8 reflectivity

Upload: sriramgullapalli

Post on 04-Apr-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 8 Reflectivity

    1/25

    GEOL882.3GEOL483.3

    Reflection

    coefficientsReflection and conversion ofplane waves

    Snell's law

    P/SV wave conversion

    Scattering matrix

    Zoeppritz equations

    Amplitude vs. Angle and Offsetrelations

    Reading: Telford et al., Section 4.2. Shearer, 6.3, 6.5

    Sheriff and Geldart, Chapter 3

  • 7/30/2019 8 Reflectivity

    2/25

    GEOL882.3GEOL483.3

    Surface reflection

    transmission, and

    conversion

    Consider waves incident on a weldedhorizontal interface of two uniform half-

    spaces:Because of their vertical motion, PandSVwaves couple to each other on theinterface,

    therefore, there are 8 possible wavesinteracting with each other at the

    boundary.

    1, VP1, VS1

    2, V

    P2, V

    S2

    ...what about SHwaves?

  • 7/30/2019 8 Reflectivity

    3/25

    GEOL882.3GEOL483.3

    Free-surface reflection

    and conversion

    Consider a Pwave incident on a free surface:

    IncidentP ReflectedP

    Reflected S

    Boundary condition: xz

    = yz

    = zz

    = 0 on z=0 x

    z

    Each of the P- or S-waves is described bypotentials:

    u=

    uPx , z=

    x,0,

    z,

    uSx , z=

    z, 0,

    x,

    P-

    waves

    SV-wave

    =inc

    refl

    =refl

    inc refl

    refl

  • 7/30/2019 8 Reflectivity

    4/25

    GEOL882.3GEOL483.3

    Free-surface reflection

    and conversion (2)

    Traction (force acting on the surface):

    FPx , z=

    2

    2

    x z, 0, 2

    2

    2

    z2

    , P-wave

    SV-wave

    inc=APinc

    exp[ ix ninc PVP t]

    FSx , z= 2

    x2

    2

    z2

    , 0, 22

    2

    x z, Considerplane harmonicwaves:

    refl=ASrefl

    exp[i x nrefl SVS t]

    refl=APrefl

    exp

    [i

    x nrefl PV

    P

    t

    ]

    incidentP

    reflectedP

    reflected SV

    Q: What are the dependencies of

    and above on coordinatex?

  • 7/30/2019 8 Reflectivity

    5/25

    GEOL882.3GEOL483.3

    Free-surface reflection

    and conversion (3)

    The boundary condition is: Force(x,t)=0

    Note that functional dependencies of

    and on (x,t) are:

    exp[i sin iVP xt],exp

    [i

    sin i*

    VP

    xt

    ],

    exp[i sin jVS xt],

    IncidentP ReflectedP

    Reflected S

    Boundary condition: xz

    = yz

    = zz

    = 0 on z=0 x

    z

    These must satisfyfor anyx,consequently, the

    Snell's law:

    sin i

    VP=sin i

    *

    VP= sin j

    VS=p

  • 7/30/2019 8 Reflectivity

    6/25

    GEOL882.3GEOL483.3

    Free-surface reflection

    and conversion (4)

    Displacement in plane waves is thus:

    uPx , z=i p , 0,i

    cos j

    VP , P-waves

    SV-wave

    ...and traction:

    uSx , z=icos j

    VP, 0, i p ,

    FPx ,z =2 VS2p,0,12V2p2i2 VS,

    FSx ,z =12V2p

    2i

    2VS,0,2VS

    2p,0.

  • 7/30/2019 8 Reflectivity

    7/25

    GEOL882.3GEOL483.3

    Free-surface reflection

    and conversion (5)

    Traction vector at the surface must vanish

    Fx

    =Fz

    =0

    Therefore, we have two equations toconstrain the amplitudes of the tworeflected waves;

    Their solution:

    APrefl

    APinc

    =

    4V S4

    p2 cos i

    VP

    cos jVS

    12VS2

    p22

    4VS4

    pcos i

    VP

    cos j

    VS12VS

    2p

    22,

    ASrefl

    APinc

    =

    4VS2

    p cos iVP

    12VS2

    p2

    4V S4

    pcos i

    V P

    cos j

    VS12VS

    2p

    22.

  • 7/30/2019 8 Reflectivity

    8/25

    GEOL882.3GEOL483.3

    Free-surface reflection

    and conversion (5)

    Normal

    incidenceGrazing

    incidence

    VP

    = 5 km/s

    VS= 3 km/s

  • 7/30/2019 8 Reflectivity

    9/25

    GEOL882.3GEOL483.3

    Completereflection/transmission

    problem

    There are 16 possiblereflection/transmission coefficients on awelded contact of two half-spaces

  • 7/30/2019 8 Reflectivity

    10/25

    GEOL882.3GEOL483.3

    Scattering matrix

    All 16 possible reflection coefficients can besummarized in the scattering matrix:

    S=P P S P P P S P

    PS S S P S S S

    P P S P P P S P

    PS

    SS

    PS

    SS

    1, V

    P1, V

    S1

    2, V

    P2, V

    S2

    Incident Scattered

    P1S1P2

    S2=S

    P1S1P2

    S2.

  • 7/30/2019 8 Reflectivity

    11/25

    GEOL882.3GEOL483.3

    All reflection and refraction

    amplitudes at an interface(Derivation of the Scattering Matrix)

    The scattering matrix can be used to easilyderive all possible reflection and refraction

    amplitudes at once:consider matrix N that is givingdisplacement and traction at the interfacefor the incident field, and a similar matrixM for the scattered field:

    This is a general (matrix) form ofZoeppritz' equations (relating theincident, reflected, and converted waveamplitudes).

    Their general solution:

    uxuyxzzz

    =MP1S1P2S2=N

    P1S1P2S2.

    S=M1N

  • 7/30/2019 8 Reflectivity

    12/25

    GEOL882.3GEOL483.3

    M and N

    The matrices M and N consist of thecoefficients of plane-wave amplitudes and

    tractions for P- and SV-waves:

    M=VP1 p cos j1 VP2 p cos j2

    cosi1 VS1 p cos i2 VS2 p

    2 1VS12

    p cosi1 1VS112 VS12

    p2 2 2 VS2

    2p cosi2 2VS212VS2

    2p

    2

    1VP112 VS12

    p2 2 1 VS1

    2p cos j1 2VP212VS2

    2p

    2 2 2 VS1

    2p cos j2

    ,N=

    VP1p cos j1 VP2 p cos j2cosi1 VS1 p cosi2 VS2 p

    2 1 VS12

    p cos i1 1 VS112 VS12

    p2 2 2VS2

    2p cosi 2 2 VS212 VS2

    2p

    2

    1 VP112 VS12

    p2 2 1VS1

    2p cos j 1 2VP212 VS2

    2p

    2 2 2 VS1

    2p cos j 2 ,

    SP P S P P P S P

    PS S S P S S S

    P P S P P P S P

    P S S S P S S S=M 1 N .

    This is matrix form ofKnott' equations (solutions forreflected and refracted amplitudes)

  • 7/30/2019 8 Reflectivity

    13/25

    GEOL882.3GEOL483.3

    Partitioning at

    normal incidence

    At normal incidence, i1=i

    2=j

    1=j

    2=0, andp=0:

    M=0 1 0 11 0 1 0

    0 1VS1 0 2VS21 VP1 0 2VP2 0 , N=

    0 1 0 1

    1 0 1 0

    0 1 VS1 0 2 VS21 VP1 0 2VP2 0 ,

    P S PP PSS S

    The P- and S-waves do not interact at normalincidence, and so we can look, e.g., at P-waves

    only (extract the odd-numbered columns):

    N=0 0

    1 1

    0 0

    1 VP1 2 VP2,M=

    0 0

    1 1

    0 0

    1VP1 2VP2,

    Note that

    these two

    constraints

    are satisfied

    automatically

    Drop the two trivial equations (#1and 3) and obtain:

    P P P PP P P P=M 1 N= 1 1Z1 Z21

    1 1Z1 Z2=1

    Z1Z2 Z2Z1 2Z2

    2Z1 Z1Z2.

    Impedance,

    V=Z

    Reflection and transmission coefficients

  • 7/30/2019 8 Reflectivity

    14/25

    GEOL882.3GEOL483.3

    Reflection andTransmission at

    normal incidence

    Thus, at normal incidence (in practice, for anglesup to ~15)

    Reflection coefficient:

    Transmission coefficient:

    Energy Reflection coefficient:

    Energy Transmission coefficient:

    Note that the energy coefficients do not dependon the direction of wave propagation, but Rchanges its sign.

    R < 0 leads tophase reversal in reflectionrecords.

    R=Z2Z1Z1Z2

    Z2Z

    1

    2lnZ

    1

    2

    VPVP

    T=2Z1

    Z1Z

    2

    ER=R2

    ET=1ER=2Z

    1Z

    2

    Z1Z2.

  • 7/30/2019 8 Reflectivity

    15/25

    GEOL882.3GEOL483.3

    Typical impedance contrasts

    and reflectivities

  • 7/30/2019 8 Reflectivity

    16/25

    GEOL882.3GEOL483.3

    Oblique incidenceAmplitude versus Angle

    (AVA)variation

    At oblique incidence, we have to use the full M-1N expression for S

    Amplitudes andpolarities of the reflections varywith incidence angles.

    Fast to slow:

    VP2

    /VP1

    = 0.5,2/

    1= 0.8;

    2= 0.25

    Fast to slow:

    VP2

    /VP1

    = 0.5,2/

    1= 0.8;

    2= 0.25

    Slow to Fast:

    VP2

    /VP1

    = 2.0,2/

    1= 0.5;

    2= 0.3

    Slow to Fast:

    VP2

    /VP1

    = 2.0,2/

    1= 0.5;

    2= 0.3

    Fraction ofP-wave reflection

    energy,for various V

    P2/V

    P1

    2/

    1= 1.0;

    1=

    2= 0.25

    Fraction ofP-wave reflection

    energy,for various V

    P2/V

    P1

    2/

    1= 1.0;

    1=

    2= 0.25

    Fraction ofP-wave reflection energy,

    for various2/1V

    P2/V

    P1= 1.5;

    1=

    2= 0.25

    Fraction ofP-wave reflection energy,

    for various2/1

    VP2

    /VP1

    = 1.5; 1

    =2

    = 0.25

  • 7/30/2019 8 Reflectivity

    17/25

    GEOL882.3GEOL483.3

    Oblique incidence

    Small-contrast AVA approximation

    VP, V

    S,

    , and therefore, ray angle variations

    are considered small

    Shuey's (1985) formula gives the variation of Rfrom the case on normal incidence in terms ofV

    P

    and (Poisson's ratio):

    where:

    R

    R0

    1Psin2 Q tan 2sin 2

    R01

    2 VPVP

    ,P=[Q

    21121 ] R012 ,

    Q=

    VPVP

    VPVP

    =1

    1/

    VP/VP

    .

    Important at >~30

    Important at typical

    reflection angles

  • 7/30/2019 8 Reflectivity

    18/25

    GEOL882.3GEOL483.3

    Amplitude Variation

    with Offset (AVO)

    AVO is a group of interpretationtechniques designed to detect reflection

    AVA effects:Records processed with true amplitudes(preserving proportionality to the actualrecorded amplitudes);

    Source-receiver offsets converted to the

    incidence angles;

    From pre-stack (variable-offset) datagathers, parameters R(0), Pand Q areestimated:

    Thus, additional attributes are extractedto distinguish between materials withvarying .

    RR0[1Psin

    2

    Q tan

    2

    sin

    2

    ].

  • 7/30/2019 8 Reflectivity

    19/25

    GEOL882.3GEOL483.3

    Three practical AVA cases

    Three typical AVA behaviours:

    1)Amplitude decreases with angle without

    crossing 0;2)Amplitude increases;

    3)Amplitude decreases and crosses 0(reflection polarity changes)

    2

    = 1

    =0.3 (solid)

    =0.2 (dashed)

    2

    = 1

    =0.3 (solid)

    =0.2 (dashed)

    1)

    2)1)

    2)3)

    3)

    2

    < 1

    : 0.4 to 0.1 (solid)

    : 0.3 to 0.1 (dashed)

    2

    < 1

    : 0.4 to 0.1 (solid)

    : 0.3 to 0.1 (dashed)

    2

    > 1

    : 0.1 to 0.4 (solid)

    : 0.1 to 0.2 (dashed)

    2

    > 1

    : 0.1 to 0.4 (solid)

    : 0.1 to 0.2 (dashed)

    From Ostrander, 1984

    Normal caseNormal case AVO (AVA) anomalies AVO (AVA) anomalies

    (Above: VP2

    /VP1

    = 2/

    1=1.25; 1.11; 1.0; 0.9, and 0.8)

  • 7/30/2019 8 Reflectivity

    20/25

    GEOL882.3GEOL483.3

    AVA (AVO) anomalies

    2)

    2)

    3)

    3)

    From Ostrander, 1984

    Gas/water contact Base of gas sand embedded in shale

    Top of gas sand embedded in shale Base of

    high-impedance reservoir

    Top of

    high-impedance reservoir

  • 7/30/2019 8 Reflectivity

    21/25

    GEOL882.3GEOL483.3

    Amplitude Variation withOffset (AVO)Gas sand vs. wet sand

    Gas-filled pores tend to reduce VP

    more than VS, and as

    a result, the Poisson's ratio () is reduced.

    Negative VPandthus cause negative-polarity bright

    reflection (bright spot) andan AVO effect (increase inreflection amplitude with offset) that are regarded ashydrocarbon indicators.

    However, not every AVO anomaly is related to acommercial reservoir...

    Fr

    om

    Yu

    ,1

    985

  • 7/30/2019 8 Reflectivity

    22/25

    GEOL882.3GEOL483.3

    AVO cross-plotting

    From Young et al, 200

  • 7/30/2019 8 Reflectivity

    23/25

    GEOL882.3GEOL483.3

    Cross-plotting

    From Young et al, 200

  • 7/30/2019 8 Reflectivity

    24/25

    GEOL882.3GEOL483.3

    Rock-physics

    Indicators

    Rock-physics parameters can bederived from the shapes of AVO(AVA) responses:

    (fluid incompressibility) isconsidered the most sensitive fluidindicator

    (rigidity) is insensitive to fluid butsensitive to the matrix.

    increases with increasing quartz

    content (e.g., in sand vs. clay). is sensitive to gas content.

  • 7/30/2019 8 Reflectivity

    25/25

    GEOL882.3GEOL483.3

    Colours correspondto identified (lr,mr) zone

    -- cross-plotting

    Colours correspondto identified (,) zon