1 page handout paces etal v02 - usu

2
James B. Paces, U.S. Geological Survey, Denver, CO, [email protected] Elizabeth M. Niespolo, U.C. Berkeley and Berkeley Geochronology Center, Berkeley, CA, [email protected] Warren D. Sharp, Berkeley Geochronology Center, Berkeley, CA, [email protected] SPEED DATING!: UTh dating of hydrogenic & biogenic materials 1. Introduction and Application The UTh dating method is applicable to a diverse range of hydrogenic and biogenic materials formed during the last 500 ka and has been widely used in geomorphic, tectonic, paleoclimate, paleohydrologic, and archaeologic studies. Calcite, aragonite, and dolomite from speleothems, corals, soil carbonate, tufa, travertine, and faultrelated veins are most commonly used. Opal, sulfates, phosphates, and hydroxides (including ice) can also be dated, as can fossil bones, teeth, and ratite eggshells when enriched with secondary U. Dating of hydrogenic material relies on the large fractionation between U and Th in most nearsurface water: U is relatively soluble while Th is not. Consequently, materials precipitated under these conditions typically incorporate U (notably 238 U and 234 U) but little or no 230 Th (the alphadecay progeny of 234 U), thus starting the UTh “clock”. Amenable material can yield precise Quaternary dates (better than ±1%), and because ages depend only on intrinsic sample properties, both newly collected and archival materials can be dated. Simple assumptions inherent to radioactive decay allow levels of accuracy to approach precision, and the system includes inherent checks on the reliability of resulting dates. A key assumption is that samples remain closed to U and Th after formation, or in the case of bones, teeth and eggshells, since U uptake. This assumption is likely valid if U Th ages preserve micro or macrostratigraphic order, and if samples of coeval material produce concordant dates. Visual criteria applied during subsampling increase the likelihood of success. A second assumption is that initial 230 Th is absent or can be quantitatively subtracted using common Th corrections or isochron techniques. Contributions of 230 Th from detrital sources can be reduced by careful selection of small (0.130 mg), “clean” subsamples. The veracity of UTh dates can be further assessed by evaluating age versus initial 234 U/ 238 U results for a suite of related samples. In situ methods using laser ablation or ion probe analyses are capable of high spatial resolution (10100 µm) and can provide increased accuracy for ages of materials with slow growth rates, albeit at reduced precision. 2. Age Range Suitable samples range in age from a few years to a few hundred thousand years. – Longlived radioactive parent 238 U (4.5 Ga t½) – Intermediatelived radioactive progeny include 234 U (246 ka t½) & 230 Th (75 ka t½) The dating technique is useful up to ~750 ka for ideal samples; to ~500 ka for most samples. Eventually (within 5 – 10 half lives) constant activity ratios of unity are reached: [ 234 U/ 238 U] = [ 230 Th/ 238 U] = [ 230 Th/ 234 U] = 1.0 Any process that results in radioactive DISEQUILIBRIUM can restart the 230 Th/U clock. 3. Field Supplies & Sampling Methods Field Sampling: See section 4. For details on sample integrity before collecting samples!! Tools for sampling: Dependent on sample type •Generally: Rock hammer, hand lens, steel blade, handheld core drill (± pickaxe, trowel) •Clean sample bags and supplies to record the context •If limited by export restrictions, use dilute (15%) hydrochloric acid (HCl) to test the purity of carbonate (if applicable), before shipping samples to the lab (use PPE) If material is sampled to provide an age on stratigraphically related materials (e.g., fossils, archaeology, or another depositional event), the collector should: •Characterize stratigraphic relationships between the sample and the related material. Did the material precipitate during, or after sedimentary deposition? Document with evidence (e.g., GPS, photos, drawings). •Collect sample intact (not crushed or powdered) Laboratory microsampling: •Samples weights of 0.1100 mg are typical. •Cut and polished slabs can inform sampling by revealing microstructures (particularly useful for in situ techniques). •Binocular microscopes and handheld abraders or micro mills allow controlled sampling. Above: Polished slab of pedogenic carbonate rind dated with in situ techniques; Useries results revealed precise chronology of pedogenic growth.

Upload: others

Post on 25-Oct-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 page handout Paces EtAl v02 - USU

 

   

James  B.  Paces,  U.S.  Geological  Survey,  Denver,  CO,  [email protected]  Elizabeth  M.  Niespolo,  U.C.  Berkeley  and  Berkeley  Geochronology  Center,  Berkeley,  CA,  [email protected]  Warren  D.  Sharp,  Berkeley  Geochronology  Center,  Berkeley,  CA,  [email protected]    

SPEED  DATING!:  U-­‐Th  dating  of  hydrogenic  &  biogenic  materials  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

1.  Introduction  and  Application  The  U-­‐Th   dating  method   is   applicable   to   a   diverse   range   of  hydrogenic  and  biogenic  materials  formed  during  the  last  500  ka   and   has   been   widely   used   in   geomorphic,   tectonic,  paleoclimate,   paleohydrologic,   and   archaeologic   studies.    Calcite,   aragonite,   and   dolomite   from   speleothems,   corals,  soil   carbonate,   tufa,   travertine,   and   fault-­‐related   veins   are  most   commonly   used.   Opal,   sulfates,   phosphates,   and  hydroxides   (including   ice)   can   also   be   dated,   as   can   fossil  bones,   teeth,   and   ratite   eggshells   when   enriched   with  secondary   U.     Dating   of   hydrogenic   material   relies   on   the  large   fractionation   between   U   and   Th   in   most   near-­‐surface  water:  U   is   relatively   soluble  while  Th   is  not.    Consequently,  materials   precipitated   under   these   conditions   typically  incorporate  U  (notably  238U  and  234U)  but  little  or  no  230Th  (the  alpha-­‐decay  progeny  of   234U),   thus  starting  the  U-­‐Th  “clock”.    Amenable  material  can  yield  precise  Quaternary  dates  (better  than  ±1%),  and  because  ages  depend  only  on  intrinsic  sample  properties,   both   newly   collected   and   archival   materials   can  be  dated.    Simple  assumptions   inherent  to  radioactive  decay  allow   levels   of   accuracy   to   approach   precision,   and   the  system  includes  inherent  checks  on  the  reliability  of  resulting  dates.    A  key  assumption   is  that  samples  remain  closed  to  U  and   Th   after   formation,   or   in   the   case   of   bones,   teeth   and  eggshells,  since  U  uptake.    This  assumption  is  likely  valid  if  U-­‐Th  ages  preserve  micro-­‐  or  macro-­‐stratigraphic  order,   and   if  samples  of  coeval  material  produce  concordant  dates.  Visual  criteria  applied  during  subsampling  increase  the  likelihood  of  success.    A  second  assumption  is  that  initial  230Th  is  absent  or  can   be   quantitatively   subtracted   using   common   Th  corrections   or   isochron   techniques.     Contributions   of   230Th  from  detrital   sources   can  be   reduced  by   careful   selection  of  small   (0.1-­‐30  mg),   “clean”   subsamples.   The   veracity   of  U-­‐Th  dates  can  be  further  assessed  by  evaluating  age  versus  initial  234U/238U   results   for   a   suite   of   related   samples.   In   situ  methods   using   laser   ablation   or   ion   probe   analyses   are  capable   of   high   spatial   resolution   (10-­‐100   µm)   and   can  provide   increased   accuracy   for   ages   of   materials   with   slow  growth  rates,  albeit  at  reduced  precision.  

2.  Age  Range   Suitable  samples  range  in  age  from  a  few  years  to  a  few  hundred  thousand  years.    –  Long-­‐lived  radioactive  parent  238U  (4.5  Ga  t½)  –  Intermediate-­‐lived  radioactive  progeny  include    234U  (246  ka  t½)  &  230Th  (75  ka  t½)  The  dating  technique  is  useful  up  to  ~750  ka  for  ideal  samples;  to  ~500  ka  for  most  samples.  Eventually  (within  5  –  10  half  lives)  constant  activity  ratios  of  unity  are  reached:  [234U/238U]  =  [230Th/238U]  =  [230Th/234U]  =  1.0  Any  process  that  results  in  radioactive  DISEQUILIBRIUM  can  restart  the  230Th/U  clock.    

3.  Field  Supplies  &  Sampling  Methods  

Field  Sampling:  See  section  4.  For  details  on  sample  integrity  before  collecting  samples!!    Tools  for  sampling:  Dependent  on  sample  type  •Generally:  Rock  hammer,  hand  lens,  steel  blade,  hand-­‐held  core  drill  (±  pickaxe,  trowel)  •Clean  sample  bags  and  supplies  to  record  the  context  •If  limited  by  export  restrictions,  use  dilute  (1-­‐5%)  hydrochloric  acid  (HCl)  to  test  the  purity  of  carbonate  (if  applicable),  before  shipping  samples  to  the  lab  (use  PPE)  

   If  material  is  sampled  to  provide  an  age  on  stratigraphically  related  materials  (e.g.,  fossils,  archaeology,  or  another  depositional  event),  the  collector  should:  •Characterize  stratigraphic  relationships  between  the  sample  and  the  related  material.  Did  the  material  precipitate  during,  or  after  sedimentary  deposition?  Document  with  evidence  (e.g.,  GPS,  photos,  drawings).  •Collect  sample  intact  (not  crushed  or  powdered)  Laboratory  microsampling:  •Samples  weights  of  0.1-­‐100  mg  are  typical.  •Cut   and   polished   slabs   can   inform   sampling   by   revealing  microstructures  (particularly  useful  for  in  situ  techniques).  •Binocular   microscopes   and   hand-­‐held   abraders   or   micro-­‐mills  allow  controlled  sampling.  

 Above:  Polished  slab  of  pedogenic  carbonate  rind  dated  with  in  situ  techniques;   U-­‐series   results   revealed   precise   chronology   of  pedogenic  growth.    

Page 2: 1 page handout Paces EtAl v02 - USU

 

   

James  B.  Paces,  U.S.  Geological  Survey,  Denver,  CO,  [email protected]  Elizabeth  M.  Niespolo,  U.C.  Berkeley  and  Berkeley  Geochronology  Center,  Berkeley,  CA,  [email protected]  Warren  D.  Sharp,  Berkeley  Geochronology  Center,  Berkeley,  CA,  [email protected]    

SPEED  DATING!:  U-­‐Th  dating  of  hydrogenic  &  biogenic  materials  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

5.  Laboratories

U.S.A.  (not  necessarily  comprehensive):  

U.S.G.S.  Denver  (Jim  Paces)  

Berkeley  Geochronology  Center  (Warren  Sharp)  

U.  California  Irvine  (Kathleen  Johnson)    

U.  Florida  (Andrea  Dutton)  

U  Hawaii  –  Manoa  (Ken  Rubin)  

U  Kansas  (Doug  Walker,  Noah  McLean)  

Massachusetts  Institute  of  Technology  (David  McGhee)  

U.  Miami  (Ali  Pourmand)  

U.  Minnesota    (Larry  Edwards,  Hai  Chang)  

U.  New  Mexico    (Yemane  Asmerom,  Victor  Polyak)  

Stanford  University  (Kate  Maher)  

Texas  A&M  University  (Franco  Marcantonio)  

U.  Texas  –  Austin    (Jay  Banner,  Staci  Loewy)  

U.  Texas  –  El  Paso  (Lin  Ma)  

Woods  Hole  Oceanographic  Institution  (Laura  Robinson)  

In  addition,  there  are  many  International  facilities!  

Selected  References:  Eds.  Bourdon,  B.,  et  al.,  2003,  Uranium-­‐series  geochemistry,  Reviews  in  

Mineralogy  and  Geochemistry  52,  Mineralogical  Society  of  America  (Ed.  Ribbe,  P.H.)  

Dickin,  A.P.  “U-­‐Series  Dating.”  Radiogenic  Isotope  Geology,  Cambridge  University  Press,  2005,  324-­‐352.  

Topical  references:  

Bone:  Pike,  A.W.G.,  et  al.,  2003,  U-­‐series  dating  of  bone  using  the  diffusion-­‐adsorption  model,  GCA  66/24  4723-­‐4286.    

Corals:  Hibbert,  F.D.  et  al,  2016,  Coral  indicators  of  past  sea-­‐level  change:  A  global  repository  of  U-­‐series  dated  benchmarks,  QSR  145  1-­‐56.  

Corals,  Speleothems:  Scholz,  D.,  &  Hoffman,  D.,  2008,  230Th/U  dating  of  fossil  corals  and  speleothems,  QSJ  57/1-­‐2,  52-­‐76.  

Faults:  Nuriel,  P.,  et  al.,  2012,  U-­‐Th  dating  of  striated  fault  planes,  Geology  40/7,  647-­‐650.  

Earthquakes:  Kagan,  E.J.,  et  al.,  Dating  large  infrequent  earthquakes  by  damaged  cave  deposits,  Geology  33/4,  261-­‐264.  

Eggshells:  Niespolo,  E.M.,  et  al.,  2017,  U-­‐Th  burial  dating  of  ostrich  eggshells:  a  novel  approach  to  dating  African  archaeological  sequences  beyond  the  14C  limit,  GSA  Annual  Meeting  (visit  this  poster  tomorrow!)  

Pedogenic  carbonate:  Sharp,  W.D.,  U-­‐Series  dating  of  pedogenic  carbonates,  Encyclopedia  of  Scientific  Dating  Methods  (Eds.  Rink,  W.J.,  Thompson,  J.),  2014.  

Opal:  Paces,  J.B.,  et  al.,  2004,  Improved  spatial  resolution  for  U-­‐series  dating  of  opal  at  Yucca  Mountain,  Nevada,  USA,  using  ion-­‐microprobe  and  microdigestion  methods,  GCA  68/7,  1591-­‐1606.  

Teeth:  Duval,  M.,  et  al.,  2011,  High  resolution  LA-­‐ICP-­‐MS  mapping  of  U  and  Th  isotopes  in  an  early  Pleistocene  equid  tooth  from  Fuente  Nueva-­‐3  (Orce,  Andalusia,  Spain),  Quat.  Geochron.  6  458-­‐467.  

Travertine:  Uysal,  I.T.,  et  al.,  2007,  U-­‐series  dating  and  geochemical  tracing  of  late  Quaternary  travertine  in  co-­‐seismic  fissures,  EPSL  257/3-­‐4,  450-­‐462.  

4.  Sample  Integrity  and  Considerations

Materials  containing  primary  U  include:  •Carbonates   (soil,   lacustrine,   spring,   cave,   vein   fillings,   marine  cements,  corals);    

•Opaline  silica    •Evaporite  minerals    •Fe-­‐Mn  oxy-­‐hydroxides,  oxides,  phosphates    •Apatite,   zircon,   other   high-­‐U   igneous  minerals;   Volcanic   rocks  (using  isochrons)  

Biogenic  materials  that  readily  incorporate  diagenetic  U:  •Bones  (specimens  with  thick  cortical  sections  preferred)  •Teeth  •Eggshells  (ostrich,  emu,  other  ratites)  Materials  for  230Th/U  dating  should:  •Preserve  primary  textures  •Have  minimal  visible  detritus  •Lack  evidence  of  alteration,  recrystallization,  or  secondary  fluid  interaction  

Presence   of   detritus   (including   clay)   imposes   large   initial-­‐230Th  corrections  and  can  limit  the  utility  of  U-­‐series  dates.    

U-­‐series   techniques   can   be   applied   to   archival   samples!   Ask  yourself:  

•Can  you  place  the  sample  in  its  original  field  locality  precisely?  •Has  the  sample  been  stored  in  a  neutral  environment?  •Does   the   sample   meet   the   above   criteria   for   quality   U-­‐Th  dating  material?  •Is  the  sample  likely  to  be  younger  than  ~500  ka?    If  yes  to  all  of  these:  You  may  have  a  U-­‐Th  dating  sample   in  your  archive.  Seek  out  an  expert!  

   Left:  cleaned  section  of  carbonate  rhizolith;  Right:  Fault  gouge      Post-­‐collection  laboratory  processing:  •Requires  careful  protocols  and  caution  to  avoid  contamination  from   detritus   during   sample   preparation.   Tool   use   during  sample   preparation   requires   cleaning   with   acids   and/or  organic  solvents  in  between  uses  and  sealed  storage  to  avoid  dust  collection.    

•Mass   spectrometry   is   performed   on   a   TIMS   or   ICP-­‐MS  instrument.   Sample   prep   will   vary   depending   on   which  instrument   is   used   to   measure   and   how   the   sample   is  introduced.   Laboratories   with   these   instruments   capable   of  measuring   U-­‐series   isotopes   should   have   their   own   facilities  equipped  to  properly  prepare  samples  for  mass  spectrometry.