a constrained resampling strategy for mesh improvementahdhn/files/meshimpslidessgp17.pdfa...

37
A Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader *1 , Ahmed H. Mahmoud *2 , Ahmad A. Rushdi 2 , Scott A. Mitchell 3 , John D. Owens 2 , and Mohamed S. Ebeida 3 1 University of Maryland, College Park; 2 University of California, Davis; 3 Sandia National Laboratories, Albuquerque * joint first authors 15 th Symposium on Geometry Processing July 5 th , 2017 - London, UK

Upload: others

Post on 09-Jul-2020

16 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

A Constrained Resampling Strategy for Mesh Improvement

Ahmed Abdelkader*1, Ahmed H. Mahmoud *2, Ahmad A. Rushdi2, Scott A. Mitchell3, John D. Owens2, and Mohamed S. Ebeida3

1University of Maryland, College Park; 2University of California, Davis;3Sandia National Laboratories, Albuquerque

* joint first authors

15th Symposium on Geometry Processing July 5th, 2017 - London, UK

Page 2: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

Problem Definition

Improving an input mesh in terms of a given set of quality objectives

How to translate the quality objectives

How to achieve multiple objectives

Page 3: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

Applications

1- Non-obtuse Triangulation:Input: obtuse triangular mesh Target: Eliminate all obtuse triangles

Red = obtuse

Page 4: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

Applications

1- Non-obtuse Triangulation (2D)

Page 5: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

Applications

1- Non-obtuse Triangulation (CS)

Del

aun

ay R

efin

emen

t

Un

ifo

rm M

PS

No

n-u

nif

orm

MP

S

Fro

nta

l Del

aun

ay

Page 6: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

Applications

1- Non-obtuse Triangulation (CS)Comparison: “Non-obtuse remeshing with centroidal voronoi tessellation ” – D.M. Yan et al., IEEE TVCG 2016

Page 7: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

Applications

1- Non-obtuse Triangulation (CS)Comparison: “A simple pull-push algorithm for blue-noise sampling” - AG Ahmed et al., IEEE TVCG 2016

Page 8: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

Applications

2- Delaunay Sifting:Definition: Reducing the number of Steiner points while preserving the same qualities of the input mesh

Steiner points: Set of vertices inserted in initial Delaunay mesh to improve its quality (minimum angle, triangle area)

Steiner point

Page 9: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

Applications

2- Delaunay Sifting (2D)Triangle

dense regions

θmin =35°, θmax =109°

Reduction ratio = 86% Reduction ratio = 62% Reduction ratio = 61%

θmin =35°, θmax =110° θmin =35°, θmax =109°

Page 10: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

Applications

2- Delaunay Sifting (2D) aCute

θmin =40°, θmax =99° θmin =40°, θmax =99°

θmin =40°, θmax =99°

Reduction ratio = 24% Reduction ratio = 28% Reduction ratio = 28%

“Quality Triangulations with Locally Optimal Steiner Points” – Hale Erten et al. - SIAM J. Sci. Comput 2008

Page 11: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

Applications

2- Delaunay Sifting

Del

aun

ay R

efin

emen

t

Un

ifo

rm M

PS

Fro

nta

l Del

aun

ay

CV

T

θmin =35°, θmax =103°

Reduction ratio = 43%

θmin =30°, θmax =116°

θmin =28°, θmax =120°

Reduction ratio = 50% Reduction ratio = 50% Reduction ratio = 44%

θmin =28°, θmax =121°

Page 12: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

Applications

3- Mesh Simplification

15K #vertex 9.5K #vertex4.5K #vertex 0.6K #vertex

Page 13: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

Applications

3- Mesh Simplification

• “Surface Simplification Using Quadratic Error Metric” –Garland M.,et al. -SIGGRAPH '97

• “Efficient Construction and Simplification of Delaunay Meshes” – Liu Y.-J., et al. -TOG 2015

Hausdorff Distance Max AngleMin Angle

Page 14: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

Applications

4- Voronoi without Short Edges:Shortest Voronoi Edge

within the cell |e1|

Longest Voronoi Edge within the cell |e2|

Bad Voronoi Cell := |e1|/ |e2| <0.1

Good Voronoi Cell := |e1|/ |e2| >0.1

Shortest Voronoi Edge within the cell |e1|

Longest Voronoi Edge within the cell |e2|

Page 15: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

Applications

4- Voronoi without Short Edges:

Jittered grid (98 bad elements)

Constant sizing func(1666 bad elements)

Rapid change in grading (139 & 541 bad elements)

Page 16: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

Applications

4- Voronoi without Short Edges:

Gray-scale based Voronoi mesh(14272 bad elements)

Page 17: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

The Strategy

Intuition:- Maximal Poisson Sampling (MPS)

Minimum separation ensures minimum

edge length

Maximality ensures upper bound on edge

length

r2r

Page 18: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

The Strategy

Input:

Triangular mesh & quality objectives

Minimum and maximum angle boundDelaunay property

Sizing function

Curved Surface meshPlanar 2D Mesh

Page 19: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

The Strategy

Definitions:- Bad element:

e.g., obtuse triangle for non-obtuse remeshing,Voronoi cell associated with a short edge,any triangle for mesh simplification

Page 20: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

The Strategy

Definitions:- Patch:

Two Opposite Triangles Triangle Fan

Page 21: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

The Strategy

Definitions:- Void:

void void

neighbors

Page 22: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

The Strategy

Steps:

1- Pick a patch where quality objectives not satisfied 2- Delete all elements on this patch (void)3- Map quality objective into geometric constraints (feasible region)4- Sample from the feasible region and triangulate5- Iterate over all mesh patches until no further improvement is

possible

Page 23: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

patch associated with bad element

The StrategyQuality Objectives Geometric Primitives:

a) Exclusion region:

void

removing patch elements creates void

map quality objective (non-obtuseness) for

a single segment

map quality objective from all segments

red= exclusion region

Page 24: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

patch associated with bad element

The StrategyQuality Objectives Geometric Primitives:

a) Inclusion region:

void

removing patch elements creates void

map quality objective (min angle) for a single segment

map quality objective from all segments

θmin θmin

hatch= inclusion region

Page 25: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

The StrategyQuality Objectives Geometric Primitives:

Exclusion & Inclusion regions:

hatch= inclusion regionred = exclusion region

Page 26: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

The Strategy

Steps:

1- Pick a patch where quality objectives not satisfied 2- Delete all elements on this patch (void)3- Map quality objective into geometric constraints (feasible region)4- Sample from the feasible region and triangulate5- Iterate over all mesh patches until no further improvement is

possible

Page 27: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

The Strategy

Resampling Operators:1) Relocation

Page 28: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

The Strategy

Resampling Operators:2) Ejection

Page 29: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

The Strategy

Resampling Operators:3) Injection

tri-valent vertex

Page 30: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

The Strategy

Resampling Operators:3) Injection

Page 31: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

The Strategy

Resampling Operators:4) Attractor Ejection

Page 32: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

The Strategy

Resampling Operators:5) Repeller Injection

Page 33: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

The Strategy

Sampling:dart throwing

void

coarse grid refined grid

Page 34: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

The Strategy

Guarantees:- No degradation - No repeated scenarios guarantees termination - For curved surface, sampling from the input surface guarantees upper bound on Hausdorffdistance

Page 35: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

The Strategy

Limitations:- Stuck in local minima

Input Dead-end Success

Page 36: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

Summary

- Simple strategy with versatile applications- Derived spatial representation of various qualities- Developed a toolbox for local resampling - Demonstrate success over wide range of applications

Page 37: A Constrained Resampling Strategy for Mesh Improvementahdhn/files/MeshImpSlidesSGP17.pdfA Constrained Resampling Strategy for Mesh Improvement Ahmed Abdelkader*1, Ahmed H. Mahmoud*2,

Funded:Sandia National Labs

Project Github (data + code): https://github.com/Ahdhn/MeshImp

Email:[email protected]

Thank You!