2 fermionic basis for the xxz model - research.kek.jp...

154
1

Upload: duongkien

Post on 29-Nov-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

1

Page 2: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

2

Fermionic Basis for the XXZ model

Page 3: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

3

Fermionic Basis for the XXZ model

T. Miwa

Page 4: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

4

Fermionic Basis for the XXZ model

T. Miwa

joint work with

Page 5: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

5

Fermionic Basis for the XXZ model

T. Miwa

joint work withH. Boos

Page 6: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

6

Fermionic Basis for the XXZ model

T. Miwa

joint work withH. Boos, M. Jimbo

Page 7: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

7

Fermionic Basis for the XXZ model

T. Miwa

joint work withH. Boos, M. Jimbo, F. Smirnov

Page 8: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

8

Fermionic Basis for the XXZ model

T. Miwa

joint work withH. Boos, M. Jimbo, F. Smirnov, Y. Takeyama

1. Quantum XXZ Hamiltonian2. Quantum symmetry and integral formula3. Algebraic formula4. Quasi-local operators5. Annihilation operators6. Particle structure

Page 9: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

9

1. Quantum XXZ Hamiltonian

Page 10: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

10

1. Quantum XXZ Hamiltonian• quantum spin chain

Page 11: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

11

1. Quantum XXZ Hamiltonian• quantum spin chain

HXXZ =1

2

∞∑

k=−∞

(σ1

kσ1k+1+σ2

kσ2k+1+∆σ3

kσ3k+1

)

Page 12: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

12

1. Quantum XXZ Hamiltonian• quantum spin chain

HXXZ =1

2

∞∑

k=−∞

(σ1

kσ1k+1+σ2

kσ2k+1+∆σ3

kσ3k+1

)

where ∆ =q + q−1

2

Page 13: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

13

1. Quantum XXZ Hamiltonian• quantum spin chain

HXXZ =1

2

∞∑

k=−∞

(σ1

kσ1k+1+σ2

kσ2k+1+∆σ3

kσ3k+1

)

where ∆ =q + q−1

2HXXZ ‘acts’ on · · · ⊗ C2 ⊗ C2 ⊗ C2 ⊗ · · ·

Page 14: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

14

1. Quantum XXZ Hamiltonian• quantum spin chain

HXXZ =1

2

∞∑

k=−∞

(σ1

kσ1k+1+σ2

kσ2k+1+∆σ3

kσ3k+1

)

where ∆ =q + q−1

2HXXZ ‘acts’ on · · · ⊗ C2 ⊗ C2 ⊗ C2 ⊗ · · ·• correlation functions

Page 15: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

15

1. Quantum XXZ Hamiltonian• quantum spin chain

HXXZ =1

2

∞∑

k=−∞

(σ1

kσ1k+1+σ2

kσ2k+1+∆σ3

kσ3k+1

)

where ∆ =q + q−1

2HXXZ ‘acts’ on · · · ⊗ C2 ⊗ C2 ⊗ C2 ⊗ · · ·• correlation functions

〈σ31σ

3n〉 =

〈vac|σ31σ

3n|vac〉

〈vac|vac〉

Page 16: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

16

1. Quantum XXZ Hamiltonian• quantum spin chain

HXXZ =1

2

∞∑

k=−∞

(σ1

kσ1k+1+σ2

kσ2k+1+∆σ3

kσ3k+1

)

where ∆ =q + q−1

2HXXZ ‘acts’ on · · · ⊗ C2 ⊗ C2 ⊗ C2 ⊗ · · ·• correlation functions

〈σ31σ

3n〉 =

〈vac|σ31σ

3n|vac〉

〈vac|vac〉|vac〉 : the lowest eigenvector of HXXZ

Page 17: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

17

1. Quantum XXZ Hamiltonian• quantum spin chain

HXXZ =1

2

∞∑

k=−∞

(σ1

kσ1k+1+σ2

kσ2k+1+∆σ3

kσ3k+1

)

• correlation functions

〈σ31σ

3n〉 =

〈vac|σ31σ

3n|vac〉

〈vac|vac〉|vac〉 : the lowest eigenvector of HXXZ

Page 18: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

18

1. Quantum XXZ Hamiltonian• quantum spin chain

HXXZ =1

2

∞∑

k=−∞

(σ1

kσ1k+1+σ2

kσ2k+1+∆σ3

kσ3k+1

)

• correlation functions

〈σ31σ

3n〉 =

〈vac|σ31σ

3n|vac〉

〈vac|vac〉|vac〉 : the lowest eigenvector of HXXZ• results for small n for ∆ = 1

Page 19: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

19

1. Quantum XXZ Hamiltonian• quantum spin chain

HXXZ =1

2

∞∑

k=−∞

(σ1

kσ1k+1+σ2

kσ2k+1+∆σ3

kσ3k+1

)

• correlation functions

〈σ31σ

3n〉 =

〈vac|σ31σ

3n|vac〉

〈vac|vac〉|vac〉 : the lowest eigenvector of HXXZ• results for small n for ∆ = 1

〈σ31σ

32〉 ∼ log 2 (Hulthen)

Page 20: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

20

1. Quantum XXZ Hamiltonian• quantum spin chain

HXXZ =1

2

∞∑

k=−∞

(σ1

kσ1k+1+σ2

kσ2k+1+∆σ3

kσ3k+1

)

• correlation functions

〈σ31σ

3n〉 =

〈vac|σ31σ

3n|vac〉

〈vac|vac〉|vac〉 : the lowest eigenvector of HXXZ• results for small n for ∆ = 1

〈σ31σ

32〉 ∼ log 2 (Hulthen)

〈σ31σ

33〉 ∼ ζ(3) (Takahashi)

Page 21: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

21

1. Quantum XXZ Hamiltonian• correlation functions

〈σ31σ

3n〉 =

〈vac|σ31σ

3n|vac〉

〈vac|vac〉|vac〉 : the lowest eigenvector of HXXZ• results for small n for ∆ = 1

〈σ31σ

32〉 ∼ log 2 (Hulthen)

〈σ31σ

33〉 ∼ ζ(3) (Takahashi)

Page 22: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

22

1. Quantum XXZ Hamiltonian• correlation functions

〈σ31σ

3n〉 =

〈vac|σ31σ

3n|vac〉

〈vac|vac〉|vac〉 : the lowest eigenvector of HXXZ• results for small n for ∆ = 1

〈σ31σ

32〉 ∼ log 2 (Hulthen)

〈σ31σ

33〉 ∼ ζ(3) (Takahashi)

• general correlation functions

Page 23: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

23

1. Quantum XXZ Hamiltonian• correlation functions

〈σ31σ

3n〉 =

〈vac|σ31σ

3n|vac〉

〈vac|vac〉|vac〉 : the lowest eigenvector of HXXZ• results for small n for ∆ = 1

〈σ31σ

32〉 ∼ log 2 (Hulthen)

〈σ31σ

33〉 ∼ ζ(3) (Takahashi)

• general correlation functionsfor local operator O

Page 24: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

24

1. Quantum XXZ Hamiltonian• correlation functions

〈σ31σ

3n〉 =

〈vac|σ31σ

3n|vac〉

〈vac|vac〉|vac〉 : the lowest eigenvector of HXXZ• results for small n for ∆ = 1

〈σ31σ

32〉 ∼ log 2 (Hulthen)

〈σ31σ

33〉 ∼ ζ(3) (Takahashi)

• general correlation functionsfor local operator O

〈O〉 =〈vac|O|vac〉〈vac|vac〉

Page 25: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

25

1. Quantum XXZ Hamiltonian• general correlation functions

for local operator O

〈O〉 =〈vac|O|vac〉〈vac|vac〉

Page 26: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

26

1. Quantum XXZ Hamiltonian• general correlation functions

for local operator O

〈O〉 =〈vac|O|vac〉〈vac|vac〉

• inhomogeneous model

Page 27: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

27

1. Quantum XXZ Hamiltonian• general correlation functions

for local operator O

〈O〉 =〈vac|O|vac〉〈vac|vac〉

• inhomogeneous modelspectral parameters ξ1, . . . , ξn

Page 28: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

28

1. Quantum XXZ Hamiltonian• general correlation functions

for local operator O

〈O〉 =〈vac|O|vac〉〈vac|vac〉

• inhomogeneous modelspectral parameters ξ1, . . . , ξn|vac〉 → |vac〉ξ1,...,ξn

Page 29: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

29

1. Quantum XXZ Hamiltonian• general correlation functions

for local operator O

• inhomogeneous modelspectral parameters ξ1, . . . , ξn|vac〉 → |vac〉ξ1,...,ξn

Page 30: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

30

1. Quantum XXZ Hamiltonian• general correlation functions

for local operator O

〈O〉ξ1,...,ξn =ξ1,...,ξn

〈vac|O|vac〉ξ1,...,ξnξ1,...,ξn

〈vac|vac〉ξ1,...,ξn• inhomogeneous model

spectral parameters ξ1, . . . , ξn|vac〉 → |vac〉ξ1,...,ξn

Page 31: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

31

2. Quantum symmetry and inte-gral formula

Page 32: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

32

2. Quantum symmetry and inte-gral formula

Uq(sl2) symmetry (∆>1↔0<q<1)

(DFJMN,JMMN,JM)

Page 33: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

33

2. Quantum symmetry and inte-gral formula

Uq(sl2) symmetry (∆>1↔0<q<1)

(DFJMN,JMMN,JM)• algebra generated by ei, fi, ti (i = 0, 1)

with certain defining relations

Page 34: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

34

2. Quantum symmetry and inte-gral formula

Uq(sl2) symmetry (∆>1↔0<q<1)

(DFJMN,JMMN,JM)• algebra generated by ei, fi, ti (i = 0, 1)

with certain defining relations, e.g.,

t1e1t−11 = q2e1, t1e0t

−11 = q−2e0

Page 35: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

35

2. Quantum symmetry and inte-gral formula

Uq(sl2) symmetry (∆>1↔0<q<1)

(DFJMN,JMMN,JM)• algebra generated by ei, fi, ti (i = 0, 1)

with certain defining relations, e.g.,

t1e1t−11 = q2e1, t1e0t

−11 = q−2e0

e0e31 − [3]e1e0e

21 + [3]e2

1e0e1 − e31e0 = 0

Page 36: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

36

2. Quantum symmetry and inte-gral formula

Uq(sl2) symmetry (∆>1↔0<q<1)

(DFJMN,JMMN,JM)• algebra generated by ei, fi, ti (i = 0, 1)

with certain defining relations, e.g.,

t1e1t−11 = q2ei, t1e0t

−11 = q−2ei

e0e31 − [3]e1e0e

21 + [3]e2

1e0e1 − e31e0 = 0

[3] = q2 + 1 + q−2

Page 37: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

37

2. Quantum symmetry and inte-gral formula

Uq(sl2) symmetry (∆>1↔0<q<1)

(DFJMN,JMMN,JM)• algebra generated by ei, fi, ti (i = 0, 1)

with certain defining relations, e.g.,

t1e1t−11 = q2ei, t1e0t

−11 = q−2ei

e0e31 − [3]e1e0e

21 + [3]e2

1e0e1 − e31e0 = 0

[3] = q2 + 1 + q−2

• admits two dimensional representation(C2)ζ depending on a spectral parameter ζ

Page 38: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

38

2. Quantum symmetry and inte-gral formula• algebra generated by ei, fi, ti (i = 0, 1)

with certain defining relations, e.g.,

t1e1t−11 = q2ei, t1e0t

−11 = q−2ei

e0e31 − [3]e1e0e

21 + [3]e2

1e0e1 − e31e0 = 0

[3] = q2 + 1 + q−2

• admits two dimensional representation(C2)ζ depending on a spectral parameter ζ

e0 =

(0

ζ

),

Page 39: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

39

2. Quantum symmetry and inte-gral formula• algebra generated by ei, fi, ti (i = 0, 1)

with certain defining relations, e.g.,

t1e1t−11 = q2ei, t1e0t

−11 = q−2ei

e0e31 − [3]e1e0e

21 + [3]e2

1e0e1 − e31e0 = 0

[3] = q2 + 1 + q−2

• admits two dimensional representation(C2)ζ depending on a spectral parameter ζ

e0 =

(0

ζ

), e1 =

0

)

Page 40: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

40

2. Quantum symmetry and inte-gral formula• algebra generated by ei, fi, ti (i = 0, 1)

with certain defining relations, e.g.,

t1e1t−11 = q2ei, t1e0t

−11 = q−2ei

e0e31 − [3]e1e0e

21 + [3]e2

1e0e1 − e31e0 = 0

[3] = q2 + 1 + q−2

• admits two dimensional representation(C2)ζ depending on a spectral parameter ζ

e0 =

(0

ζ

), e1 =

0

)

t1 = t−10 =

(q

q−1

)

Page 41: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

41

2. Quantum symmetry and inte-gral formula• algebra generated by ei, fi, ti (i = 0, 1)

with certain defining relations, e.g.,

t1e1t−11 = q2ei, t1e0t

−11 = q−2ei

e0e31 − [3]e1e0e

21 + [3]e2

1e0e1 − e31e0 = 0

[3] = q2 + 1 + q−2

• admits two dimensional representation(C2)ζ depending on a spectral parameter ζ

e0 =

(0

ζ

), e1 =

0

)

t1 = t−10 =

(q

q−1

)

• level 1 HWRs and intertwiners

Page 42: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

42

2. Quantum symmetry and inte-gral formula• level 1 HWRs and intertwiners

Page 43: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

43

2. Quantum symmetry and inte-gral formula• level 1 HWRs and intertwiners

· · ·C2 ⊗ C2 ⊗ C2

Page 44: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

44

2. Quantum symmetry and inte-gral formula• level 1 HWRs and intertwiners

· · ·C2 ⊗ C2 ⊗ C2 ' H = L(Λ0) ⊕ L(Λ1)

Page 45: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

45

2. Quantum symmetry and inte-gral formula• level 1 HWRs and intertwiners

· · ·C2 ⊗ C2 ⊗ C2 ' H = L(Λ0) ⊕ L(Λ1)

Φ(ζ) : H → H ⊗ (C2)ζ

Page 46: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

46

2. Quantum symmetry and inte-gral formula• level 1 HWRs and intertwiners

· · ·C2 ⊗ C2 ⊗ C2 ' H = L(Λ0) ⊕ L(Λ1)

Φ(ζ) : H → H ⊗ (C2)ζ• representation of correlation functions

using trace of product of intertwiners

Page 47: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

47

2. Quantum symmetry and inte-gral formula• level 1 HWRs and intertwiners

· · ·C2 ⊗ C2 ⊗ C2 ' H = L(Λ0) ⊕ L(Λ1)

Φ(ζ) : H → H ⊗ (C2)ζ• representation of correlation functions

using trace of product of intertwiners

trH

(q2dΦε1(ζ1) · · ·Φε2n(ζ2n)

)

Page 48: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

48

2. Quantum symmetry and inte-gral formula• level 1 HWRs and intertwiners

· · ·C2 ⊗ C2 ⊗ C2 ' H = L(Λ0) ⊕ L(Λ1)

Φ(ζ) : H → H ⊗ (C2)ζ• representation of correlation functions

using trace of product of intertwiners

trH

(q2dΦε1(ζ1) · · ·Φε2n(ζ2n)

)

• integral formula is obtained by bosoniza-tion

Page 49: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

49

2. Quantum symmetry and inte-gral formula• level 1 HWRs and intertwiners

· · ·C2 ⊗ C2 ⊗ C2 ' H = L(Λ0) ⊕ L(Λ1)

Φ(ζ) : H → H ⊗ (C2)ζ• representation of correlation functions

using trace of product of intertwiners

trH

(q2dΦε1(ζ1) · · ·Φε2n(ζ2n)

)

• integral formula is obtained by bosoniza-tion• leads to the qKZ equation ζi → q2ζi

Page 50: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

50

3. Algebraic formula

Page 51: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

51

3. Algebraic formula

• integral formula∆=1−→ log 2, ζ(3), ζ(5), . . .

(Boos-Korepin)

Page 52: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

52

3. Algebraic formula

• integral formula∆=1−→ log 2, ζ(3), ζ(5), . . .

(Boos-Korepin)• qKZ equation → algebraic formula

(BKS, BJMST)

Page 53: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

53

3. Algebraic formula

• integral formula∆=1−→ log 2, ζ(3), ζ(5), . . .

(Boos-Korepin)• qKZ equation → algebraic formula

(BKS, BJMST)∑ω(ξi1/ξj1) · · ·ω(ξik/ξjk)︸ ︷︷ ︸Fi1j1···ikjk

(ξ1,...,ξn)︸ ︷︷ ︸↑ ↑

transcendental rational

Page 54: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

54

3. Algebraic formula

• integral formula∆=1−→ log 2, ζ(3), ζ(5), . . .

(Boos-Korepin)• qKZ equation → algebraic formula

(BKS, BJMST)∑ω(ξi1/ξj1) · · ·ω(ξik/ξjk)︸ ︷︷ ︸Fi1j1···ikjk

(ξ1,...,ξn)︸ ︷︷ ︸↑ ↑

transcendental rational

• transcendental function

Page 55: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

55

3. Algebraic formula

• integral formula∆=1−→ log 2, ζ(3), ζ(5), . . .

(Boos-Korepin)• qKZ equation → algebraic formula

(BKS, BJMST)∑ω(ξi1/ξj1) · · ·ω(ξik/ξjk)︸ ︷︷ ︸Fi1j1···ikjk

(ξ1,...,ξn)︸ ︷︷ ︸↑ ↑

transcendental rational

• transcendental function

ω(ζ) =

∫ i∞−0

−i∞−0ζu sin

π(1−ν)u2

sin πu2 cos πνu

2du

Page 56: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

56

3. Algebraic formula

• integral formula∆=1−→ log 2, ζ(3), ζ(5), . . .

(Boos-Korepin)• qKZ equation → algebraic formula

(BKS, BJMST)∑ω(ξi1/ξj1) · · ·ω(ξik/ξjk)︸ ︷︷ ︸Fi1j1···ikjk

(ξ1,...,ξn)︸ ︷︷ ︸↑ ↑

transcendental rational

• transcendental function

ω(ζ) =

∫ i∞−0

−i∞−0ζu sin

π(1−ν)u2

sin πu2 cos πνu

2du

+ rational in q, ζ

Page 57: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

57

4. Quasi-local operators

Page 58: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

58

4. Quasi-local operators• disorder parameter α

Page 59: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

59

4. Quasi-local operators• disorder parameter α

quasi local operator qα∑0

k=−∞ σ3kO

Page 60: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

60

4. Quasi-local operators• disorder parameter α

quasi local operator qα∑0

k=−∞ σ3kO

⊗ (∗ ∗ ∗) ⊗

Page 61: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

61

4. Quasi-local operators• disorder parameter α

quasi local operator qα∑0

k=−∞ σ3kO

⊗ (∗ ∗ ∗) ⊗(

11

)⊗ · · ·

Page 62: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

62

4. Quasi-local operators• disorder parameter α

quasi local operator qα∑0

k=−∞ σ3kO

· · · ⊗(

q−α

)⊗ (∗ ∗ ∗) ⊗

(1

1

)⊗ · · ·

Page 63: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

63

4. Quasi-local operators• disorder parameter α

quasi local operator qα∑0

k=−∞ σ3kO

· · · ⊗(

q−α

)⊗ (∗ ∗ ∗) ⊗

(1

1

)⊗ · · ·

Wα: space of quasi local operators

Page 64: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

64

4. Quasi-local operators• disorder parameter α

quasi local operator qα∑0

k=−∞ σ3kO

· · · ⊗(

q−α

)⊗ (∗ ∗ ∗) ⊗

(1

1

)⊗ · · ·

Wα: space of quasi local operatorsdim (Wα)[1,n] = 4n

Page 65: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

65

4. Quasi-local operators• disorder parameter α

quasi local operator qα∑0

k=−∞ σ3kO

· · · ⊗(

q−α

)⊗ (∗ ∗ ∗) ⊗

(1

1

)⊗ · · ·

Wα: space of quasi local operatorsdim (Wα)[1,n] = 4n

• algebraic formula

Page 66: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

66

4. Quasi-local operators• disorder parameter α

quasi local operator qα∑0

k=−∞ σ3kO

· · · ⊗(

q−α

)⊗ (∗ ∗ ∗) ⊗

(1

1

)⊗ · · ·

Wα: space of quasi local operatorsdim (Wα)[1,n] = 4n

• algebraic formula

〈vac|q2αS(0)O|vac〉〈vac|q2αS(0)|vac〉

=

Page 67: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

67

4. Quasi-local operators• disorder parameter α

quasi local operator qα∑0

k=−∞ σ3kO

· · · ⊗(

q−α

)⊗ (∗ ∗ ∗) ⊗

(1

1

)⊗ · · ·

Wα: space of quasi local operatorsdim (Wα)[1,n] = 4n

• algebraic formula

〈vac|q2αS(0)O|vac〉〈vac|q2αS(0)|vac〉

= trα[eΩ

(q2αS(0)O

)]

Page 68: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

68

4. Quasi-local operators• disorder parameter α

quasi local operator qα∑0

k=−∞ σ3kO

· · · ⊗(

q−α

)⊗ (∗ ∗ ∗) ⊗

(1

1

)⊗ · · ·

Wα: space of quasi local operatorsdim (Wα)[1,n] = 4n

• algebraic formula

〈vac|q2αS(0)O|vac〉〈vac|q2αS(0)|vac〉

= trα[eΩ

(q2αS(0)O

)]

where

Page 69: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

69

4. Quasi-local operators• disorder parameter α

quasi local operator qα∑0

k=−∞ σ3kO

· · · ⊗(

q−α

)⊗ (∗ ∗ ∗) ⊗

(1

1

)⊗ · · ·

Wα: space of quasi local operatorsdim (Wα)[1,n] = 4n

• algebraic formula

〈vac|q2αS(0)O|vac〉〈vac|q2αS(0)|vac〉

= trα[eΩ

(q2αS(0)O

)]

where

trα(X) =

Page 70: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

70

4. Quasi-local operators• disorder parameter α

quasi local operator qα∑0

k=−∞ σ3kO

· · · ⊗(

q−α

)⊗ (∗ ∗ ∗) ⊗

(1

1

)⊗ · · ·

Wα: space of quasi local operatorsdim (Wα)[1,n] = 4n

• algebraic formula

〈vac|q2αS(0)O|vac〉〈vac|q2αS(0)|vac〉

= trα[eΩ

(q2αS(0)O

)]

where

trα(X)=

k

1

qα/2 + q−α/2trVk

q−ασ3k/2

(X)

Page 71: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

71

4. Quasi-local operators• disorder parameter α

quasi local operator qα∑0

k=−∞ σ3kO

· · · ⊗(

q−α

)⊗ (∗ ∗ ∗) ⊗

(1

1

)⊗ · · ·

Wα: space of quasi local operatorsdim (Wα)[1,n] = 4n

• algebraic formula

〈vac|q2αS(0)O|vac〉〈vac|q2αS(0)|vac〉

= trα[eΩ

(q2αS(0)O

)]

where

trα(X)=

k

1

qα/2 + q−α/2trVk

q−ασ3k/2

(X)

Ω : nilpotent

Page 72: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

72

5. Annihilation operators

Page 73: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

73

5. Annihilation operators• decomposition of Ω

Page 74: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

74

5. Annihilation operators• decomposition of Ω

Ω = −∑

1≤i,j≤nresζ1=ξi, ζ2=ξj

Page 75: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

75

5. Annihilation operators• decomposition of Ω

Ω = −∑

1≤i,j≤nresζ1=ξi, ζ2=ξjω(ζ1/ζ2, α)c−(ζ1, α − 1)c+(ζ2, α)

dζ1

ζ1

dζ2

ζ2

Page 76: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

76

5. Annihilation operators• decomposition of Ω

Ω = −∑

1≤i,j≤nresζ1=ξi, ζ2=ξjω(ζ1/ζ2, α)c−(ζ1, α − 1)c+(ζ2, α)

dζ1

ζ1

dζ2

ζ2

• annihilation operators

Page 77: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

77

5. Annihilation operators• decomposition of Ω

Ω = −∑

1≤i,j≤nresζ1=ξi, ζ2=ξjω(ζ1/ζ2, α)c−(ζ1, α − 1)c+(ζ2, α)

dζ1

ζ1

dζ2

ζ2

• annihilation operators

c±[1,n](ζ, α) =1

2

n∑

j=1

c±j,[1,n]

1 − ζ/ξj

Page 78: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

78

5. Annihilation operators• decomposition of Ω

Ω = −∑

1≤i,j≤nresζ1=ξi, ζ2=ξjω(ζ1/ζ2, α)c−(ζ1, α − 1)c+(ζ2, α)

dζ1

ζ1

dζ2

ζ2

• annihilation operators

c±[1,n](ζ, α) =1

2

n∑

j=1

c±j,[1,n]

1 − ζ/ξj

c±[1,n](ζ, α) : Wα → Wα∓1

Page 79: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

79

5. Annihilation operators• decomposition of Ω

Ω = −∑

1≤i,j≤nresζ1=ξi, ζ2=ξjω(ζ1/ζ2, α)c−(ζ1, α − 1)c+(ζ2, α)

dζ1

ζ1

dζ2

ζ2

• annihilation operators

c±[1,n](ζ, α) =1

2

n∑

j=1

c±j,[1,n]

1 − ζ/ξj

c±[1,n](ζ, α) : Wα → Wα∓1

• reduction property

Page 80: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

80

5. Annihilation operators• annihilation operators

c±[1,n](ζ, α) =1

2

n∑

j=1

c±j,[1,n]

1 − ζ/ξj

c±[1,n](ζ, α) : Wα → Wα∓1

• reduction property

c±j,[1,n](X[1,n−1]) = c±j,[1,n−1](X[1,n−1])

Page 81: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

81

5. Annihilation operators• annihilation operators

c±[1,n](ζ, α) =1

2

n∑

j=1

c±j,[1,n]

1 − ζ/ξj

c±[1,n](ζ, α) : Wα → Wα∓1

• reduction property

c±j,[1,n](X[1,n−1]) = c±j,[1,n−1](X[1,n−1])

c±j,[1,n](qασ3

1X[2,n−1]) =

Page 82: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

82

5. Annihilation operators• annihilation operators

c±[1,n](ζ, α) =1

2

n∑

j=1

c±j,[1,n]

1 − ζ/ξj

c±[1,n](ζ, α) : Wα → Wα∓1

• reduction property

c±j,[1,n](X[1,n−1]) = c±j,[1,n−1](X[1,n−1])

c±j,[1,n](qασ3

1X[2,n−1])=q(α∓1)σ31c±j,[2,n−1](X[2,n−1])

Page 83: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

83

5. Annihilation operators• annihilation operators

c±[1,n](ζ, α) =1

2

n∑

j=1

c±j,[1,n]

1 − ζ/ξj

c±[1,n](ζ, α) : Wα → Wα∓1

• reduction property

c±j,[1,n](X[1,n−1]) = c±j,[1,n−1](X[1,n−1])

c±j,[1,n](qασ3

1X[2,n−1])=q(α∓1)σ31c±j,[2,n−1](X[2,n−1])

c±j : Wα,s → Wα∓1,s±1

Page 84: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

84

5. Annihilation operators• annihilation operators

c±[1,n](ζ, α) =1

2

n∑

j=1

c±j,[1,n]

1 − ζ/ξj

c±[1,n](ζ, α) : Wα → Wα∓1

• reduction property

c±j,[1,n](X[1,n−1]) = c±j,[1,n−1](X[1,n−1])

c±j,[1,n](qασ3

1X[2,n−1])=q(α∓1)σ31c±j,[2,n−1](X[2,n−1])

c±j : Wα,s → Wα∓1,s±1 (s : total spin)

Page 85: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

85

5. Annihilation operators• annihilation operators

c±[1,n](ζ, α) =1

2

n∑

j=1

c±j,[1,n]

1 − ζ/ξj

c±[1,n](ζ, α) : Wα → Wα∓1

• reduction property

c±j,[1,n](X[1,n−1]) = c±j,[1,n−1](X[1,n−1])

c±j,[1,n](qασ3

1X[2,n−1])=q(α∓1)σ31c±j,[2,n−1](X[2,n−1])

c±j : Wα,s → Wα∓1,s±1 (s : total spin)

• support property

Page 86: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

86

5. Annihilation operators• annihilation operators

c±[1,n](ζ, α) =1

2

n∑

j=1

c±j,[1,n]

1 − ζ/ξj

c±[1,n](ζ, α) : Wα → Wα∓1

• reduction property

c±j,[1,n](X[1,n−1]) = c±j,[1,n−1](X[1,n−1])

c±j,[1,n](qασ3

1X[2,n−1])=q(α∓1)σ31c±j,[2,n−1](X[2,n−1])

c±j : Wα,s → Wα∓1,s±1 (s : total spin)

• support propertyc±j (X[1,n]) = 0 if j 6∈ [1, n]

Page 87: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

87

5. Annihilation operators• reduction property

c±j,[1,n](X[1,n−1]) = c±j,[1,n−1](X[1,n−1])

c±j,[1,n](qασ3

1X[2,n−1])=q(α∓1)σ31c±j,[2,n−1](X[2,n−1])

c±j : Wα,s → Wα∓1,s±1 (s : total spin)

• support propertyc±j (X[1,n]) = 0 if j 6∈ [1, n]

Page 88: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

88

5. Annihilation operators• reduction property

c±j,[1,n](X[1,n−1]) = c±j,[1,n−1](X[1,n−1])

c±j,[1,n](qασ3

1X[2,n−1])=q(α∓1)σ31c±j,[2,n−1](X[2,n−1])

c±j : Wα,s → Wα∓1,s±1 (s : total spin)

• support propertyc±j (X[1,n]) = 0 if j 6∈ [1, n]

• equivariance

Page 89: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

89

5. Annihilation operators• reduction property

c±j,[1,n](X[1,n−1]) = c±j,[1,n−1](X[1,n−1])

c±j,[1,n](qασ3

1X[2,n−1])=q(α∓1)σ31c±j,[2,n−1](X[2,n−1])

c±j : Wα,s → Wα∓1,s±1 (s : total spin)

• support propertyc±j (X[1,n]) = 0 if j 6∈ [1, n]

• equivariance

action of the symmetric group Sn

Page 90: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

90

5. Annihilation operators• reduction property

c±j,[1,n](X[1,n−1]) = c±j,[1,n−1](X[1,n−1])

c±j,[1,n](qασ3

1X[2,n−1])=q(α∓1)σ31c±j,[2,n−1](X[2,n−1])

c±j : Wα,s → Wα∓1,s±1 (s : total spin)

• support propertyc±j (X[1,n]) = 0 if j 6∈ [1, n]

• equivariance

action of the symmetric group Sn

si : (Wα)[1,n] → (Wα)[1,n]

Page 91: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

91

5. Annihilation operators• reduction property

c±j,[1,n](X[1,n−1]) = c±j,[1,n−1](X[1,n−1])

c±j,[1,n](qασ3

1X[2,n−1])=q(α∓1)σ31c±j,[2,n−1](X[2,n−1])

c±j : Wα,s → Wα∓1,s±1 (s : total spin)

• support propertyc±j (X[1,n]) = 0 if j 6∈ [1, n]

• equivariance

action of the symmetric group Sn

si : (Wα)[1,n] → (Wα)[1,n]

sic±j = c±

σi,i+1(j)si

Page 92: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

92

5. Annihilation operators• reduction property

c±j,[1,n](X[1,n−1]) = c±j,[1,n−1](X[1,n−1])

c±j,[1,n](qασ3

1X[2,n−1])=q(α∓1)σ31c±j,[2,n−1](X[2,n−1])

c±j : Wα,s → Wα∓1,s±1 (s : total spin)

• support propertyc±j (X[1,n]) = 0 if j 6∈ [1, n]

• equivariance

action of the symmetric group Sn

si : (Wα)[1,n] → (Wα)[1,n]

sic±j = c±

σi,i+1(j)si

• overdetermined Grassmann relations

Page 93: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

93

5. Annihilation operators• reduction property

c±j,[1,n](X[1,n−1]) = c±j,[1,n−1](X[1,n−1])

c±j,[1,n](qασ3

1X[2,n−1])=q(α∓1)σ31c±j,[2,n−1](X[2,n−1])

c±j : Wα,s → Wα∓1,s±1 (s : total spin)

• support propertyc±j (X[1,n]) = 0 if j 6∈ [1, n]

• equivariance

action of the symmetric group Sn

si : (Wα)[1,n] → (Wα)[1,n]

sic±j = c±

σi,i+1(j)si

• overdetermined Grassmann relations

cε1j c

ε2k = −c

ε2k c

ε1j ,

Page 94: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

94

5. Annihilation operators• reduction property

c±j,[1,n](X[1,n−1]) = c±j,[1,n−1](X[1,n−1])

c±j,[1,n](qασ3

1X[2,n−1])=q(α∓1)σ31c±j,[2,n−1](X[2,n−1])

c±j : Wα,s → Wα∓1,s±1 (s : total spin)

• support propertyc±j (X[1,n]) = 0 if j 6∈ [1, n]

• equivariance

action of the symmetric group Sn

si : (Wα)[1,n] → (Wα)[1,n]

sic±j = c±

σi,i+1(j)si

• overdetermined Grassmann relations

cε1j c

ε2k = −c

ε2k c

ε1j , cε

jc−εj = 0

Page 95: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

95

5. Annihilation operators• overdetermined Grassmann relations

cε1j c

ε2k = −c

ε2k c

ε1j , cε

jc−εj = 0

Page 96: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

96

5. Annihilation operators• overdetermined Grassmann relations

cε1j c

ε2k = −c

ε2k c

ε1j , cε

jc−εj = 0

• Grassmann variables c±j (j ∈ Z)

Page 97: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

97

5. Annihilation operators• overdetermined Grassmann relations

cε1j c

ε2k = −c

ε2k c

ε1j , cε

jc−εj = 0

• Grassmann variables c±j (j ∈ Z)

Grassmann relation ⊂ CAR?

Page 98: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

98

5. Annihilation operators• overdetermined Grassmann relations

cε1j c

ε2k = −c

ε2k c

ε1j , cε

jc−εj = 0

• Grassmann variables c±j (j ∈ Z)

Grassmann relation ⊂ CAR? → NO

Page 99: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

99

5. Annihilation operators• overdetermined Grassmann relations

cε1j c

ε2k = −c

ε2k c

ε1j , cε

jc−εj = 0

• Grassmann variables c±j (j ∈ Z)

Grassmann relation ⊂ CAR? → NO• vacuum states

Page 100: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

100

5. Annihilation operators• overdetermined Grassmann relations

cε1j c

ε2k = −c

ε2k c

ε1j , cε

jc−εj = 0

• Grassmann variables c±j (j ∈ Z)

Grassmann relation ⊂ CAR? → NO• vacuum states

X ∈ (Wα)[1,n] ; c±j,[1,n]

(X) = 0

Page 101: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

101

5. Annihilation operators• overdetermined Grassmann relations

cε1j c

ε2k = −c

ε2k c

ε1j , cε

jc−εj = 0

• Grassmann variables c±j (j ∈ Z)

Grassmann relation ⊂ CAR? → NO• vacuum states

X ∈ (Wα)[1,n] ; c±j,[1,n]

(X) = 0

= ⊕nk=0C[Sn]q2αS(k)

Page 102: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

102

5. Annihilation operators• overdetermined Grassmann relations

cε1j c

ε2k = −c

ε2k c

ε1j , cε

jc−εj = 0

• Grassmann variables c±j (j ∈ Z)

Grassmann relation ⊂ CAR? → NO• vacuum states

X ∈ (Wα)[1,n] ; c±j,[1,n]

(X) = 0

= ⊕nk=0C[Sn]q2αS(k)

: 2n dimensional

Page 103: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

103

5. Annihilation operators• overdetermined Grassmann relations

cε1j c

ε2k = −c

ε2k c

ε1j , cε

jc−εj = 0

• Grassmann variables c±j (j ∈ Z)

Grassmann relation ⊂ CAR? → NO• vacuum states

X ∈ (Wα)[1,n] ; c±j,[1,n]

(X) = 0

= ⊕nk=0C[Sn]q2αS(k)

: 2n dimensional• strong annihilation property

Page 104: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

104

5. Annihilation operators• overdetermined Grassmann relations

cε1j c

ε2k = −c

ε2k c

ε1j , cε

jc−εj = 0

• Grassmann variables c±j (j ∈ Z)

Grassmann relation ⊂ CAR? → NO• vacuum states

X ∈ (Wα)[1,n] ; c±j,[1,n]

(X) = 0

= ⊕nk=0C[Sn]q2αS(k)

: 2n dimensional• strong annihilation property

c±n,[1,n]

(Wα)[1,n] ⊂ (Wα∓1)[1,n−1]

Page 105: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

105

5. Annihilation operators• overdetermined Grassmann relations

cε1j c

ε2k = −c

ε2k c

ε1j , cε

jc−εj = 0

• Grassmann variables c±j (j ∈ Z)

Grassmann relation ⊂ CAR? → NO• vacuum states

X ∈ (Wα)[1,n] ; c±j,[1,n]

(X) = 0

= ⊕nk=0C[Sn]q2αS(k)

: 2n dimensional• strong annihilation property

c±n,[1,n]

(Wα)[1,n] ⊂ (Wα∓1)[1,n−1]

IMPLIES →

Page 106: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

106

6. Particle structure

Page 107: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

107

6. Particle structure• n = 1 case

Page 108: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

108

6. Particle structure• n = 1 case : (Wα)[1,1] is 4 dimensional

Page 109: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

109

6. Particle structure• n = 1 case : (Wα)[1,1] is 4 dimensional

vacuum states are 2 dimensional

Page 110: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

110

6. Particle structure• n = 1 case : (Wα)[1,1] is 4 dimensional

vacuum states are 2 dimensional

v(0)

Page 111: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

111

6. Particle structure• n = 1 case : (Wα)[1,1] is 4 dimensional

vacuum states are 2 dimensional

v(0)def= 1

Page 112: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

112

6. Particle structure• n = 1 case : (Wα)[1,1] is 4 dimensional

vacuum states are 2 dimensional

v(0)def= q2αS(0)

Page 113: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

113

6. Particle structure• n = 1 case : (Wα)[1,1] is 4 dimensional

vacuum states are 2 dimensional

v(0)def= q2αS(0), v(0)

Page 114: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

114

6. Particle structure• n = 1 case : (Wα)[1,1] is 4 dimensional

vacuum states are 2 dimensional

v(0)def= q2αS(0), v(0)

def= qασ3

1

Page 115: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

115

6. Particle structure• n = 1 case : (Wα)[1,1] is 4 dimensional

vacuum states are 2 dimensional

v(0)def= q2αS(0), v(0)

def= q2αS(1)

Page 116: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

116

6. Particle structure• n = 1 case : (Wα)[1,1] is 4 dimensional

vacuum states are 2 dimensional

v(0)def= q2αS(0), v(0)

def= q2αS(1)

spin ±1 state

Page 117: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

117

6. Particle structure• n = 1 case : (Wα)[1,1] is 4 dimensional

vacuum states are 2 dimensional

v(0)def= q2αS(0), v(0)

def= q2αS(1)

spin ±1 state : v(±)def= σ±1

Page 118: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

118

6. Particle structure• n = 1 case : (Wα)[1,1] is 4 dimensional

vacuum states are 2 dimensional

v(0)def= q2αS(0), v(0)

def= q2αS(1)

spin ±1 state : v(±)def= q2αS(0)σ±1

Page 119: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

119

6. Particle structure• n = 1 case : (Wα)[1,1] is 4 dimensional

vacuum states are 2 dimensional

v(0)def= q2αS(0), v(0)

def= q2αS(1)

spin ±1 state : v(±)def= q2αS(0)σ±1

• annihilation of particles

Page 120: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

120

6. Particle structure• n = 1 case : (Wα)[1,1] is 4 dimensional

vacuum states are 2 dimensional

v(0)def= q2αS(0), v(0)

def= q2αS(1)

spin ±1 state : v(±)def= q2αS(0)σ±1

• annihilation of particles

c+1 v(+) = 0, c+

1 v(−) = v(0)

Page 121: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

121

6. Particle structure• n = 1 case : (Wα)[1,1] is 4 dimensional

vacuum states are 2 dimensional

v(0)def= q2αS(0), v(0)

def= q2αS(1)

spin ±1 state : v(±)def= q2αS(0)σ±1

• annihilation of particles

c+1 v(+) = 0, c+

1 v(−) = v(0)

c−1 v(+) = v(0), c−1 v(−) = 0

Page 122: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

122

6. Particle structure• n = 1 case : (Wα)[1,1] is 4 dimensional

vacuum states are 2 dimensional

v(0)def= q2αS(0), v(0)

def= q2αS(1)

spin ±1 state : v(±)def= q2αS(0)σ±1

• annihilation of particles

c+1 v(+) = 0, c+

1 v(−) = v(0)

c−1 v(+) = v(0), c−1 v(−) = 0

• 1 particle states = orbit of q2αS(0)σ±1

Page 123: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

123

6. Particle structure• n = 1 case : (Wα)[1,1] is 4 dimensional

vacuum states are 2 dimensional

v(0)def= q2αS(0), v(0)

def= q2αS(1)

spin ±1 state : v(±)def= q2αS(0)σ±1

• annihilation of particles

c+1 v(+) = 0, c+

1 v(−) = v(0)

c−1 v(+) = v(0), c−1 v(−) = 0

• 1 particle states = orbit of q2αS(0)σ±1• n = 2 case

Page 124: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

124

6. Particle structure• n = 1 case : (Wα)[1,1] is 4 dimensional

vacuum states are 2 dimensional

v(0)def= q2αS(0), v(0)

def= q2αS(1)

spin ±1 state : v(±)def= q2αS(0)σ±1

• annihilation of particles

c+1 v(+) = 0, c+

1 v(−) = v(0)

c−1 v(+) = v(0), c−1 v(−) = 0

• 1 particle states = orbit of q2αS(0)σ±1• n = 2 case : (Wα)[1,2] is 42 dimensional

Page 125: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

125

6. Particle structure• n = 1 case : (Wα)[1,1] is 4 dimensional

vacuum states are 2 dimensional

v(0)def= q2αS(0), v(0)

def= q2αS(1)

spin ±1 state : v(±)def= q2αS(0)σ±1

• annihilation of particles

c+1 v(+) = 0, c+

1 v(−) = v(0)

c−1 v(+) = v(0), c−1 v(−) = 0

• 1 particle states = orbit of q2αS(0)σ±1• n = 2 case : (Wα)[1,2] is 42 dimensional

vacuum states are 22 dimensional

Page 126: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

126

6. Particle structure• n = 2 case : (Wα)[1,2] is 42 dimensional

vacuum states are 22 dimensional

· · · ⊗ qασ3⊗ ∗ ⊗ ∗ ⊗ 1 ⊗ · · ·

· · · 0 1 2 3 · · ·(0, 0) ↔ 1 ⊗ 1, (0, 0) ↔ qασ3

⊗ 1

(0, 0) ↔ qασ3⊗ qασ3

, (0, 0) ↔ s1(qασ3

⊗ 1)

Page 127: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

127

6. Particle structure• n = 2 case : (Wα)[1,2] is 42 dimensional

vacuum states are 22 dimensional

· · · ⊗ qασ3⊗ ∗ ⊗ ∗ ⊗ 1 ⊗ · · ·

· · · 0 1 2 3 · · ·(0, 0) ↔ 1 ⊗ 1, (0, 0) ↔ qασ3

⊗ 1

(0, 0) ↔ qασ3⊗ qασ3

, (0, 0) ↔ s1(qασ3

⊗ 1)

• other states

Page 128: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

128

6. Particle structure• n = 2 case : (Wα)[1,2] is 42 dimensional

vacuum states are 22 dimensional

· · · ⊗ qασ3⊗ ∗ ⊗ ∗ ⊗ 1 ⊗ · · ·

· · · 0 1 2 3 · · ·(0, 0) ↔ 1 ⊗ 1, (0, 0) ↔ qασ3

⊗ 1

(0, 0) ↔ qασ3⊗ qασ3

, (0, 0) ↔ s1(qασ3

⊗ 1)

• other states

(0,±), (0,±), (±, 0), (±, 0), (±,±), (±,∓)

Page 129: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

129

6. Particle structure• other states

(0,±), (0,±), (±, 0), (±, 0), (±,±), (±,∓)

Page 130: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

130

6. Particle structure• other states

(0,±), (0,±), (±, 0), (±, 0), (±,±), (±,∓)

• action of the symmetric group

Page 131: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

131

6. Particle structure• other states

(0,±), (0,±), (±, 0), (±, 0), (±,±), (±,∓)

• action of the symmetric group

s1(p1, p2) ∼ (p2, p1)

Page 132: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

132

6. Particle structure• other states

(0,±), (0,±), (±, 0), (±, 0), (±,±), (±,∓)

• action of the symmetric group

s1(p1, p2) ∼ (p2, p1)

• fermionic action of c±

Page 133: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

133

6. Particle structure• other states

(0,±), (0,±), (±, 0), (±, 0), (±,±), (±,∓)

• action of the symmetric group

s1(p1, p2) ∼ (p2, p1)

• fermionic action of c±

p1, p2 ∈ 0, 0, +,−

Page 134: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

134

6. Particle structure• other states

(0,±), (0,±), (±, 0), (±, 0), (±,±), (±,∓)

• action of the symmetric group

s1(p1, p2) ∼ (p2, p1)

• fermionic action of c±

p1, p2 ∈ 0, 0, +,−

c±2 (p1, p2) ∼

(p1, 0) if p2 = ∓0 otherwise

Page 135: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

135

6. Particle structure• other states

(0,±), (0,±), (±, 0), (±, 0), (±,±), (±,∓)

• action of the symmetric group

s1(p1, p2) ∼ (p2, p1)

• fermionic action of c±

p1, p2 ∈ 0, 0, +,−

c±2 (p1, p2) ∼

(p1, 0) if p2 = ∓0 otherwise

∼ means ‘up to sign’

Page 136: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

136

6. Particle structure• other states

(0,±), (0,±), (±, 0), (±, 0), (±,±), (±,∓)

• action of the symmetric group

s1(p1, p2) ∼ (p2, p1)

• fermionic action of c±

p1, p2 ∈ 0, 0, +,−

c±2 (p1, p2) ∼

(p1, 0) if p2 = ∓0 otherwise

∼ means ‘up to sign’

c±1 (p1, p2) ∼

(0, p2) if p1 = ∓0 otherwise

Page 137: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

137

6. Particle structure• fermionic action of c±

p1, p2 ∈ 0, 0, +,−

c±2 (p1, p2) ∼

(p1, 0) if p2 = ∓0 otherwise

c±1 (p1, p2) ∼

(0, p2) if p1 = ∓0 otherwise

Page 138: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

138

6. Particle structure• fermionic action of c±

p1, p2 ∈ 0, 0, +,−

c±2 (p1, p2) ∼

(p1, 0) if p2 = ∓0 otherwise

c±1 (p1, p2) ∼

(0, p2) if p1 = ∓0 otherwise

• fermionic basis

Page 139: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

139

6. Particle structure• fermionic action of c±

p1, p2 ∈ 0, 0, +,−

c±2 (p1, p2) ∼

(p1, 0) if p2 = ∓0 otherwise

c±1 (p1, p2) ∼

(0, p2) if p1 = ∓0 otherwise

• fermionic basisvp (p = (pj)j∈Z)

Page 140: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

140

6. Particle structure• fermionic action of c±

p1, p2 ∈ 0, 0, +,−

c±2 (p1, p2) ∼

(p1, 0) if p2 = ∓0 otherwise

c±1 (p1, p2) ∼

(0, p2) if p1 = ∓0 otherwise

• fermionic basisvp (p = (pj)j∈Z)

pj ∈ ±, 0, 0, pj =

0 if j << 0

0 if j >> 0

Page 141: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

141

6. Particle structure• fermionic action of c±

p1, p2 ∈ 0, 0, +,−

c±2 (p1, p2) ∼

(p1, 0) if p2 = ∓0 otherwise

c±1 (p1, p2) ∼

(0, p2) if p1 = ∓0 otherwise

• fermionic basisvp (p = (pj)j∈Z)

pj ∈ ±, 0, 0, pj =

0 if j << 0

0 if j >> 0

exists, though not unique

Page 142: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

142

1. Universal R matrix

main ingredient L operators= images of universal R matrix

L1,2 = (π1⊗π2)(R) where R ∈ Uq(b+)⊗Uq(b

−)

πi : Uq(b+) → ai Uq(b

+) = 〈e0, e1, t0, t1〉a1 : auxiliary space

a2 : quantum space = End(V1 ⊗ · · · ⊗ Vn)

Page 143: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

143

2. Transfer matrix inEnd(V1 ⊗ · · · ⊗ Vn)

R matrix auxiliary space = Va ' C2

R(ζ) = (qζ − q−1ζ−1)

1β(ζ) γ(ζ)γ(ζ) β(ζ)

1

β(ζ) =(1 − ζ2)q

1 − q2ζ2, γ(ζ) =

(1 − q2)ζ

1 − q2ζ2.

t(N)(ζ) = tra (Ran(ζ) · · ·Ra1(ζ))

Page 144: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

144

3. Commuting family

Yang-Baxter equation

R1,2R1,3R2,3 = R2,3R1,3R1,2

implies [t(N)(ζ1), t(N)(ζ2)] = 0

quantum Hamiltonian

t(N)(1)−1t(N)(ζ) = 1 + const(ζ − 1)H(N)

XXZ + · · ·inhomogeneous model

t(N)(ζ) = tra (Ran(ζ/ξn) · · ·Ra1(ζ/ξ1))

Page 145: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

145

4. Adjoint action

transfer matrix acting on

X ∈ End(V1 ⊗ · · · ⊗ Vn)

Ta(ζ) = Ra,n(ζ/ξn) · · ·Ra,1(ζ/ξ1)

t(ζ, α)(X) = tra(q−ασ3aTa(ζ)−1XTa(ζ))

tautological reduction to the right

t[1,n](ζ, α)(X[1,n−1]) = t[1,n−1](ζ, α)(X[1,n−1])

analytic structure

tra(q−ασ3a∗) =

∑±q±α(rational in q, ζ, ξi)

simple poles at (ζ/ξi)2 = q±2

Page 146: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

146

5. Baxter’s TQ relation

(Bazhanov-Lukyanov-Zamolodchikov)second order difference equation

t(ζ, α)Q±(ζ, α) = Q±(q−1ζ, α) + Q±(qζ, α)

n = 0 case

(qα + q−α)ζ±α = (q−1ζ)±α + (qζ)±α

Page 147: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

147

6. q-Oscillator algebra

algebra Osc with generators and relations

qDaq−D = q−1a, qDa∗q−D = qa∗

aa∗ = 1 − q2D+2, a∗a = 1 − q2D

two morphisms

o±ζ : Uq(b+) → Osc

o±ζ (e0) =ζ

q − q−1

a∗

ao±ζ (e1) =

ζ

q − q−1

a

a∗

o±(t0) = q±2D, o±(t1) = q∓2D

two representations of Osc

W+ = ⊕k≥0C|k〉, W− = ⊕k≤−1C|k〉qD|k〉 = qk|k〉, a|k〉 = (1 − q2k)|k − 1〉,a∗|k〉 = (1 − δk,−1)|k + 1〉.

Page 148: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

148

7. Q operators

L operators

L±(ζ) = iζ−1/2q−1/4

×(1 − ζa∗σ± − ζaσ∓ − ζ2q2D+2τ∓

)q±σ3D

σ+=

(1

0

), σ−=

(0

1

), τ+=

(1

0

), τ−=

(0

1

)

T±A (ζ) = L±

A,n(ζ/ξn) · · ·L±A,1(ζ/ξ1)

Q operators

Q±(ζ, α)(X) = ±(1 − q±2(α−S))ζ±(α−S)

×Tr±A

(q±2αDAT±

A(ζ)−1(X))

where T±A(ζ)−1(X) = T±

A (ζ)−1(X)T±A (ζ)

and S(X) = [S[∞], X ]

analytic structure

Tr±A(q±2αDAqmDA) = ±(1 − q±2α+m)−1

simple poles at (ζ/ξj)2 = 1

Page 149: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

149

8. Triangularity

TQ relation follows from triangular de-composition

L+A,a,j(ζ) = (G+

A,a)−1L+A,j(ζ)Ra,j(ζ)G+

A,a

= (qζ − q−1ζ−1) ×L+

A,j(q−1ζ)q

−σ3j/2

0

∗ β(ζ)L+A,j(qζ)q

σ3j/2

a

G+A,a = q−σ3

aDA(1 + a∗Aσ+a )

Page 150: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

150

9. Reduction to the left

q difference operator

∆q(F (ζ)) = F (qζ) − F (q−1ζ)

off diagonal element

±(1 − q±2(α−S))−1k±(ζ, α)(X)def= ζ±(α−S)

×Tr±Atra

(q±2(α∓1)DAσ±a Ta(ζ)−1T±

A(ζ)−1(X))

= ζ±(α−S)Tr±Atra

(q±2αDAσ±a T±

A,a(ζ)−1(X))

σ±a picks up the off-diagonal elements

Page 151: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

151

10. Annihilation operators

Reduction modulo q exact form

k±[1,n](ζ,α)(qασ31X[2,n])=q(α∓1)σ3

1k±[2,n](ζ,α)(X[2,n])

+σ±1 ∆q

(q−q−1

ζ/ξ1−(ζ/ξ1)−1Q±[2,n](ζ, α ∓ 1)(X[2,n])

)

annihilation operators

c±(ζ, α)def= (normalization)×

n∑

j=1

singζ=ξj k±(ζ, α)

satisfies the reduction to the left

c±[1,n](ζ, α)(qασ31X[2,n])=q(α∓1)σ3

1c±[2,n](ζ, α)(X[2,n])

Page 152: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

152

11. Creation operators

conjugate transfer matrix

t∗[1,n](ζ, α)(X) = tra(Ta(ζ)qασ3aXTa(ζ)−1)

filling Dirac sea

t∗[1,n](ξl, α)(X[1,j])=2sl−1 · · · s1(qασ3

1 · τ (X[1,j]))

where τ is shift operator

another TQ relations

Q∗±[1,n]

(ζ, α)(X) = ±(1 − q±2(α−S))ζ±(α−S)

×Tr±A

(T∓

A,[1,n](ζ)q±2αDA(X)

)

t∗[1,n](ζ, α)Q∗±[1,n]

(ζ, α)=Q∗±[1,n](q

−1ζ, α)+Q∗±[1,n](qζ, α)

Page 153: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

153

off diagonal operators

k∗±(ζ, α)(X) = ±(1 − q±2(α±1−S))ζ±(α±1−S)

×Tr±Atra

(σ±a Ta(ζ)T∓

A(ζ)(qα(±2DA+σ3

a)∓2SX))

reduction to the right modulo q exact form

k∗±[1,n](ζ, α)(X[1,n−1]) = k∗±[1,n−1](ζ, α)(X[1,n−1])

+σ±n∆q

(q−q−1

ζ/ξ1−(ζ/ξ1)−1Q∗±[1,n−1](ζ, α)(q

∓2S[1,n−1]X[1,n−1]))

removing ∆q

f∗±[1,n](ζ, α)(X[1,n−1]) = f∗±[1,n−1](ζ, α)(X[1,n−1])

+σ±n κ(ζ/ξn)Q∗±[1,n−1](ζ, α)(q

∓2S[1,n−1]X[1,n−1])

Page 154: 2 Fermionic Basis for the XXZ model - research.kek.jp ...research.kek.jp/group/riron/workshop/theory2007/slides/miwa.pdf · Fermionic Basis for the XXZ model T. Miwa joint work with

154

creation operators

c∗±[1,n](ζ, α)def= f∗±[1,n](qζ, α) + f∗±[1,n](q

−1ζ, α)

−t∗[1,n](ζ, α)f∗±[1,n](ζ, α)

satisfies reduction property in a restricted sense

c∗±[1,n]

(ζ, α)(X[1,j]) (1 ≤ j < l ≤ n)

is regular at ζ = ξl and satisfies

c∗±[1,n]

(ξl, α)(X[1,j]) = c∗±[1,n−1]

(ξl, α)(X[1,j])

(1 ≤ j < l ≤ n − 1)

ConjectureA fermionic basis is created by the creation

operators c∗±[1,n]

(ξl, α)