill press), and references contained therein; G. D. ~r and E. I~E- CAMI: NUOVO Cimento A, 37, 85 (1980); E. RI~CAMI and 1%. ~I(~'N.~NI: I~iv. Nuovo Cimento, 4, 209 (1974); 1~. ]:[ORODECKI** NUovo Cimento B , 80, 217 (1984); ]K. C. CORt3]~N: Nuovo Cimento A , 29, 415 (1975); O. M. P. BILAN1UK, V* K. DI~SHPANDE and E. C. G. SUDAI~SHAN: .Am. J . Phys . , 30, 718 (1962).

697

Page 2: A dynamical basis for the de Broglie phase wave

6 9 8 ~ . H. MAC Glen~OIr

where p = m y is the re la t iv is l ic t h r e e - m o m e n t u m of a moving part icle, and 2 and n are the wave- length and direct ional uni t vector , respect ively , of the corresponding p lanar de Brogl ie phase wave, of()., w, v). However , this equa t ion can also be writtm~ in the cow~riant four-vector form (~)

(2) b = h L ,

w h e r e

(3) P ~ (E/c , p ) = re(c, v)

is the e~tergy-.~vo~r~et~ltem four -vec tor of a mass ive part icle, and

(4) L :~- ( l / ) , ) (w/c , n) = v(1/c, n /w)

is the/reql,er~cy four -vec tor of a p lane wave (a). As n len t ioned above, dc Brogl ie deduced eqs. (1) and (2) by pos tu la t ing the exis tence of the equa t ions

(5) hv = mc "~

a d d

(6) vw = c a

Equa t i on (5) represents an extens ion of the P lanck e lec t romagnet ic equa t ion E = by, which was or iginal ly appl ied to massless part icles, to include massive par t ic les as well , where , corresponds to an unspeeii icd <(internal f requency ~) of the mass ive par t ic le t ha t is ~ransmit ted to the de Brogl ie phase wave. Equa t ion (6) is the par t i c le -wave ve loc i ty re la t ionship tha t is r equ i red in order to ob ta in re la t iv is t ic invar ianee (4), as is apparen t f rom a:t inspect ion of cqs. (2)-(4)(5) .Nei ther eq. (5) nor eq. (6) has here tofore been prov ided wi th a dynamica l basis; t hey have remained as pos tu la tes of the systemat ics . In the present paper we use ~he k inemat ic P S R equa t ions to der ive cq. (6), and hence provide this missing dynamica l basis. We also ment ion a. model- dependen t resul t (% tha t can be used to ident i fy the (~internal par t ic le f rcql lency ~) v of eq. (5), and thus assign it physical signitieance.

The de Brogl ie phase wave has two i m p o r t a n t k inemat ic fea tures : 1) i t is p roduce4 by all types of mov ing pa r t i c l e - -e l ec t rons , neutrons , a toms, molecules, e i c . - - s o t h a t i t is not part icle-specif ic; 2) the ve loc i ty of the phase wave is not a constant , "(s we would expect for wave propaga t ion th rough ~ med ium, but instead is a funct ion of the ve loc i ty of the par t ic le tha t p roduced it. These features indicaie t ha t lhe phase wave is p roduced as a consequence of the m, otion of the part icle. Hence they suggest t ha t the produc t ion process is k inemat ic . We now subs tan t ia te this suggestion, and we also demons t ra t e t ha t the k inemat ic accelerat ion process is accura te ly planar .

(2) See \V. ]~I\~D~,~:R: Essential l?ehdivity, 2nd ed. (Spr inger-Ver lag , Heide lberg , 1977). p. 91. Tiffs f en r -vee t o r fol'mali~n~ was con ta ined in L. de Bro~lie 's thesis. (a) See "~V. I{INI)LI';R: Esse~d/al ]?elalicily, 2nd ed. (Spr inger-Verla~, t t e ide lbe rg , 1977), p. 72. ( ' ) See C, ~[OLLER: T]t6 Theory of t?elaticity (Oxford, London , 1952), p. 6, 7, 51, 52, and_ 56-58. (a) \ \ ' l w n we fo rm the fou r -vec to r /3_ h~ f r o m eq. (2), the first c m n p o n e n t van i shes iden t i ca l ly in all f r ames of reference because of eq. (5). Us ing the fou r -vec to r zeeo-compm~ertt lemma (ref. ("), p. 79), it t hen follows t h a t t]w o ther eont!aonent.s also vanis t t idenbica.tly, which es tabl ishes b o t h t h e sca lar ~-elr)eiio, r ( ' l a t ienship of eq. ((;), and also the l )ar l ic le-w~ve col l inear i iy coodi t ion nee v in a,11 frames of l'r

(") 31. L T, [~[AC ~tr Loll. A'~lOt:O Ci~c~to, 43, 49 (1985).

Page 3: A dynamical basis for the de Broglie phase wave

A D Y N A M I C A L B A S I S FOIr TtI]~ D]~ B R O G L l l ~ PHAS]~ W A V ~ 6 9 ~

The produc t ion process we use to inves t iga te the k inemat ics of phase w a v e pro- duct ion is the genera l exc i ta t ion d iagram shown in fig. I. A par t ic le m accelerates a spat ia l pe r tu rba t ion n at angle ~, which causes the par t ic le to recoi l at angle 0. I f we charac ter ize these par t ic les as four-vectors , t hen we obta in a covar ian t set of energy- m o m e n t u m equa t ions by wr i t ing ~ i s i = ~ P l , where t he sums can be over any n u m b e r of in i t ia l -s ta te and f inal-s tate par t ic les (:), inc luding in par t i cu la r the d iagram shown in fig. 1, The resul ts t h a t are of in te res t here occur only in the pe r tu rba t ive l imi t

(7) n << m ,

F i g . 1. - A n e n e r g y - m o m e n t u m d i a g r a m f o r t h e a c c e l e r a t i o n of a s p a t i a l e x c i t a t i o n q u a n t u m n b y a m o v i n g p a r t i c l e m . I f t h e r e s t m a s s of t h e p a r t i c l e m r e m a i n s i n v a r i a n t , t h i s i s f o r m a l l y a n e l a s t i c - c o l l i s i o n p r o c e s s . A s s h o w n i n t h e t e x t , t h e s c a t t e r e d q u a n t u m n i s a t a e h y o n s t a t e .

where m and n are the re la t iv is t ic masses of the par t ic le and spat ia l exc i ta t ion quan- t u m , respec t ive ly . This is a l imi t t h a t does no t seem to h a v e been prev ious ly inves t i - gated. The P S R l imi t can be obta ined numer ica l ly f rom the exac t solut ions of t he k inemat ic equat ions . I t can also be approached analyt ica l ly , as we now demons t r a t e for the case of forward (0 ~ sca t ter ing

The e n e r g y - m o m e n t u m four -vec tor equa t ion for the sca t ter ing process shown in fig. 1 is

(s) p~ _- p~ + Q,

w h e r e / 5 and Q charac ter ize t he s ta tes m and n, respec t ive ly . In wr i t ing out the four- vec to rs for th is equa t ion , i t is of ten convenien t to wr i te t he magn i tude of the par t ic le t h r e e - m o m e n t u m as

(9) p = o(m~- m~)~.

The magn i tude of the exc i ta t ion q u a n t u m t h r e e - m o m e n t u m is

(10) q = n w ,

where wc do not ye t specify i ts rest mass. In the case of ]orward scattering, t he four- vec tors in eq. (8) can be wr i t t en as fo l lows:

( 1 1 )

(is)

(13)

k l = [eml, ~(m~ - m~)~, 0, 0] ,

P~ = [~%, c ( ~ - ~g)~, 0, 03,

O = [on, nw, O, 0] .

(~) See ~V. RINDLEtr Essential Relativity, 2 n d ed . ( S p r i n g e r - V e r l a g , H e i d e l b e r g , 1977) , 19. 80.

Page 4: A dynamical basis for the de Broglie phase wave

700 3i. H. MAC G~JdGO~

E q u a t i o n s (8)-(13) l ead to the t h r e e - m o m e n t u m e q u a t i o n

( 1 4 ) u w = c ( , ~ _ ~ o ) ~ 2 �9 _ c [ ( m I _ ~ ) 2 q ~ ] ' , .

In t h e P S R l imi t ~b << m l , t he las t t e r m in eq. (14) call be e x p a n d e d to give

(15> o [ ( . b n _ )//)2 _ ?,bo]�89 ~ C(q?b~ - - ~ 2 ) + [ 1 - - . b l U / ( m ~ - - ~b02)] ,

where we h a v e d i sca rded t e r m s of o rder n 2 a n d h igher . T h u s we h a v e

(16) w ~ c , h / ( m ~ -- m~) = cU/vl ,

which for v~ ~ v 2 ~ v is j u s t eq. (6). Hence in t h e P S R l imi t of eq. (7), w h e r e t he r e l a t iv i s t i c mass n of the exc i t a t i on q u a n t u m is m u c h smal l e r t h a n t h e r e l a t iv i s t i c mass m of t he i nc iden t par t ic le , the excitation quantum, independent ly o] the value o~ its (small) relativistic ~ a s s , is scattered ]orward at the de Broglie phase velocity w = c~/v Thi s is a p u r e l y k ine t ic effect, a n d it exp la ins w hy de Brogl ie waves arc p r o d u c e d in t he s ame m a n n e r b y all m o v i n g par t i c les (p rov ided t h a t t h e y induce spa t i a l exc i ta t ions ) .

In o rde r to comple t e th i s ana lys i s , we should e x t e n d the se resu l t s to inc lude non- fo rward s c a t t e r i n g angles, as shown in fig. 1. To accoinpl i sh th is , we replace t h e four- vec to r s of eqs. (11)-(13) b y t h e fo l lowing

(17) /51 = (Oral,p1, O, Oj ,

(18j / 5 = (e.ffbz, P2 cos 0, P2 sin 0, 0) = (cm~, p~, p~, 0) ,

(19) (~ = (on, q cos ~, q s in ~0, 0) = (on, qf, qt, O) ,

where f a n d t d e n o t e f o r w a r d a n d t r a n s v e r s e m o m e n t m n c o m p o n e n t s , r espec t ive ly . I n s e r t i n g eqs. (17)-(19) in to eq. (8), we o b t a i n ~he set of e q u a t i o n s

p : = p~ __ qt ,

0 = p~ ~ q t , (20)

tg ~ == qt/qf ,

p~ = (p~)~+ (p~)~.

~Ve t h e n specify t he i n p u t p a r a m e t e r s m 0. ~ h , ~', a n d % which are sufficient to d e t e r m i n e t h e l e f t - h a n d q u a n t i t i e s in eqs. (20). Thu~ we can solve for p~ ,p~ , qf, a n d qt. The so lu t ion for q~ is

(21) q f = [P l - {P~ - - (P~ - - P22) SOt2 m}~Jtsec ~ ~ ,

which is exac t . We now wr i te the P S R l i m i t of eq. (7) in the e q u i v a l e n t f o rm

(22) Ap ~ = p ~ - - p 2 < < p ~ .

Nex t wc set p~ = p~ - - Ap in eq. (21), e x p a n d the square root , a n d d iscard t e r m s in (Ap) 2. Wc t h e n d i scover t h a t t he s e c : ~ f ac to r s cancel out , a n d eq. (21) is r educed to t h e a p p r o x i m a t e P S R equa l i t y

(23) q~ ~ Ap .

Page 5: A dynamical basis for the de Broglie phase wave

A D Y N A M I C A L B A S I S FOR T I r E D E B R O G L I : E P H A S E W A V E 701

Thus in the P S R l imi t of smal l m o m e n t u m transfers , the angu la r dependence o] the scat- tered ]orward m o m e n t u m q~ cancels out. Hence we can i m m e d i a t e l y t ake over the for- ward-sca t t e r ing resul ts de r ived above. In the case of fo rward sca t te r ing in t he P S R l imi t , we had q = n w = A p ~ nc2/v (eqs. (10), (14), (16)). F o r t he case of nonforward scat ter ing, we now set

(24) q~ ~ n w ~ ,

which f rom eq. (23) t hen gives n w ~ ~_ A p ~ ne2/v, so t h a t we have

(25) w ~ ~ c2/v ,

which can also be wr i t t en in the fo rm

(26) v ' w ~-- 02 .

E q u a t i o n (26), or i ts equ iva len t , eq. (25), presents us w i th a powerful new resul t . I t says tha t in the P S R l imi t of smal l m o m e n t u m t ransfers , the ]orward veloci ty w ~ o] a scattered exc i ta t ion q u a n t u m depends on ly on the veloci ty v o] the i n c i d e n t m a s s i v e pa~'ticle, a n d no t on the re la t iv is t ic m a s s n o] the q n a n t n m or i t s scat ter ing angle ~. Thus an en- semble of s imul taneous ly sca t te red quan ta n will t r ave l fo rward at the de Brogl ie ve loc i ty c2/v in the form of an accura te ly p lanar wave. The p lanar na tu re of th is scat- te r ing process also has o ther implicat ions. I t suggests t h a t the spat ia l exc i ta t ion q u a n t a can be in t he fo rm of two-d imens iona l (( s tr ings )~ or th ree-d imens iona l , sheets )) r a the r t h a n discrete local ized part icles . The k inemat ics will be the same in all of these cases. When we use the par t i c le -wave m o m e n t u m transfers to devise a pa r t i c le -wave s teer ing mechan i sm (s), and when we s tudy the p rob lem of energy conserva t ion in t he w a v e packet , these h igher -d imens ional exci ta t ions appear to offer i m p o r t a n t advantages .

As a means of de l inea t ing the pe r tu rba t ive na tu re of these results , the exac t equa- t ions were coded on a computer , using a 100 KeV e lec t ron as a typ ica l inc ident par t ic le , and the pe r tu rba t ive l imi t defined in eq. (7) was approached numerical ly . The resul ts of these calcula t ions are d isplayed in figs. 2 and 3. F igure 2 shows values for t he ve loc i ty w of an elast ical ly sca t tered q u a n t u m n at var ious sca t ter ing angles ?, using uni ts where c = 1. The veloci t ies w are super luminal , and t h e y approach cons tan t va lues as t he pe r tu rba t ion p a r a m e t e r n/m~ approaches the va lue 10 -5 f rom above. F igure 3 shows corresponding values for the fo rward ve loc i ty componen t w ~ = w cos ~. The veloci t ies w ~ at all sca t ter ing angles converge to the de Brogl ie phase ve loc i ty c2/v as the pe r tu rba t ive l imi t n/m~ < 10 -5 is r eached .

We have obta ined these resul ts wi thou t refer r ing to the rest mass % of the scat- tered spat ia l exc i ta t ion quan tum. The va lue for n o can be obta ined f rom the four- vec tor equa t ion

( 2 7 ) ~ ' ~ ----- ( P l - / 5 2 ) ' (/51 - - t52) = ng e2 ,

where fJ1, P2, and 0 are defined in eqs. (9), (10), and (17)-(20). Since

(28) P I ' P 1 P 2 " ~ 2 ~ 2 2 = m 0 c :,

(8) l~. H. MAC GREOOR: UCRL 93654, A Particle-Wave Steering Mechanism, Nov. 22 (1985).

Page 6: A dynamical basis for the de Broglie phase wave

702 3[. }{. MAC G R E G O R

9

w

7 -

t ~L ! I 10 < 10- 2

/--300

/

.I I 10 5 10--';

n//7] 1

10 "~

F i g . 2. - The v e l o c i t y w of a n e l a s t i c a l l y - s c a t t e r e d q u a n t u m n (see f ig. 1), p l o t t e d as a f u n c t i o n of t h e p e r t u r b a t i o n p & r a m e t c r n /mr (eq . (7)) for v a r i o u s v a l u e s of t h e s c a t t e r e d a n g l e ~f, a n d u s i n g u n i t s w h e r e c = 1. The i n c i d e n t p a r t i c l e ~ is a 100 k e V e l e c t r o n . As can be seen, t h e v a l u e s for w are s u p e r l n m i n a l ( g r e a t e r t h a n c), a n d t h e y b e c o m e a s y m p t o t i c a l l y c o n s t a n t ( i n d e p e n d e n t of n) i n t h e p e r t m ' b a t i o n l i m i t n[m~ ~ 1 0 - L

2 . 0 - -

w #

1.9

i !

1 . 8 - -

30 ~ 0 o / 45 ~ 60 ~ 75 ~

1 ! 1.08

1.06

1.o~

1.02

1.00

~ _ _ j __ j4 10 " 10 -~ 10 -3 i0-':' 10 5

D/m 1

F i g . 3. - The s a m e p l o t as in fi~ 2, b u t for t h e f o r w a r d v e l o c i t y c o m p o n e n t w~= w cos q% r a t h e r t h a n w. As c a n be seen , t he v e l o c i t i e s w f fo r a l l s c a t t e r i n g a n g l e s cfl a p p r o a c h t h e de Brog l i e p h a s e v e l o c i t y 1/v~ a t t i le p e r t u r b a t i v e l i m i t *~/m, ~ 1 0 -~.

w e ] l & v e

(29)

Se t t i ng m,a = m r - - ~, go ing to t he PSl~ limi~ n << m 1, i n v o k i n g t he squa re - roo t expan- s ion s h o w n in eq. (15), u s ing t h e P S R ang le r e l a t i o n s h i p (see eqs. (17)-(20))

(30) s in 0 ~_ - - m l n t g r - - m ~ ) ,

Page 7: A dynamical basis for the de Broglie phase wave

A DYNAMICAL BASIS FOR THE DE BROGLIE PHASE WAVE ~ 0 ~

and keeping t e rms th rough order n ~, we obta in

~ _ n 2 ( ~ + 2 tg2 ~)/(~ _ ~ ) . (31) no - - ~1

Since nc 2 represents a real re la t iv i s t i c energy, we see f rom eq. (31) t h a t q~ is negat ive , and hence the res t mass n o is imaginary . Thus the super lumina l exc i ta t ion quan ta are t achyon s ta tes (as t h e y must be in th is re la t iv i s t ic formal ism) . W e can wri te eq. (31) in t he equ iva len t fo rm

(32) n o "~ i n [ (v ~ sec 'z q~/v~) - - 1]�89

where vl is t he ve loc i ty of t he incident mass ive par t ic le . As we have jus t demons t ra ted , if a mass ive par t ic le m o v i n g at ve loc i ty v exci tes

a spat ia l q u a n t u m and accelerates i t k inemat ica l ly , t hen in the P S R l imi t th is exc i ta t ion q u a n t u m wil l t r a v e l forward as a t achyon s ta te at the de Brogl ie phase ve loc i ty c2/v.

Suppose we now consider t he case where th is m o v i n g t achyon exc i ta t ion in terac ts and exchanges energy and m o m e n t u m wi th a second mass ive part icle . I f the t achyon rep- resents a componen t of a de Brogl ie phase wave , t hen we requi re t h a t i ts ve loc i ty be unchanged by this in terac t ion . T h a t is, in order to p r even t the break-up of the phase wave, we mus t have d w / d n = 0, where w and n are t he fo rward ve loc i ty and re la t iv is t ic mass, respect ive ly , of the tachyon. W h a t r equ i r emen t does th is p u t on the ve loc i ty of t he second mass ive par t ic le ? In order to ob ta in t he r a the r surpr is ing answer to th is quest ion, we again go th rough a four -vec tor analysis of the scat ter ing, and we again t ake the P S R l imi t of v e r y smal l energy and m o m e n t u m transfers . W e demons t r a t e t he solut ion here only for t he case of fo rward scat ter ing, bu t the resul ts we obta in can be shown to app ly also for t he case of nonzero incident angles. The four -vec tor equa t ion for th is sca t te r ing process is

(33) Q1 +/51 = Q2 q-/52,

where

(34) r = (cnzr nz~wk, O, O)

and

( k = 1 , 2 )

(35) /5 k = (cml~, m~vk, 0, 0) , (k = 1, 2)

are t he four -vec tors for the t achyon and the second mass ive par t ic le , respec t ive ly . The P S R l imi t for th is case is t he l imi t

(36) n l _ n 2 and m 2 ~ _ m 1.

There is a p rob lem we mus t now deal with. F o r t he t achyon , we h a v e the equa t ion

(37) n = no/(1 -- w2/c2)~ .

Thus if the t achyon res t mass n o is he ld constant , we wil l obta in

(us) d w l d n l , , = ( c 2 - - w 2 ) l n w # O .

Hence if we requi re d w / d n : 0 for t he t achyon in te rac t ion , the res t mass n o mus t be

Page 8: A dynamical basis for the de Broglie phase wave

704 ) t . K. MAC GREGOR

al lowed to change dur ing the in terac t ion . In fact , we will have

(39) dn0/dn[, ~ = (1 -- w2/c2)~ = no/n.

Allowing this freedoIn for var ia t ions in n o, we insert eqs. (34) and (35) into eq. (33) and take the der iva t ive dw/(b~ in the limi~ of eq. (36), which gives

(40) dw/d't~ ~__ ( v - w)/n @ (m/n)dc/dm

I f the second massive par t ic le possesses an invar ian t res t mass, we then have

(4l) d~'/dm -- (c 2 - v~)/~v.

Inser t ing eq. (41) into eq. (40), we finally ob ta in

(42) dw/dt~ ~ (c'2/c -- w ) /n .

Thus the de r iva t ive dw/dn wufishes only if vw = c2; tha t is, only if the second massive par t ic le is movi~g at the same ve loc i ty as the first mass ive par t ic le ! The significance of this resul t is t ha t if the de Brogl ie phase wave is a real physical en t i ty , as the present resul ts suggest, and not mere ly a superposi t ion of wave packe t components , then the par t ic le wave packe t i tself must be a separa te en t i ty tha t is s imi lar ly quant ized, and eq. (42) indicates tha t the phase wave in the P S R l imi t of eq. (36) can funct ion to syn- chronize not only the phase but also the ve loc i ty of th is accompanying wave packet .

The present analysis suggests tha t we should accord physical r ea l i ty to the de Brogl ie phase wave, and hence also to the cons t i tuent t aehyon states (~). This in t u rn indicates t h a t a phys ica l basis should be p rov ided for the ~ in terna l par t ic le fre- quency ~> , (eq. (5)) t ha t is t r a n s m i t t e d to the phase wave. Such a topic is beyond the scope of the present paper , bu t we want to poin t out t ha t there is a model , the rela- t iv is t ica l ly spinning sphere (6), which correlates the de Broglie f requency v wi th the ro ta t iona l f requency of the sphere, which correct ly reproduces the spin angular mo- m e n t u m and magnet ic m o m e n t of a spin-~ part icle, and which p roper ly t ransforms these quant i t ies and the par t ic le mass under Loren tz t rans format ions .

(9) A l t h o u g h it is genera l ly be l ieved t h a t ene rgy canno t be t r a n s m i t t e d a t supe r lnminM veloci t ies , a r g u m e n t s to t tw c o n t r a r y have a p p e a r e d in the l i t e r a tu re . Wee for e x a m p l e G. FEINBERG: Phys. Rer., 159, 1089 (1967); T. ALV:(C;ER a nd 3[. N. I~RFISLER: Phys. I?ev., 171, 1357 (1968).