1 introduction - lasers

Upload: marin-petricevic

Post on 08-Mar-2016

224 views

Category:

Documents


0 download

DESCRIPTION

Introduction about laser

TRANSCRIPT

  • 1. Basics of LASER Physics Dr. Sebastian Domsch (Dipl.-Phys.)

    Computer Assisted Clinical Medicine

    Medical Faculty Mannheim

    Heidelberg University

    Theodor-Kutzer-Ufer 1-3

    D-68167 Mannheim, Germany

    [email protected]

    www.ma.uni-heidelberg.de/inst/cbtm/ckm

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 2/29 I 12/10/2015

    Outline: Biomedical Optics

    1. Lecture - Basics of LASER Physics

    Historical Background

    Properties of Light

    Maxwells Equations

    Wave Particle Dualism

    Geometric Optics

    2. Lecture - LASER Principle

    3. Lecture - LASER Systems

    4. Lecture - LASER Resonators

    5. Lecture - LASER Tissue Interactions 1

    6. Lecture - LASER Tissue Interactions 2

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 3/29 I 12/10/2015

    Literature

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 4/29 I 12/10/2015

    LASER

    LASER Light

    short light pulses, spatial coherence focusing to a tight spot over long distances

    Laser Applications

    Laser Cutting Laser Printers Optical Disc Drives Barcode Scanners Laser Pointer Laser Surgery Fiber Optic Free-Space Communication Distance measurements (LUNAR LASER Ranging Experiment: precision < 4cm!!) many more

    LASER

    Light Amplification by Stimulated Emission of Radiation

    A LASER is a device that emits light through a process

    of optical amplification based on the stimulated emission of

    electromagnetic radiation

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 5/29 I 12/10/2015

    Historical Background

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 6/29 I 12/10/2015

    Discovery of Stimulated Emission in 1917

    Albert Einstein

    * 14.3.1879 (Ulm, Germany) 18.4.1955, (Princeton, USA)

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 7/29 I 12/10/2015

    1960 First LASER Constructed

    Theodore Harold Maiman

    * 11.7.1927, Los Angeles, USA

    5.5.2007, Vancouver, Canada

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 8/29 I 12/10/2015

    First LASER systems: 1960

    Ali Javan (*1926, Teheran/Iran)

    Continuous-Wave (CW) Gas

    LASER

    Bell Telephone Laboratories (NJ/USA)

    Hughes Research Laboratories (CA/USA)

    Theodore H. Maiman (*1927, L.A./USA)

    Pulsed Solid-State

    LASER

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 9/29 I 12/10/2015

    Nobel Prize in Physics in 1964

    for fundamental work in the field of quantum electronics, which has led to the

    construction of oscillators and amplifiers based on the maser-laser principle

    Charles Hard Townes

    * 28.7.1915, Greenville, USA

    Aleksandr Mikhailovich Prokhorov

    * 11.7.1916, Atherton, Australia

    8.1.2002, Moscow, Russia

    Nikolay Gennadiyevich Basow

    * 14.12.1922, Usman, Russia

    1.7.2001, Moscow, Russia 27.1.2015, Oakland, USA

    Theoreticl work: MASER

    principle -> LASER Concept of optical pumping

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 10/29 I 12/10/2015

    1960 First LASER Constructed

    Theodore Harold Maiman

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 11/29 I 12/10/2015

    Physical Basics

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 12/29 I 12/10/2015

    Properties of Light

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 13/29 I 12/10/2015

    Wave Particle Dualism of Light

    Matter Light

    particle wave

    Einstein (1905)

    Particle:

    Photoelectric effect

    (Nobel Price 1921)

    De Broglie (1924)

    Wave-like behavior

    of electrons

    Tissue LASER

    Geometric

    Optics Quantum

    optics

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 14/29 I 12/10/2015

    Properties of Light

    E = h = pc p = h /

    : frequency

    E: energy

    h: Plancks constant

    Light Quanta

    Photons ()

    = c : dispersion in vacuum

    c: light velocity = 3108 m/s

    : wave length

    Electromagnetic Wave

    (t)=I0ei

    t

    I0

    p: momentum

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 15/29 I 12/10/2015

    Electromagnetic Spectrum

    visible spectrum: = 400 700 nm, = 7,5 4 1014 Hz

    Geometric

    Optics

    (wave

    character)

    Quantum

    optics

    (particle

    character)

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 16/29 I 12/10/2015

    Light - Electromagnetic (EM) Waves

    )t,r(E

    electric field:

    magnetic field:

    EM Fields:

    )t,r(H

    - caused by

    electric charges

    electric currents

    - defined by two vector fields:

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 17/29 I 12/10/2015

    EM Wave

    )t,r(E

    electric field:

    magnetic field: )t,r(H

    wave vector: )t,r(k

    E

    H k

    |k| = 2 /

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 18/29 I 12/10/2015

    Electromagnetic Fields in

    Dielectric Media

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 19/29 I 12/10/2015

    Dielectric Media Non-Conducting

    PED

    0

    electric field

    electric displacement field:

    polarization

    E

    MHB

    0

    magnetic field

    magnetic induction:

    magnetization

    H

    E

    H k

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 20/29 I 12/10/2015

    Maxwells Equations (static fields) 1. Charges are the sources of electric fields

    Divergence of electric

    field is created by charges

    D

    )V(qdADV

    0V

    dAB

    0B

    2. Magnetic monopoles do not exist

    In the absence of

    magnetic monopoles,

    divergence of the

    magnetic field lines is

    always zero.

    Gausss Theorem

    Gausss Theorem

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 21/29 I 12/10/2015

    Maxwells Equations (dynamic fields)

    3. A changing magnetic field creates an electric field

    t

    BE

    t

    DJH f

    4. Magnetic fields are created by electrical current and by changing electric fields

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 22/29 I 12/10/2015

    Geometric Optics

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 23/29 I 12/10/2015

    Geometric Optics

    Reflection

    Refraction

    Transmission

    At a planar dielectric surface

    dielectric: electrical insulator (weak or non-conducting) that

    can be polarized by an applied electric field

    media: air, water, glass,

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 24/29 I 12/10/2015

    Reflection

    '

    angle of incidence = angle of reflection

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 25/29 I 12/10/2015

    Refraction

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 26/29 I 12/10/2015

    Refraction

    n

    n

    Normal

    )'sin('n)sin(n

    refractive index n

    vacuum: 1

    air: 1.0003

    water: 1.333

    crown glass: 1.5

    Snells Law

    Light minimizes the time the travel from

    point A to B. Light velocity in media.

    Fermats Prinziple

    A

    B

    c (medium)=c/

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 27/29 I 12/10/2015

    Total Reflection

    Fiber optic cable: total reflection important for signal

    transmission!

    Water tank: Reflected and refracted light

    components!

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 28/29 I 12/10/2015

    Total Reflection

    n

    n

    Normal

    n > n

    c

    critical angle

    'n

    narcsinc

    c )'sin('n)sin(n

    Snells Law

    sin() =1 !

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 29/29 I 12/10/2015

    Brewster Angle - Linear Polarisation

    Brewster Angle: B

    Reflected ray polarized due to radiation charachteristic of Hertzian Dipole!

    B + =/2

    Brewster Angle: B

    Hertzian Dipole

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 30/29 I 12/10/2015

    Dispersion

    dispersion = dependance between

    frequency and wavelength: = ()

    f = c / n()

    f = c / (n() )

    substitute = 2f and k = 2/

    = kc / n(k)

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 31/29 I 12/10/2015

    Dispersion Group and Phase Velocity

    wavepakage:

    = velocity of wave package

    phase v

    Group v

    group velocity:

    phase velocity:

    If the refractive index (n) is not wavelength dependent

    Gaussian Wavepakage

    = No dispersion!

    The refractive index is wavelength

    dependent: n = n()

    -> Speed of light in medium is

    wavelength dependent: v = c/ n()

    = v() !

    -> A wave package disperses

    ( ),

    / ( )

    ( )

    j ji t k x

    j

    j

    group

    phase

    x t c e

    d k kdv c

    dk dk

    cv

    k k

    = velocity of single waves

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 32/29 I 12/10/2015

    Repetition

    Einstein: Discovery of stimulated emission 1917 First pulsed ruby LASER by Maiman in 1960 Nobel prices for Townes, Basow and Prokhorov in 1964: fundamental work in quantum electronics) fascilitating LASERs/MASERs

    Light, both wave and particle character Electromagnetic wave: B- and E fields Maxwells Equation: the cause and the relation of and between B(t)- and E(t)

    Geometric optics: reflection, refraction, transmission Reflection: angle of incident = angle of reflection Total Refraction: angle of reflection > 90 Brewester Angle: linearly reflected light if refracted and reflected light 90

    Dispersion relation: k = k() Dielectric: = (k) Wavepackages disperse if group velocity phase velocity

  • Biomedical Optics Basics of LASER Physics

    Dr. Sebastian Domsch I Slide 33/29 I 12/10/2015

    Next Lecture

    2. LASER Principle