novel probes for fermionic gases

39
Novel Probes for Fermionic Gases Novel Probes for Fermionic Gases J. Meineke, T. Müller, B. Zimmermann, D. Stadler J.-P. Brantut, H. Moritz, T. Esslinger ETH Zürich

Upload: tilly

Post on 11-Jan-2016

51 views

Category:

Documents


0 download

DESCRIPTION

Novel Probes for Fermionic Gases. J. Meineke, T. Müller, B. Zimmermann, D. Stadler J.-P. Brantut, H. Moritz, T. Esslinger ETH Zürich. Experimental setup. Microscope objectives. 6 Li atoms. Microscope setup. Microscope setup. High-resolution imaging system: - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Novel Probes for Fermionic Gases

Novel Probes for Fermionic GasesNovel Probes for Fermionic Gases

J. Meineke, T. Müller, B. Zimmermann, D. Stadler

J.-P. Brantut, H. Moritz, T. Esslinger

ETH Zürich

J. Meineke, T. Müller, B. Zimmermann, D. Stadler

J.-P. Brantut, H. Moritz, T. Esslinger

ETH Zürich

Page 2: Novel Probes for Fermionic Gases

Experimental setup

6Li atomsMicroscopeobjectives

Page 3: Novel Probes for Fermionic Gases

Microscope setup

Page 4: Novel Probes for Fermionic Gases

Microscope setup

High-resolution imaging system:

• resolution: 660nm (FWHM) for =671nm

• NA = 0.53, magnification factor: 54

Page 5: Novel Probes for Fermionic Gases

Microscopic manipulation

flexible micro-tweezers

Page 6: Novel Probes for Fermionic Gases

Atoms in micro-traps

a=2.5 m 6.9 m

Square lattice Ring lattice

B. Zimmermann, T. Müller, J. Meineke, T. Esslinger, H. Moritz, New Journal of Physics 13, 043007 (2011)

Page 7: Novel Probes for Fermionic Gases

Imaging through the microscope

500m

“standard” imaging

20μm

high resolution imaging

Information on• correlations, quantum statistics?• temperature, susceptibilities?• entanglement?

Page 8: Novel Probes for Fermionic Gases

Microscopic probing …

… of in-situ density fluctuations

Page 9: Novel Probes for Fermionic Gases

Quantum statistics and fluctuations

Suppressed density fluctuations in a degenerate Fermi gasdue to Pauli principle!

...

2

11

3

23 V

N NN 2

thermal higher order quantum correction

thermal quantum degenerate

probe volume

For 1D Bose gases: J. Esteve et al., PRL 96,130403 (2006) & J. Armijo et al., PRL 105, 230402 (2010)For 2D Bose gases: C.-L. Hung, X. Zhang, Na. Gemelke, C. Chin, Nature 470, 236 (2011)

Page 10: Novel Probes for Fermionic Gases

Measurement of density fluctuations

• Account for photon shot noise and imaging effects

• Calculate mean and variance over many realizations

different realizations absorption imaging

Fluctuation in gas on a pixel

Effect of imaging resolution

Page 11: Novel Probes for Fermionic Gases

Manifestation of antibunching

Our work at ETH Zürich:PRL 105, 040401 (2010)

Indication for the level oflocal quantum degeneracy

Similar work at MIT in TOF:PRL 105, 040402 (2010)

Page 12: Novel Probes for Fermionic Gases

Thermodynamic properties

Fluctuation-dissipation theorem:2N

NTkB

densityfluctuations

model independent measurement of temperature

Compressibility κ

local density approximation

1)(

rr

rN

Q. Zhou and T. L. Ho, arXiv: 0908.3015, to appear in PRL; κ in SF-MI: N. Gemelke, X. Zhang, C.-L. Hung, C. Chin, Nature 460, 995 (2009).

20

0

NN

UU

TkB

Page 13: Novel Probes for Fermionic Gases

Fluctuation-based thermometry

Temperature: Conventional Fluctuation-based

degenerate 20530 nK 14531 nK

thermal 1,6 0.2 K 1,1 0.06 K

N

UU

TkN B

00

2

T. Müller , B. Zimmermann, J. Meineke, J.-P. Brantut, T. Esslinger, H. Moritz, Phys. Rev. Lett. 105, 040401 (2010)

Page 14: Novel Probes for Fermionic Gases
Page 15: Novel Probes for Fermionic Gases

Local Spin-FluctuationsLocal Spin-Fluctuations

hm2i = h(n1 ¡ n2)2i = hn21i +hn2

2i ¡ 2hn1n2i

hn1n2i = hª y"ª "ª

y#ª #i

Two-component quantum gas

Page 16: Novel Probes for Fermionic Gases

Atom-Light InterfaceAtom-Light Interface

Hammerer et al., Rev. Mod. Phys. 82, 1041 (2010)

X̂ out = X̂ in + ·p2M̂z

Light

Atoms

Page 17: Novel Probes for Fermionic Gases

Atom-Light InterfaceAtom-Light Interface

Bruun et al., PRL 102, 030401 (2009)

hX̂ 2outi = 1

2 + ·2hM̂

2z i

Page 18: Novel Probes for Fermionic Gases

Measuring Spin-PolarizationMeasuring Spin-Polarization

Page 19: Novel Probes for Fermionic Gases

Measuring Spin-PolarizationMeasuring Spin-Polarization

Á / (n1 ¡ n2)| {z }m

Spin-polarization

Speckle: Sanner et al., PRL 106, 010402 (2011)

Phase

Page 20: Novel Probes for Fermionic Gases

The InterferometerThe Interferometer

Page 21: Novel Probes for Fermionic Gases

The InterferometerThe Interferometer

Page 22: Novel Probes for Fermionic Gases

PerformancePerformance

Single component: Phase-shift proportional to atomic density

Page 23: Novel Probes for Fermionic Gases

PerformancePerformance

Photon shot-noise limited

Page 24: Novel Probes for Fermionic Gases

ResultsResults

Page 25: Novel Probes for Fermionic Gases

Distribution of Spin-PolarizationDistribution of Spin-Polarization

Weakly interacting gas

Page 26: Novel Probes for Fermionic Gases

Distribution of Spin-PolarizationDistribution of Spin-Polarization

Weakly interacting gas

Page 27: Novel Probes for Fermionic Gases

Distribution of Spin-PolarizationDistribution of Spin-Polarization

Weakly interacting gas

Page 28: Novel Probes for Fermionic Gases

Distribution of Spin-PolarizationDistribution of Spin-Polarization

Strong repulsive interactions

Page 29: Novel Probes for Fermionic Gases

Suppression of Spin-FluctuationsSuppression of Spin-Fluctuations

±m2

±m2thermal

• Relative suppression

• Agrees with theory for noninteracting Fermions

• Analogous to suppression of density-fluctutations due to

antibunching

9.2dB

Page 30: Novel Probes for Fermionic Gases

Spin-SusceptibilitySpin-Susceptibility

kBTÂ=±M 2 ) kBTÂcol =A±m2

spin-susceptibility  = @(n1¡ n2)@(¹ 1¡ ¹ 2)

Measurements of spin-susceptibility: Salomon, Zwierlein, Ketterle

Page 31: Novel Probes for Fermionic Gases

Spin-SusceptibilitySpin-Susceptibility

kBTÂ=±M 2 ) kBTÂcol =A±m2

spin-susceptibility  = @(n1¡ n2)@(¹ 1¡ ¹ 2)

Page 32: Novel Probes for Fermionic Gases

EntanglementEntanglement

Page 33: Novel Probes for Fermionic Gases

EntanglementEntanglement

~J =P

~¾i

¢ J 2z

hN i ¸ 23 ) A±m2

ncol¸ 2

3Wiesniak et al., NJP 7, 258 (2005); Toth et al., PRA 79, 042334 (2009)

Page 34: Novel Probes for Fermionic Gases

EntanglementEntanglement

~J =P

~¾i

¢ J 2z

hN i ¸ 23 ) A±m2

ncol¸ 2

3

ncol (¹m¡ 2)

Am

2 (

μm

-2)

Wiesniak et al., NJP 7, 258 (2005); Toth et al., PRA 79, 042334 (2009)

Page 35: Novel Probes for Fermionic Gases

fluctuationscorrelationsfluctuationscorrelations

Novel ProbesNovel Probes

thermodynamicproperties

thermodynamicproperties

mesoscopicsystems

mesoscopicsystems

Microscopic access

Page 36: Novel Probes for Fermionic Gases

TeamworkTeamwork

DavidStadler

TorbenMüller

SebastianKrinner

Jean-PhilippeBrantut

Henning Moritz

Tilman Esslinger

JakobMeineke

Page 37: Novel Probes for Fermionic Gases
Page 38: Novel Probes for Fermionic Gases

Data ProcessingData Processing

Page 39: Novel Probes for Fermionic Gases

Novel Probes for Fermionic GasesNovel Probes for Fermionic Gases

J. Meineke, T. Müller, B. Zimmermann, D. Stadler

J.-P. Brantut, H. Moritz, T. Esslinger

ETH Zürich

J. Meineke, T. Müller, B. Zimmermann, D. Stadler

J.-P. Brantut, H. Moritz, T. Esslinger

ETH Zürich