8th international munich chassis symposium 2017

30
Peter E. Pfeffer Ed. chassis.tech plus Proceedings 8th International Munich Chassis Symposium 2017

Upload: others

Post on 22-Jan-2022

10 views

Category:

Documents


0 download

TRANSCRIPT

Peter E. Pfeff er Ed.

chassis.tech plus

Proceedings

8th International Munich Chassis Symposium 2017

Proceedings

Today, a steadily growing store of information is called for in order to understand the increasingly complex technologies used in modern automobiles. Functions, modes of operation, components and systems are rapidly evolving, while at the same time the la-test expertise is disseminated directly from conferences, congresses and symposia to the professional world in ever-faster cycles. This series of proceedings offers rapid access to this information, gathering the specific knowledge needed to keep up with cutting-edge advances in automotive technologies, employing the same systematic approach used at conferences and congresses and presenting it in print (available at Springer.com) and electronic (at SpringerLink and Springer Professional) formats.

The series addresses the needs of automotive engineers, motor design engineers and students looking for the latest expertise in connection with key questions in their field, while professors and instructors working in the areas of automotive and motor design engineering will also find summaries of industry events they weren’t able to attend. The proceedings also offer valuable answers to the topical questions that concern assessors, researchers and developmental engineers in the automotive and supplier industry, as well as service providers.

Peter E. PfefferEditor

th International Munich Chassis Symposium 2017

chassis.tech plus

8

Editor

Prof. Dr. Peter E. PfefferMunich University of Applied SciencesMunich, Germany

ISSN 2198-7432Proceedings

ISSN 2198-7440 (electronic)

ISBN 978-3-658-18458-2DOI 10.1007/978-3-658-18459-9

ISBN 978-3-658-18459-9 (eBook)

Springer Heidelberg Dordrecht London New York

Springer Vieweg

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the pub-lisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer Vieweg imprint is published by Springer NatureThe registered company is Springer Fachmedien Wiesbaden GmbHThe registered company address is: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

© Springer Fachmedien Wiesbaden GmbH 2017, corrected publication 2018.Copyright

V

WELCOME

The development of highly and fully automatic driving and the increasing electrification of the powertrain now face chassis development with new challenges too. Innovative chassis systems have to provide solutions for automated driving. The efficient chassis of the future also has to keep an eye on CO2 targets, comfort and customer focus at all times. A modern chassis has to provide for this in the form of innovations while taking the physical and mechanical interdependencies into account. Confronting these new developments is a challenge for simulation and testing.

To allow an exchange of experience and a constructive discussion of current topics, the 8th International Munich Chassis Symposium chassis.tech plus to be held on 20 and 21 June 2017 will bring together numerous experts from all over the world to discuss chassis, steering, brakes and tires / wheels.

At the symposium, well-known keynote speakers will offer a comprehensive overview of new approaches for solving these challenges. Speakers from industry and research will deal with current developments in the four parallel strands for chassis, steering, brakes and tires / wheels. The lecture program will be rounded off by interdisciplinary sections at the beginning and end of the event.

We are happy to welcome you to the hotel ‘Bayrischer Hof’ in the heart of Munich and hope you will enjoy this thought-provoking event.

Prof. Dr. Peter E. Pfeffer Munich University of Applied Sciences Scientific Director of the Symposium

VII

INDEX

CHASSIS.TECH PLUS SECTION

KEYNOTE LECTURES I

The chassis as game changer for automated and electrified driving Prof. Dr. Stefan Gies, Dr. L. Liesner, Volkswagen AG

5

The chassis of the all-new AUDI A8 Carsten Jablonowski, Dr. C. Schimmel, V. Underberg, AUDI AG

7

Future brake system architectures for automated driving Dr. Armin Kunz, Dr. E. Liebemann, Dr. M. Kunz, Dr. S. Strengert, Robert Bosch GmbH

27

KEYNOTE LECTURES II

Automotive security is not even a feature – how can we afford that? Dr. Sebastian Labitzke, ITK Engineering GmbH

31

Acceptance and market for ADAS and automated driving systems Dr. Wolfgang Bernhart, M. Yoon, Roland Berger GmbH

45

KEYNOTE LECTURES III

Modularization of vehicle control systems based on the application of object-oriented design principles Dr. Veit Held, Dr. A. Heitmann, Adam Opel GmbH

49

Tires and system solutions for the cars of the future Prof. Dr. Burkhard Wies, Dr. H. Lange, Dr. T. Yilkiran, Continental Reifen Deutschland GmbH

67

Index

VIII

PARALLEL STRAND I

NEW CHASSIS

Business athlete – exciting driving dynamics for the all-new BMW 5 series Christof Lischka, BMW Group

83

A compact rear chassis for the 2018 Honda Odyssey – merits and challenges, and innovations Joshua C. Johnson, Adam Goellner, K. Rhoades, E. Payne, D. Horton, K. Malarik, B. Johnson, S. Bradner, M. Hoersten, D. Wolf, Honda R&D Americas, Inc., USA

105

From i30 to i30: an evolutionary journey for Hyundai C-seg bestseller Axel Honisch, M. Lugert, A. Pizzuto, T. Schöning, Hyundai Motor Europe Technical Center GmbH

131

CHASSIS COMPONENTS AND HISTORICAL ASPECTS

mSTARS – modular Semi-Trailing Arm Rear Suspension Knut Heidsieck, K. Wallgren, ZF Friedrichshafen AG

135

Composite chassis components Alberto Girelli Consolaro, N. Zandbergen, Dr. P. Zandbergen, Dr. F. Wolf-Monheim, F. Italiano, Ford Research and Innovation Center Aachen

145

Mubea chassis springs – development of GFRP leaf springs for best-in-class lightweight design and functional performance Dr. Jochen Asbeck, Dr. J. Stimpfl, Mubea Fahrwerksfedern GmbH

163

Stimulus address | Weight-bearing elements – from chassis to unit bodies and back to driving modules Eric Eckermann, AutoHistorica

173

Index

IX

PARALLEL STRAND II

VIRTUAL DEVELOPMENT METHODS

Explicit model predictive control of semi-active suspension systems using Artificial Neural Networks (ANN) Ronnie Dessort, Dr. C. Chucholowski, TESIS DYNAware GmbH

207

Using virtual prototypes for a cross-domain increase in efficiency in the development process Martin Elbs, A. Frings, IPG Automotive GmbH

229

Optimizing passive vehicle dynamics for active safety and autonomous driving Tim Wright, M. Fainello, Danisi Engineering S.r.l., Italy

243

OBJECTIVE ASSESSMENTS

Objective assessment of the dynamic system behavior of multi-chamber air springs Emre Boyraz, Dr. C. Kandler, M. Gantikow, Dr. Ing. h.c. F. Porsche AG; Prof. Dr. Dr. D. Schramm, Chair of Mechatronics, University of Duisburg-Essen

255

Subjective testing of a torque vectoring approach based on driving characteristics in the driving simulator Minh-Tri Nguyen, A. Fridrich, A. Janeba, Dr. W. Krantz, Prof. Dr. J. Wiedemann, Institute of Internal Combustion Engines and Automotive Engineering (IVK), University of Stuttgart; J. Neubeck, Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS)

271

Objectification of steering feel and application in the context of virtual steering feel tuning Dr. Stefan Grüner, T. Werner, B. Käpernick, Robert Bosch Automotive Steering GmbH

289

Model-based safety validation of the automated driving function highway pilot Halil Beglerovic, A. Ravi, N. Wikström, Dr. H.-M. Koegeler, Dr. A. Leitner, Dr. J. Holzinger, AVL List GmbH, Austria

309

Index

X

CHASSIS.TECH SECTION

DEVELOPMENT METHODS

The basis for a process chain for functional component data Michael Baumann, Dr. Christoph Böhm, Daimler AG

335

On the design of actuators and control systems in early development stages Amir Zare, L. Rath-Maia, Dr. M. Zimmermann, BMW Group; Prof. Dr. K. Michels, Institute of Automation (IAT), University of Bremen

337

Process design for a companywide geometrical integration of manufacturing issues in the early development phases based on the example of automotive suspension Bastian Leistner, Prof. Dr. R. Mayer, Faculty of Mechanical Engineering, Chemnitz University of Technology; D. Berkan, BMW Group

353

DRIVING COMFORT

Experimental comparison of the analysis methods for vibration transmission in the chassis Christian Schubert, S. Pries, M. Jaensch, Dr. K. Çalışkan, Prof. Dr. F. Küçükay, Institute of Automotive Engineering (IfF), TU Braunschweig

373

Effect of friction reduction of magneto-rheological semi-active damper on ride comfort and vehicle dynamics Kentaro Komori, G. Fujimoto, T. Tsukamoto, D. Endo, Honda R&D Co., Ltd., Japan

389

Development of an integrated chassis design analysis tool using Excel graphical user interface Dr. Young Deuk Kim, H. K. Jung, M. W. Kang, H. S. Cho, Hyundai Motor Company, South Korea; Prof. S. S. Kim, Kookmin University, Graduate School of Automotive Engineering, South Korea

411

Index

XI

CHASSIS CONTROL SYSTEMS

SKYACTIV TECHNOLOGY to enhance ‘Jinba-Ittai’ Tohru Yoshioka, O. Sunahara, Y. Takahara, D. Umetsu, H. Matsuoka, T. Yamamoto, N. Kaneshina, R. Shimizu, Mazda Motor Corporation, Japan; J. Takahashi, Hitachi, Ltd., Japan; Prof. M. Yamakado, Kanagawa Institute of Technology (KAIT), Japan

429

New torque vectoring functions for modular electrical propulsion Rob Kraaijeveld, M. Dorn, K. Wolff, FEV Europe GmbH

447

Controller concept for automated lateral control Felix Tigges, F. Krauns, A. Hafner, Dr. R. Henze, Prof. Dr. F. Küçükay, Institute of Automotive Engineering (IfF), TU Braunschweig

465

Index

XII

STEERING.TECH SECTION

STEERING SYSTEMS AND FUNCTIONS

Dynamic All-wheel Steering (DAS) Dr. Anton Obermüller, Dr. K. Diepold, Dr. C. Schimmel, I. Scharfenbaum, Dr. J. Schuller, Dr. R. Schwarz, AUDI AG

487

Development of Electric Power Assisted Steering (EPAS) for global emerging markets such as India Anand Mule, S. Matsagar, J. K. Sinha, Tata Technologies Limited, India; S. Salunkhe, Tata Motors Limited, India

499

The choice of hand positions on the steering wheel Christian Strümpler, TAKATA AG

501

VIRTUAL DEVELOPMENT METHODS

Systematic model-based vibration analysis of a controlled electric power steering system Prof. Dr. Gerd Wittler, Faculty of Mechatronics and Electrical Engineering, University of Applied Sciences Esslingen; M. Haßenberg, Prof. Dr. H. Henrichfreise, Cologne Laboratory of Mechatronics (CLM), Cologne University of Applied Sciences; H. Briese, T. Schubert, DMecS Development of Mechatronic Systems GmbH & Co. KG

505

Virtual verification of automotive steering systems Dr. Matthijs Klomp, M. Ljungberg, R. Salif, Volvo Car Group, Sweden; M. Attinger, H. Bleicher, S. Hoesli, T. Kratzer, Robert Bosch Automotive Steering GmbH

519

for Parameter Identification and Steering System Optimization Dr. Jinhuai Lin, T. Kloos, Prof. Dr. P. Pfeffer, MdynamiX AG

535 Steering System Models – An Efficient Approach

Index

XIII

STEERING FEEL

The new Hyundai i30’s steering feel – integrated performance development by HiL tests and DoE Alessandro Contini, T. Schöning, Hyundai Motor Europe Technical Center GmbH

555

Model-based online optimization of EPS controller using HiL test benches Christian Wagner, M. Flormann, T. Meister, Dr. R. Henze, Prof. Dr. F. Küçükay, Institute of Automotive Engineering (IfF), TU Braunschweig

567

Evaluation of the robustness of an EPS control system in an early stage of the product development life cycle Paul Milbaier, Dr. S. Grüner, M. Heger, A. Gaedke, Robert Bosch Automotive Steering GmbH

581

Index

XIV

BRAKE.TECH SECTION

HIGH-PERFORMANCE BRAKES AND TEST METHODS

Regenerative braking during high-performance driving in super sports vehicles Jorge Alberto Jáuregui, Bosch Engineering GmbH

597

Simplified thermo-elastic modeling of high-performance brakes Prof. Dr. Giampiero Mastinu, Prof. M. Gobbi, Department of Mechanical Engineering, Politecnico di Milano, Italy; C. Cantoni, R. Passoni, Brembo S.p.A., Italy

611

Future braking tests for the Periodical Technical Inspection (PTI) – Is the braking effect test still up-to-date? Rafael Frankenstein, Central Agency for PTI / FSD Fahrzeugsystemdaten GmbH

613

BRAKE WEAR PARTICLE EMISSIONS AND MATERIALS

Development of a commonized methodology for measuring brake wear particles – current status within the PMP IWG Theodoros Grigoratos, G. Martini, Joint Research Centre (JRC), European Commission (EC), Italy

627

Investigation possibilities of brake particle emissions on a brake dynamometer Dr. Sebastian Gramstat, R. Waninger, AUDI AG; Dr. D. Lugovyy, M. Schröder, Horiba Europe GmbH

629

Thermal spray ceramic coatings as friction surfaces of brake rotors Septimiu Popa, Prof. Dr. Dr. R. Gadow, Prof. Dr. A. Killinger, Institute for Manufacturing Technologies of Ceramic Components and Composites (IFKB), University of Stuttgart

655

Index

XV

BRAKE SYSTEMS OF THE FUTURE

A new wheel-brake concept in the context of mobility trends Paul Linhoff, Continental Teves AG & Co. oHG

659

Downsizing potential of wheel brakes in electric vehicles Daniel Wagner, Prof. Dr. M. Lienkamp, Institute of Automotive Technology (FTM), TU Munich; Dr. J. Hoffmann, Continental Teves AG & Co. oHG

661

Integrated Power Brake (IPB) – modular set extension for highly automated driving Urs Bauer, M. Brand, Dr. T. Maucher, Robert Bosch GmbH

693

Index

XVI

TIRE.WHEEL.TECH SECTION

DEVELOPMENTAL AIMS AND OBJECTIFICATION

Passenger car vs. truck tires – different development priorities Stephan Brückner, Hankook Tire Europe GmbH

715

Prediction of driver’s handling assessment using a general regression neural network Dr. Saskia Monsma, HAN University of Applied Sciences, The Netherlands

717

Application of objective vehicle dynamics methods in the tire development process Christian Cramer, Prof. Dr. B. Wies, Continental Reifen Deutschland GmbH

735

TIRE TESTING AND SIMULATION

Advanced method for virtual tire and braking distance simulation Carlo Lugaro, S. Huisman, TASS International, The Netherlands; J. Schüling, TASS International GmbH; Dr. F. Niedermeier, B. Wassertheurer, BMW Group

757

Decoupling the physical effects of transient tire behavior based on optical measurements of carcass deformation Pavel Sarkisov, Prof. Dr. G. Prokop, J. Kubenz, Institute for Automotive Engineering Dresden (IAD), TU Dresden; Dr. S. Popov, B. Moscow, Chair of Wheeled Vehicles, Bauman Moscow State Technical University, Russia

779

Influence of testing surface on tire lateral force characteristics Christian Ludwig, Hyundai Motor Europe Technical Center GmbH; C. S. Kim, Hyundai Motor Company, South Korea

795

Index

XVII

WHEEL TECHNOLOGIES AND TRENDS

Possible contributions of the wheel regarding CO2 emissions or how to increase the range of electrically powered vehicles Dr. Detlef Kube, H. J. Klamann, M. Timm, UNIWHEELS Automotive (Germany) GmbH

811

Influence of rotating wheels on the vehicle dynamics of passenger cars Maximilian Georg Reisner, Prof. Dr. G. Prokop, Institute for Automotive Engineering Dresden (IAD), TU Dresden; R. Clauß, AUDI AG

813

Carbon wheels conquer the market – benefit, state-of-the-art, foresight Dr. Jens Werner, ThyssenKrupp Carbon Components GmbH

835

E1Correction to: Steering System Models –

Steering System Optimization An Efficient Approach for Parameter Identification and

XIX

SPEAKERS

Dr. Jochen Asbeck Mubea Fahrwerksfedern GmbH

Urs Bauer Robert Bosch GmbH

Michael Baumann Daimler AG

Halil Beglerovic AVL List GmbH, Austria

Dr. Wolfgang Bernhart Roland Berger GmbH

Dr. Christoph Böhm Daimler AG

Emre Boyraz Dr. Ing. h.c. F. Porsche AG

Stephan Brückner Hankook Tire Europe GmbH

Alessandro Contini Hyundai Motor Europe Technical Center GmbH

Christian Cramer Continental Reifen Deutschland GmbH

Ronnie Dessort TESIS DYNAware GmbH

Eric Eckermann AutoHistorica

Martin Elbs IPG Automotive GmbH

Rafael Frankenstein Central Agency for PTI / FSD Fahrzeugsystemdaten GmbH

Prof. Dr. Stefan Gies Volkswagen AG

Alberto Girelli Consolaro Ford Research and Innovation Center Aachen

Adam Goellner Honda R&D Americas, Inc., USA

Dr. Sebastian Gramstat AUDI AG

Theodoros Grigoratos Joint Research Centre (JRC), European Commission (EC), Italy

Dr. Stefan Grüner Robert Bosch Automotive Steering GmbH

Knut Heidsieck ZF Friedrichshafen AG

Dr. Veit Held Adam Opel GmbH

Axel Honisch Hyundai Motor Europe Technical Center GmbH

Carsten Jablonowski AUDI AG

Jorge Alberto Jáuregui Bosch Engineering GmbH

Speakers

XX

Joshua C. Johnson Honda R&D Americas, Inc., USA

Dr. Young Deuk Kim Hyundai Motor Company, South Korea

Dr. Matthijs Klomp Volvo Car Group, Sweden

Kentaro Komori Honda R&D Co., Ltd., Japan

Rob Kraaijeveld FEV Europe GmbH

Dr. Detlef Kube UNIWHEELS Automotive (Germany) GmbH

Dr. Armin Kunz Robert Bosch GmbH

Dr. Sebastian Labitzke ITK Engineering GmbH

Bastian Leistner Faculty of Mechanical Engineering, Chemnitz University of Technology

Dr. Jinhuai Lin MdynamiX AG

Paul Linhoff Continental Teves AG & Co. oHG

Christof Lischka BMW Group

Christian Ludwig Hyundai Motor Europe Technical Center GmbH

Carlo Lugaro TASS International, The Netherlands

Prof. Dr. Giampiero Mastinu Department of Mechanical Engineering, Politecnico di Milano, Italy

Paul Milbaier Robert Bosch Automotive Steering GmbH

Dr. Saskia Monsma HAN University of Applied Sciences, The Netherlands

Anand Mule Tata Technologies Limited, India

Minh-Tri Nguyen Institute of Internal Combustion Engines and Automotive Engineering (IVK), University of Stuttgart

Dr. Anton Obermüller AUDI AG

Septimiu Popa Institute for Manufacturing Technologies of Ceramic Components and Composites (IFKB), University of Stuttgart

Maximilian Georg Reisner Institute for Automotive Engineering Dresden (IAD), TU Dresden

Speakers

XXI

Pavel Sarkisov Institute for Automotive Engineering Dresden (IAD), TU Dresden

Christian Schubert Institute of Automotive Engineering (IfF), TU Braunschweig

Christian Strümpler TAKATA AG

Felix Tigges Institute of Automotive Engineering (IfF), TU Braunschweig

Christian Wagner Institute of Automotive Engineering (IfF), TU Braunschweig

Daniel Wagner Institute of Automotive Technology (FTM), TU Munich

Dr. Jens Werner ThyssenKrupp Carbon Components GmbH

Prof. Dr. Burkhard Wies Continental Reifen Deutschland GmbH

Prof. Dr. Gerd Wittler Faculty of Mechatronics and Electrical Engineering, University of Applied Sciences Esslingen

Tim Wright Danisi Engineering S.r.l., Italy

Tohru Yoshioka Mazda Motor Corporation, Japan

Amir Zare BMW Group

CHASSIS.TECH PLUS SECTION

2

KEYNOTE LECTURES I

5

The chassis as game changer for automated and electrified driving

Prof. Dr. Stefan Gies, Dr. L. Liesner, Volkswagen AG

This manuscript is not available according to publishing restriction. Thank you for your understanding.

© Springer Fachmedien Wiesbaden GmbH 2017 P.E. Pfeffer (Ed.), 8th International Munich Chassis Symposium 2017, Proceedings, DOI 10.1007/978-3-658-18459-9_1

7

The chassis of the all-new AUDI A8

Carsten Jablonowski, Dr. C. Schimmel, V. Underberg, AUDI AG

© Springer Fachmedien Wiesbaden GmbH 2017 P.E. Pfeffer (Ed.), 8th International Munich Chassis Symposium 2017, Proceedings, DOI 10.1007/978-3-658-18459-9_2

8

The chassis of the all-new AUDI A8

chassis.tech plus 20.06.2017

C. Jablonowski, Dr. C. Schimmel, V. Underberg

The chassis of the all new Audi A8

2

Main Focus of Chassis Development

Central Chassis Control

The chassis of the all new AUDI A8Contents

The chassis of the all new Audi A8, Jablonowski, Dr. Schimmel, Underberg, AUDI AG

Technical Target Values of Chassis Characteristics► Ride Comfort► Driving Dynamics

Introduction► Target Positioning► Model Range, Technical Specification

Chassis Characteristics of the 5th Generation AUDI A8

Axle Concepts

Damper Technology Dynamic All Wheel Steering DAS

Electrical Active Body Control eABC

Integration of Active Chassis Control Systems

9

The chassis of the all-new AUDI A8

3

The all new Audi A8 is designed to be…

› the spearhead of the product portfolio, strongly shaping the brand‘s image

› A synonym for prestige in the C/D-Segment

IntroductionTarget Positioning

The chassis of the all new Audi A8, Jablonowski, Dr. Schimmel, Underberg, AUDI AG

Driving Experience:

› „light und dynamic appearance in chassis characteristics“

› „symbiosis of comfort und athleticism“

Audi A8 – Chassis Characteristics_____ A8 (Gen. 4) _____ A8 (Gen. 5)

Eigenschaft 10

Eigenschaft 9

Eigenschaft 8

Eigenschaft 7

Eigenschaft 6

Eigenschaft 5

Eigenschaft 4

Eigenschaft 3

Eigenschaft 2

4

Model Range, Vehicle Date (Launch)

› quattro all wheel drive with self locking differential

› Air suspension with damper control as standard

› Different chassis characteristics for the short and long wheel base

› Two Engines: 6 Cyl. TDI (210kW), 6 Cyl. TFSI (250kW),more variants to come

› All variants come as a 48V Mild Hybrid

IntroductionModel Range, Technical Specification

The chassis of the all new Audi A8, Jablonowski, Dr. Schimmel, Underberg, AUDI AG

10

The chassis of the all-new AUDI A8

5

Main Focus of Chassis Development

Central Chassis Control

The chassis of the all new AUDI A8Contents

The chassis of the all new Audi A8, Jablonowski, Dr. Schimmel, Underberg, AUDI AG

Technical Target Values of Chassis Characteristics► Ride Comfort► Driving Dynamics

Introduction► Target Positioning► Model Range, Technical Specification

Chassis Characteristics of the 5th Generation AUDI A8

Axle Concepts

Damper Technology Dynamic All Wheel Steering DAS

Electrical Active Body Control eABC

Integration of Active Chassis Control Systems

6

Technical Target Values for Chassis CharacteristicsRide Comfort/ Driving Dynamics

The chassis of the all new Audi A8, Jablonowski, Dr. Schimmel, Underberg, AUDI AG

The Audi A8 is designed to offer „Best-in-Class“ ride comfort. That means:

› Highest comfort requirements in all markets, particularly to meet the demand in China and the USA

› Simultaneously, the extensive use of active chassis systems ensures drivingdynamics at the same level as the key competitors

11

The chassis of the all-new AUDI A8

7

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

Wettbewerber

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

10 12 14 16 18 20

15 16 17 18 19 20

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

0 20 40 60 80 100 120 140

0.5 1 1.5 2 2.5 3 3.5 4 4.5

180 200 220 240 260 280 300 320

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

20 40 60 80 100 120 140 160

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

120 140 160 180 200 220 240 260

Technical Target Values for Chassis CharacteristicsRide Comfort

The chassis of the all new Audi A8, Jablonowski, Dr. Schimmel, Underberg, AUDI AG

Eng

ine

Sh

ake

Imp

act

Fron

t A

xle

Imp

act

Rea

rA

xle

Dam

pin

g&

Iso

lati

on

S E C O N D A R Y R I D E

P R I M A R Y R I D E

Mikro Engine Shake

Makro Engine Shake

Impact VA x

Impact VA z

Fading Time VA x

Fading Time VA z

Impact HA x

Impact HA z

Fading Time HA x

Fading Time HA z

Pitch Damping

Heave Damping (Body Control)

Isolation

Roll Damping

m/s²

m/s²

°/s²

°/s²

m/s²

m/s²

m/s²

ms

m/s²

ms

m/s²

ms

m/s²

ms

Key Competitor, comfort mode

Target A8 LWB

8

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

Wettbewerber

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

10 12 14 16 18 20

15 16 17 18 19 20

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

0 20 40 60 80 100 120 140

0.5 1 1.5 2 2.5 3 3.5 4 4.5

180 200 220 240 260 280 300 320

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

20 40 60 80 100 120 140 160

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

120 140 160 180 200 220 240 260

Technical Target Values for Chassis CharacteristicsRide Comfort

The chassis of the all new Audi A8, Jablonowski, Dr. Schimmel, Underberg, AUDI AG

Stu

cker

nIm

pu

ls V

ord

erac

hse

Imp

uls

Hin

tera

chse

Dam

pin

g&

Iso

lati

on

S E C O N D A R Y R I D E

P R I M A R Y R I D E

Mikrostuckern

Makrostuckern

Schlaghärte VA x

Schlaghärte VA z

Abklingzeit VA x

Abklingzeit VA z

Schlaghärte HA x

Schlaghärte HA z

Abklingzeit HA x

Abklingzeit HA z

Pitch Damping

Heave Damping (Body Control)

Isolation

Roll Damping

m/s²

m/s²

°/s²

°/s²

m/s²

m/s²

m/s²

ms

m/s²

ms

m/s²

ms

m/s²

ms

Key Competitor, comfort mode

Target A8 LWB

Body Movement› Verticale body control to 3 Hz and Isolation

between 3-8 Hzare essential for the overall impression of theride comfort

› Additional target value for the improvementof the body control with active chassis

0.25 0.3 0.35 0.4

0.05 0.1 0.15 0.2

10 12 14

15 16 17

Aktives Fahrwerk

12

The chassis of the all-new AUDI A8

9

2 2.5 3 3.5 4 4.5 5 5.5 6

-120 -100 -80 -60 -40 -20 0

-120 -100 -80 -60 -40 -20 0

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

-8 -7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4

1 1.2 1.4 1.6 1.8 2

0 10 20 30 40 50

0 20 40 60 80 100

Technical Target Values for Chassis CharacteristicsDriving Dynamics

The chassis of the all new Audi A8, Jablonowski, Dr. Schimmel, Underberg, AUDI AG

Target of active chassis systems is an increase in agility and simultaneously a considerable gain of driving stability

60 65 70 75 80 85 90 95 100

70 80 90 100 110 120 130 140 150

Technical Values Driving Dynamics

Sta

tion

ary

Ste

erin

g Steering Whee Angle Gradient (linear)

Steering Whee Angle Gradient (stability Limit)

Slip Angle Gradient (linear)

Slip Angle Gradient (stability Limit)

Yaw Eigenfrequency

Yaw Progression (100 km/h)

Yaw Progression (150 km/h)

Timediff. Yaw Rate tp Steering Wheel Ang. 1

Timediff. Lateral acceleration to yaw rate 1

Roll Angle Gradient

Rol

l

1: Ermittelt bei 1,5Hz Lenkfrequenz (entspricht Spurwechsel-Test bei 100km/h)

°/g

°/g

°/g

°/g

Hz

%

%

ms

ms

°/g

DIRECT

SLOW

SLOWER

INDIREcT

AGILE

FASTER

Dyn

amic

Ste

erin

g

= Target Air Suspension

= Target Active Chassis, Steering

UNSTABLE STABLE

10

Main Focus of Chassis Development

Central Chassis Control

The chassis of the all new AUDI A8Contents

The chassis of the all new Audi A8, Jablonowski, Dr. Schimmel, Underberg, AUDI AG

Technical Target Values of Chassis Characteristics► Ride Comfort► Driving Dynamics

Introduction► Target Positioning► Model Range, Technical Specification

Chassis Characteristics of the 5th Generation AUDI A8

Axle Concepts

Damper Technology Dynamic All Wheel Steering DAS

Electrical Active Body Control eABC

Integration of Active Chassis Control Systems