2015-eb-math model rvp increase_austin-bb2

1
Aim: To inves)gate how changes in renal arterial pressure and venous pressure separately and in combina)on affect renal hemodynamic and reabsorp)ve func)on, in simulated states of normal, elevated and strongly elevated levels of Angiotensin II (Ang II). Background: Heart failure (HF) is associated with impaired renal func)on. This has been aCributed to systemic hemodynamic changes: forward failure causing decreased renal arterial pressure (RAP) and backward failure causing venous conges)on and increased renal venous pressure (RVP). Aus)n Baird 1 , Branko Braam 2 and Anita Layton 1 1 Dept. Mathema)cs, Duke Univ., Durham, NC, USA and 2 Div. Nephrology, Dept. Medicine and Dept. Physiology, Univ. of Alberta, Edmonton, AB, Canada Conclusion: Our model implicates that a decrease in renal arterial pressure leads to a decrease in sodium excre)on under normal condi)ons, which becomes more pronounced when venous pressure is increased. Angiotensin II leads to a depression of GFR, and to a strong decrease in frac)onal sodium excre)on. Further studies will be directed to inves)gate the role of the myogenic response and tubuloglomerular feedback on renal func)on and response to changes in renal arterial and venous pressures. This research was supported in part by NIH grant DK89066 and by NSF grant DMS1263995 Implica)ons of increased renal venous pressure for renal hemodynamic and reabsorp)ve func)on studied by a mathema)cal model of the kidney IM: Inner medulla; CDs: collec)ng ducts; MD: macula densa; PCT: proximal convoluted tubule; DVR: descending vasa recta; AVR: ascending vasa recta. RVP (mmHg) 5 10 15 20 25 30 RAP (mmHg) 80 100 120 SNGFR ( nl min ) 0 5 10 15 20 25 30 35 5 10 15 20 25 30 RVP (mmHg) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Sodium excretion (umol/min) baseline low high 5 10 15 20 25 30 RVP (mmHg) 50 100 150 200 250 300 350 400 SNBF (nl/min) baseline low high 5 10 15 20 25 30 RVP (mmHg) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Fractional Na excretion (%) baseline low high 80 100 120 140 160 180 200 RAP (mmHg) 0 2 4 6 8 10 Sodium excretion (umol/min) baseline low high RVP (mmHg) 5 10 15 20 25 30 RAP (mmHg) 80 100 120 SNGFR ( nl min ) 0 5 10 15 20 25 30 35 Inner stripe Inner medulla Outer stripe Renal Venous Pressure (RVP) Renal Arterial Pressure (RAP) RVP (mmHg) 5 10 15 20 25 30 RAP (mmHg) 80 100 120 Fractional Na excretion % 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Cortex RVP (mmHg) 5 10 15 20 25 30 RAP (mmHg) 80 100 120 Fractional Na excretion % 0.0 0.2 0.4 0.6 0.8 1.0 1.2 RVP (mmHg) 5 10 15 20 25 30 RAP (mmHg) 80 100 120 Fractional Na excretion % 0.0 0.2 0.4 0.6 0.8 1.0 1.2 High Ang II Figure 2: SNGFR and SNBF, obtained for the superficial nephron, whole kidney sodium excre)on and frac)onal sodium excre)on dependency on RVP in normal (baseline), elevated (low) and strongly (high) elevated Ang II states. RAP = 100 mmHg for all simula)ons. RVP (mmHg) 5 10 15 20 25 30 RAP (mmHg) 80 100 120 SNGFR ( nl min ) 0 5 10 15 20 25 30 35 Figure 3: Effects on SNGFR and frac)onal whole kidney sodium excre)on upon combined changes of RAP and RVP in normal (baseline), elevated (low) and very elevated (high) Ang II states. SNGFR reported for the superficial nephron simula)ons. Baseline Low Ang II Renal Venous Pressure (RVP) 80 100 120 140 160 180 200 RAP (mmHg) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Fractional Na excretion (%) baseline low high 80 100 120 140 160 180 200 RAP (mmHg) 10 20 30 40 50 60 70 SNGFR (nl/min) baseline low high 80 100 120 140 160 180 200 RAP (mmHg) 150 200 250 300 350 400 450 SNBF (nl/min) baseline low high 5 10 15 20 25 30 RVP (mmHg) 0 10 20 30 40 50 60 SNGFR (nl/min) baseline low high References: 1. R Moss and AT Layton, AJP Renal, 2014. Methods: We used a published and wellcharacterized mathema)cal kidney model incorpora)ng superficial and deep nephrons and renal hemodynamics, including myogenic response (MR), tubulo glomerular feedback (TGF), and segmental sodium handling [1]. Figure 1: Single nephron GFR (SNGFR) blood flow (SNBF), both obtained for the superficial nephron, and whole kidney sodium excre)on and frac)onal sodium excre)on dependency on renal artery pressure (RAP) in normal (baseline), elevated (low) and strongly (high) elevated Ang II states. RVP = 5 mmHg for all simula)ons.

Upload: austin-baird

Post on 23-Jan-2017

93 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 2015-EB-Math Model RVP increase_austin-bb2

Aim:    To  inves)gate  how  changes  in  renal  arterial  pressure  and  venous  pressure  separately  and  in  combina)on  affect  renal  hemodynamic  and  re-­‐absorp)ve  func)on,  in  simulated  states  of  normal,  elevated  and  strongly  elevated  levels  of  Angiotensin  II  (Ang  II).  

Background:    Heart  failure  (HF)  is  associated  with  impaired  renal  func)on.  This  has  been  aCributed  to  systemic  hemodynamic  changes:  forward  failure  causing  decreased  renal  arterial  pressure  (RAP)  and  backward  failure  causing  venous  conges)on  and  increased  renal  venous  pressure  (RVP).    

Aus)n  Baird1,  Branko  Braam2  and  Anita  Layton1    1  Dept.  Mathema)cs,  Duke  Univ.,  Durham,  NC,  USA  and  2  Div.  Nephrology,  Dept.  Medicine  and  Dept.  Physiology,  Univ.  of  Alberta,  Edmonton,  AB,  Canada  

Conclusion:  Our  model   implicates  that  a  decrease   in  renal  arterial  pressure   leads  to  a  decrease   in   sodium   excre)on   under   normal   condi)ons,   which   becomes  more  pronounced  when  venous  pressure  is  increased.  Angiotensin  II  leads  to   a   depression   of   GFR,   and   to   a   strong   decrease   in   frac)onal   sodium  excre)on.   Further   studies   will   be   directed   to   inves)gate   the   role   of   the  myogenic   response  and  tubuloglomerular   feedback  on  renal   func)on  and  response  to  changes  in  renal  arterial  and  venous  pressures.      This   research  was   supported   in   part   by   NIH   grant   DK-­‐89066   and   by   NSF  grant  DMS1263995  

Implica)ons  of  increased  renal  venous  pressure  for  renal  hemodynamic  and  reabsorp)ve  func)on  studied  by  a  mathema)cal  model  of  the  kidney  

IM:  Inner  medulla;  CDs:  collec)ng  ducts;  MD:  macula  densa;  PCT:  proximal  convoluted  tubule;  DVR:  descending  vasa  recta;  AVR:  ascending  vasa  recta.  

RVP (mmHg)

5 10 15 20 25 30 RAP (mmHg)

80

100

120

SN

GFR

(nl

min)

0

5

10

15

20

25

30

35

5 10 15 20 25 30

RVP (mmHg)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sod

ium

excr

etio

n(u

mol

/min

)

baselinelowhigh

5 10 15 20 25 30

RVP (mmHg)

50

100

150

200

250

300

350

400S

NB

F(n

l/min

)

baselinelowhigh

5 10 15 20 25 30

RVP (mmHg)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Frac

tiona

lNa

excr

etio

n(%

)

baselinelowhigh

80 100 120 140 160 180 200

RAP (mmHg)

0

2

4

6

8

10

Sod

ium

excr

etio

n(u

mol

/min

)baselinelowhigh

RVP (mmHg)

5 10 15 20 25 30 RAP (mmHg)

80

100

120

SN

GFR

(nl

min)

0

5

10

15

20

25

30

35

Inner  stripe  

Inner  medulla  

Outer  stripe  

Renal  Venous  Pressure  (RVP)  

Renal  Arterial  Pressure  (RAP)  

RVP (mmHg)

5 10 15 20 25 30 RAP (mmHg)

80

100

120

Frac

tiona

l Na

excr

etio

n%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Cortex  

RVP (mmHg)

5 10 15 20 25 30 RAP (mmHg)

80

100

120

Frac

tiona

l Na

excr

etio

n%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RVP (mmHg)

5 10 15 20 25 30 RAP (mmHg)

80

100

120

Frac

tiona

l Na

excr

etio

n%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

High  Ang  II  

Figure   2:   SNGFR   and   SNBF,   obtained   for   the   superficial   nephron,   whole  kidney   sodium   excre)on   and   frac)onal   sodium   excre)on   dependency   on  RVP  in  normal  (baseline),  elevated  (low)  and  strongly  (high)  elevated  Ang  II  states.  RAP  =  100  mmHg  for  all  simula)ons.  

RVP (mmHg)

5 10 15 20 25 30 RAP (mmHg)

80

100

120

SN

GFR

(nl

min)

0

5

10

15

20

25

30

35

Figure  3:  Effects  on  SNGFR  and  frac)onal  whole  kidney  sodium  excre)on  upon  combined  changes  of  RAP  and  RVP  in  normal  (baseline),  elevated  (low)  and  very  elevated  (high)  Ang  II  states.  SNGFR  reported  for  the  superficial  nephron  simula)ons.  

Baseline  

Low  Ang  II  

Renal  Venous  Pressure  (RVP)  

80 100 120 140 160 180 200

RAP (mmHg)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Frac

tiona

lNa

excr

etio

n(%

)

baselinelowhigh

80 100 120 140 160 180 200

RAP (mmHg)

10

20

30

40

50

60

70

SN

GF

R(n

l/min

)

baselinelowhigh

80 100 120 140 160 180 200

RAP (mmHg)

150

200

250

300

350

400

450

SN

BF

(nl/m

in)

baselinelowhigh

5 10 15 20 25 30

RVP (mmHg)

0

10

20

30

40

50

60

SN

GFR

(nl/m

in)

baselinelowhigh

References:  1.  R  Moss  and  AT  Layton,  AJP  Renal,  2014.  

Methods:    We  used  a  published  and  well-­‐characterized  mathema)cal  kidney  model  incorpora)ng  superficial  and  deep  nephrons  and  renal  hemodynamics,  including  myogenic  response  (MR),  tubulo-­‐glomerular  feedback  (TGF),  and  segmental  sodium  handling  [1].    

Figure  1:  Single  nephron  GFR  (SNGFR)  blood  flow  (SNBF),  both  obtained  for  the  superficial  nephron,  and  whole  kidney  sodium  excre)on  and  frac)onal  sodium  excre)on  dependency  on  renal  artery  pressure  (RAP)  in  normal  (baseline),  elevated  (low)  and  strongly  (high)  elevated  Ang  II  states.  RVP  =  5  mmHg  for  all  simula)ons.