3phase.pdf main

Upload: unknown

Post on 07-Aug-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 3phase.pdf Main

    1/20

    1ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Three Phase Circuits

    2ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Three Phase Circuits

    Chapter Objectives: Be familiar with different three-phase configurations and how

    to analyze them.

    Know the difference between balanced and unbalanced circuits

    Learn about power in a balanced three-phase system

    Know how to analyze unbalanced three-phase systems

    Be able to use PSpice to analyze three-phase circuits

    Apply what is learnt to three-phase measurement andresidential wiring

  • 8/20/2019 3phase.pdf Main

    2/20

    3ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Three phase Circuits An AC generator designed to develop a single sinusoidal voltage for each rotation

    of the shaft (rotor) is referred to as a single-phase AC generator.

    If the number of coils on the rotor is increased in a specified manner, the result is a

    Polyphase AC generator, which develops more than one AC phase voltage per

    rotation of the rotor

    In general, three-phase systems are preferred over single-phase systems for the

    transmission of power for many reasons.

    1. Thinner conductors can be used to transmit the same kVA at the same voltage, which

    reduces the amount of copper required (typically about 25% less).

    2. The lighter lines are easier to install, and the supporting structures can be less

    massive and farther apart.

    3. Three-phase equipment and motors have preferred running and startingcharacteristics compared to single-phase systems because of a more even flow of power

    to the transducer than can be delivered with a single-phase supply.

    4. In general, most larger motors are three phase because they are essentially self-

    starting and do not require a special design or additional starting circuitry.

    4ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    a) Single phase systems two-wire type b) Single phase systems three-wire type.Allows connection to both 120 V and

    240 V.

    Two-phase three-wire system. The AC sources

    operate at different phases.

    Single Phase, Three phase Circuits

  • 8/20/2019 3phase.pdf Main

    3/20

    5ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Three-phase Generator The three-phase generator has three induction coils placed 120° apart on the stator.

    The three coils have an equal number of turns, the voltage induced across each coil

    will have the same peak value, shape and frequency.

    6ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Balanced Three-phase Voltages

    Three-phase four-wire system

    Neutral Wire

    A Three-phase Generator

    Voltages having 120° phase difference

  • 8/20/2019 3phase.pdf Main

    4/20

    7ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Balanced Three phase Voltages

    a) Wye Connected Source b) Delta Connected Source

    a) abc or positive sequence b) acb or negative sequence

    0

    120

    240

    an p

    bn p

    cn p

    V V 

    V V 

    V V 

    = ∠ °

    = ∠ − °

    = ∠ − °

    0

    120

    240

    an p

    bn p

    cn p

    V V 

    V V 

    V V 

    = ∠ °

    = ∠ + °

    = ∠ + °

    Neutral Wire

    8ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Balanced Three phase Loads

    a) Wye-connected load b) Delta-connected load

    1 2 3

    Conversion of Delta circuit to Wye or Wye to Delta.Balanced Impedance Conversion:

      Y 

    a b c

     Z Z Z Z 

     Z Z Z Z ∆

    = = =

    = = =

    1Z 3 Z

    3Y Y 

     Z Z ∆ ∆

    = =

    A Balanced load has equal impedances on all the phases

  • 8/20/2019 3phase.pdf Main

    5/20

    9ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Three phase Connections

    Both the three phase source and the three phase load can be

    connected either Wye or DELTA.

    We have 4 possible connection types.

    • Y-Y connection• Y-∆ connection

    • ∆-∆ connection

    • ∆-Y connection

    Balanced ∆ connected load is more common.

    Y connected sources are more common.

    10ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Balanced Wye-wye Connection A balanced Y-Y system, showing the source, line and load impedances.

    Source ImpedanceLine Impedance

    Load Impedance

  • 8/20/2019 3phase.pdf Main

    6/20

    11ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Balanced Wye-wye Connection

    Phase voltages are: V an, V bn and V cn.

    The three conductors connected from a to A, b to B and c to C are called LINES.

    The voltage from one line to another is called a LINE voltage

    Line voltages are: V ab, V bc and V ca

    Magnitude of line voltages is √3 times the magnitude of phase voltages. V L= √3 V p

    Line current I n add up to zero.Neutral current is zero:

     I n= -( I a+  I b+  I c)= 0

    12ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Balanced Wye-wye Connection

    Magnitude of line voltages is √3 times the magnitude of phase voltages. V L= √3 V p

    3

    0 , 120 ,

    30

    3 90

    3 21

    120

    0

    an p bn p cn p

    ab an nb an bn

    bc bn cn

    ca cn an

     p

     p

    an bn   p

    V V V V V V  

    V V V V V  

    V V V 

    V V V 

    V    V V 

    = ∠ ° = ∠ − ° = ∠ + °

    = + = − =

    = − =

    ∠ °

    ∠ − °

    = +   ∠ −= − =   °

    Line current I n add up to zero.Neutral current is zero:

     I n= -( I a+  I b+  I c)= 0

  • 8/20/2019 3phase.pdf Main

    7/20

    13ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Balanced Wye-wye Connection Phasor diagram of phase and line voltages

      = 3 3 3 = 3 L ab bc ca

    an bn cn p

     p an bn cn

    V V V V  

    V V V V  

    V V V V  

    = = =

    = =

    = = =

    14ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Single Phase Equivalent of Balanced Y-Y Connection Balanced three phase circuits can be analyzed on “per phase “ basis..

    We look at one phase, say phase a and analyze the single phase equivalent circuit.

    Because the circuıit is balanced, we can easily obtain other phase values using their

    phase relationships.

    ana

    V  I  Z 

    =

  • 8/20/2019 3phase.pdf Main

    8/20

    15ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    16ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Balanced Wye-delta Connection

     AB AB

     BC  BC 

    CACA

    V  I 

     Z V 

     I  Z 

    V  I 

     Z 

    =

    =

    =

    Line currents are obtained from the phase currents I AB, I BC and I CA

    3 303 30

    3 30

    a AB CA

    b BC AB

    c CA BC  

     AB

     BC 

    CA

     I I I 

     I I I 

     I 

     I 

     I    I  I 

     I 

    = − =

    = − =

    ∠ − °

    ∠ − °

    ∠−   −= =   ° 3

     L a b c

     p AB BC CA

     L p

     I I I I 

     I I I I 

     I I 

    = = =

    = = =

    =

    Three phase sources are usually Wye connected and three phase loads are Delta

    connected.

    There is no neutral connection for the Y- system.

  • 8/20/2019 3phase.pdf Main

    9/20

    17ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Balanced Wye-delta Connection

    3

     Z ∆

    Single phase equivalent circuit of the balanced Wye-delta connection

    Phasor diagram of phase and line currents

    3

     L a b c

     p AB BC CA

     L p

     I I I I 

     I I I I 

     I I 

    = = =

    = = =

    =

    18ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Balanced Delta-delta Connection Both the source and load are Delta connected and balanced.

    , ,a AB CA b BC AB c CA BC  

     I I I I I I I I I = − = − = −

    , , BC CA AB AB BC CAV V V 

     I I I  Z Z Z 

    ∆ ∆ ∆

    = = =

  • 8/20/2019 3phase.pdf Main

    10/20

    19ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Balanced Delta-wye Connection

    30

    3

     pV ∠− °

    Transforming a Delta connected source

    to an equivalent Wye connection Single phase equivalent of Delta Wye connection

    20ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Power in a Balanced System The total instantaneous power in a balanced three phase system is constant.

    2 cos( ) 2 cos( 120 ) 2 cos( 120 )

    2 cos( ) 2 cos( 120 ) 2 cos( 120 )

    2 cos( )cos( ) cos( 120 )cos( 120 ) cos( 120 )co

     AN p BN p CN p

    a p b p b p

    a b c AN a BN b CN c

     p p

    v V t v V t v V t  

    i I t i I t i I t  

     p p p p v i v i v i

     p V I t t t t t 

    ω ω ω 

    ω θ ω θ ω θ    

    ω ω θ ω ω θ ω  

    = = − ° = + °

    = − = − − ° = − + °

    = + + = + +

    = − + − ° − − ° + + °[ ]s( 120 )

    1

    cos cos [cos( ) cos( )] Using the identity and simplif  

    The instantenous power is not function of time.

    The total power behav

    n2

    e

    yi g

      3 cos p p

     A B A B A B

     p V I 

    ω θ  

    θ  

    − + °

    = + + −

    =

    s similar to DC power.

    This result is true whether the load is Y or connected.

    The average power per phase .3

      cos3

       p p p

     p

     p

     pP I 

    P

    V    θ  

    =

    = =

  • 8/20/2019 3phase.pdf Main

    11/20

    21ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Power in a Balanced System

    The complex power per phase is Sp. The total complex power for all phases is S.

    p p

    p p p p p

    2

    p p p p

    Complex power for each phas

    3 cos

    1 1= cos = sin

    3 3S V I

    3 3 cos 3 cos

    3 3 sin 3 sin

    S=3S 3V

    e

    I 3

     p p

     p p p p p p p

    a b c p p p L L

     p p p L L

     p

     p V I 

    P p V I Q p V I S V I  

    P jQ

    P P P P P V I V I  

    Q Q V I V I  

     I Z 

    θ  

    θ θ  

    θ θ  

    θ θ  

    =

    = = =

    = + =

    = + + = = =

    = = =

    = = =

    p L

    2

    p

    p , , and are

    Total

    all rm

    complex powe

    s values, is the load impedance angl

    3

     

    3

    r

    e L

     p

     L L

     Z 

    P jQ

     I 

    V I 

     I 

    V    θ  

    θ  

    = + = ∠S

    22ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Power in a Balanced System

    Notice the values of V p, V L, I p, I L for different load connections.

    2

    p2

    p p p

    p

    p

    p L, , and are all rms values, is the load impe

    To

    da

    3S=3S 3V I 3

    nce

    al c

    an

    3

    omplex ower

    gle

    p

     L

     p

     p

     L L

    V  I Z 

     Z 

    P

    V I 

     I 

     jQ

     I    θ  

    θ  

    ∗= = =

    = + = ∠S

    V L

    V L

    V L

    V p   V p

    V p I p

     I p   I p

    V L

    V p

     I p

    V L

    V L   V p

    V p

     I p

     I p

    Y connected load.   ∆ connected load.

    3 L p L p

    V V I I  = = 3 L p L pV V I I  = =

  • 8/20/2019 3phase.pdf Main

    12/20

    23ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Power in a Balanced System

    24ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Single versus Three phase systems Three phase systems uses lesser amount of wire than single phase systems for thesame line voltage V L and same power delivered.

    a) Single phase system b) Three phase system

    2 2

    '2 '2

    Wire Material for Single phase 2( ) 2 2(2) 1.33

    Wire Material for Three phase 3( ) 3 3

    r l r 

    r l r 

    π  

    π  = = = =

    If same power loss is tolerated in both system, three-phase system use

    only 75% of materials of a single-phase system

  • 8/20/2019 3phase.pdf Main

    13/20

    25ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    26ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    VL=840 V (Rms)

    Capacitors for pf

    Correction

    IL

  • 8/20/2019 3phase.pdf Main

    14/20

    27ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    7365050.68A

    3 3 840

    Without Pf Correction

     L

     L

    S  I 

    V = = =

    28ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Unbalanced Three Phase Systems An unbalanced system is due to unbalanced voltage sources or unbalanced load.

    In a unbalanced system the neutral current is NOT zero.

    Unbalanced three phase Y connected load.

    Line currents DO NOT add up to zero.

     I n= -( I a+ I b+ I c) ≠ 0

  • 8/20/2019 3phase.pdf Main

    15/20

  • 8/20/2019 3phase.pdf Main

    16/20

    31ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Residential Wiring

    Single phase three-wire residential wiring

    32ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Problem 12.10Determine the current in the neutral line.

    UNBALANCED LOAD

    NEUTRAL CURRENT IS NOT

    ZERO

  • 8/20/2019 3phase.pdf Main

    17/20

    33ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Problem 12.12 Solve for the line currents in the Y-∆∆∆∆ circuit. Take Z∆∆∆∆

    =

    60∠∠∠∠45°Ω°Ω°Ω°Ω.

    SINGLE PHASE EQUIVALENT

    CIRCUIT

    34ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Problem 12.22Find the line currents Ia, Ib, and Ic in the three-phase networkbelow. Take Z

    ∆= 12 - j15Ω, Z

    Y = 4 + j6 Ω, and Z

    l= 2 Ω.

    ONE DELTA AND ONE Y

    CONNECTED LOAD IS

    CONNECTED

    TWO Loads are parallel if they are

    converted to same type.

    Delta connected load is converted to

    Y connection.

  • 8/20/2019 3phase.pdf Main

    18/20

    35ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Problem 12.26 For the balanced circuit below, Vab

    = 125∠0° V. Find the line

    currents IaA

    , IbB

    , and IcC 

    .

    BALANCED Y CONNECTED LOAD.

    Source voltage given is line to line, obtain

    the line to neutral voltage.

    36ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Problem 12.47 The following three parallel-connected three-phase loads are fed by a balanced three-phase source.

    Load 1: 250 kVA, 0.8 pf lagging Load 2: 300 kVA, 0.95 pf leading Load 3: 450 kVA, unity pf 

    If the line voltage is 13.8 kV, calculate the line current and the power factor of the source. Assume that the

    line impedance is zero.

  • 8/20/2019 3phase.pdf Main

    19/20

    37ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Problem 12.81 A professional center is supplied by a balanced three-phase source. The center hasfour plants, each a balanced three-phase load as follows:

    Load 1: 150 kVA at 0.8 pf leading Load 2: 100 kW at unity pf 

    Load 3: 200 kVA at 0.6 pf lagging Load 4: 80 kW and 95 kVAR (inductive)

    If the line impedance is 0.02 + j0.05 Ω per phase and the line voltage at the loads is 480 V, find the

    magnitude of the line voltage at the source.

    38ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    Problem 12.84The

    Figure displays a three-phase delta-connected motor load which is connected to

    a line voltage of 440 V and draws 4 kVA at a power factor of 72 percent lagging. In addition, a single 1.8

    kVAR capacitor is connected between lines a and b, while a 800-W lighting load is connected between line c

    and neutral. Assuming the abc sequence and taking Van

    = V p  ∠0°, find the magnitude and phase angle of

    currents I a, I

     b, I

     c, and I

     n.

    Total load is UNBALANCED. LINE

    CURRENTS I a, I

     b, I

     cARE NOT

    ERQUAL

    Single phase, 800 W lighting load connected to phase C

    only. Pf for lighting loads is unity.

    13

     L

     L

    S  I I 

    V = =

  • 8/20/2019 3phase.pdf Main

    20/20

    39ELEC 24409: Circuit Theory 2 Dr. Kalyana Veluvolu

    440 V

    1 5.249 ( 30 )3  L

    S  I 

    V θ  = = ∠ + °