003000.000 grou

400
Olga Saiz Maregatti Profesora de Matemática Viktor Blumenthal Gottlieb Licenciado en Ciencias, mención Matemática TEXTO DEL ESTUDIANTE

Upload: mileto-tha

Post on 02-Dec-2015

284 views

Category:

Documents


24 download

TRANSCRIPT

Page 1: 003000.000 grou

MATEMÁTICMATEMÁTICMATEMÁTICAAAAAA

Olga Saiz MaregattiProfesora de Matemática

Viktor Blumenthal GottliebLicenciado en Ciencias, mención Matemática

TEXTO DEL ESTUDIANTE

333333333333333mediomediomediomediomediomediomediomediomedioOOOOOOOOO

INTRO MAT 3M (001-007).indd 1 2/11/11 14:58:27

Page 2: 003000.000 grou

2

Estructura del texto

Inicio de unidad: En las primeras dos páginas encontrarás un esquema donde se conectan los contenidos y los objetivos fundamentales y transversales que orientan el trabajo de toda la unidad. En las siguientes dos páginas hallarás los contenidos por trabajar, los aprendizajes esperados y una breve introducción a partir de temas o situaciones reales.

Conocimientos previos: Esta sección te permitirá recordar lo aprendido en años anteriores, que servirá de cimiento para los nuevos aprendizajes. También consta de una Evaluación, en la que podrás autoevaluar cuán preparado te encuentras.

Contenido: A lo largo del libro se presentan páginas de contenido donde se indica claramente lo que aprenderás en cada sección.Sintetizando y Revisemos lo aprendido: En ellas encontrarás un resumen de los conceptos centrales y una evaluación de proceso que te permitirá revisar tu propio aprendizaje.

Trabaja: A través de esta sección podrás ir ejercitando algunas habilidades, a fin de fortalecer tus aprendizajes.

INTRO MAT 3M (001-007).indd 2 2/11/11 14:58:43

Page 3: 003000.000 grou

3

Encontrarás información

complementaria relacionada

con el contenido trabajado.

Para saber más

7+¡$

><

2? = %

Datos claves, que debieras

recordar o tener presentes, son los

que encontrarás en este lateral.

Toma nota

Aquí se sugieren sitios Web

que enriquecerán los

contenidos que se trabajan.

Links de interés

¿Te gustan los desafíos? En esta sección se proponen algunos muy interesantes que podrás resolver utilizando lo que has aprendido.

Para entretenerse

Lateral en el que se recuerda

algún contenido relacionado

con el tema que se trabaja.

Recordar y archivar

Taller de profundización: Te enfrentarás a un desafío en el que irás más allá con respecto a los contenidos trabajados.

Taller: Podrás trabajar en grupos, aplicando de manera entretenida algunos de los aprendizajes de la unidad.

Síntesis: Mediante distintos tipos de actividades podrás evaluar los aprendizajes de todas las unidades tratadas.

Evaluación de la unidad: Aquí encontrarás preguntas en las que deberás razonar, ejercicios de desarrollo para que apliques lo aprendido y ejercicios con alternativas, lo que te permitirá evaluar tu nivel de aprendizaje.

Trabaja

Trabaja

En forma individual o grupal ejercitarás distintas habilidades.

INTRO MAT 3M (001-007).indd 3 2/11/11 14:58:51

Page 4: 003000.000 grou

4

Índice

Conocimientos previos12 - 13

Sintetizando y Revisemos lo aprendido

20, 34, 45, 54, 63 y 65

Taller de profundización64 - 65

Objetivos Fundamentales y Transversales, Contenidos y Aprendizajes esperados

9 - 10

Raíces y función raíz cuadrada

Unidad 1

Evaluación Unidad 166 - 73

Conocimientos previos78 - 79

Evaluación Unidad 2132 - 141

Sintetizando y Revisemos lo aprendido

100, 125

Taller: El huevo, la gallina, la parábola y tú

131

Evaluación de síntesis 1 (Unidades 1 y 2)

142 - 145

Objetivos Fundamentales y Transversales, Contenidos y Aprendizajes esperados

75 - 76

Ecuaciones cuadráticas y

función cuadrática

Unidad 2

INTRO MAT 3M (001-007).indd 4 2/11/11 14:58:54

Page 5: 003000.000 grou

5

Raíces, ¿qué son?14

Propiedades de las raíces23

Racionalización40

Ecuaciones irracionales48

Función raíz cuadrada55

¿Qué son, en realidad, las raíces y qué se puede hacer con ellas?

15

¿Cómo calcular el valor de raíces con resultados decimales sin calculadora?

16

Raíces cúbicas, ¿qué son?18

¿Cómo calcular raíces cúbicas?18

Multiplicación de raíces23

División de raíces25

Descomposición de raíces28

Suma y resta de raíces29

Raíz de una raíz30

Ecuaciones cuadráticas: ¿qué son, cómo se resuelven y para qué sirven?

80

Función cuadrática: ¿qué es y en qué se utiliza?

106

Ecuaciones cuadráticas incompletas de la forma ax2 + c = 0, con a ≠ 081

Ecuaciones cuadráticas de la forma ax2 + bx = 0, con a y b números reales y a ≠ 084

¿Cómo determinar si un punto del plano pertenece o no a una parábola?

108

¿De qué depende que la parábola se abra hacia arriba o hacia abajo?

109

Ecuaciones cuadráticas de la forma ax2 + bx + c = 0, con a, b y c números reales y a ≠ 0, donde el trinomio es fácilmente factorizable

88

¿Cómo determinar los puntos de corte o intersección de la parábola con los ejes coordenados?

112

Ecuaciones cuadráticas de la forma ax2 + bx + c = 0, con a ≠ 0, donde el trinomio no es fácilmente factorizable y a, b, c pertenece a los reales

94

La parábola106

¿Cómo determinar el eje de simetría?121

Otras consideraciones123

¿Cómo determinar el vértice de una parábola?116

Método de completación de cuadrado92

INTRO MAT 3M (001-007).indd 5 2/11/11 14:58:55

Page 6: 003000.000 grou

6

Solucionario362 - 398Índice temático360 - 361

Conocimientos previos150 - 151

Sintetizando y Revisemos lo aprendido

166, 171, 188, 196 y

201

Taller de profundización199 - 201

Objetivos Fundamentales y Transversales, Contenidos y Aprendizajes esperados

147 - 148

Desigualdades e inecuaciones

Unidad 3

Evaluación Unidad 3202 - 211

Evaluación de síntesis 2 (Unidades 1 a 3)

212 - 215

Conocimientos previos294 - 295

Evaluación Unidad 5340 - 351

Objetivos Fundamentales y Transversales, Contenidos y Aprendizajes esperados

291 - 292

Probabilidades... un paso más

Unidad 5Sintetizando y Revisemos lo aprendido

303, 311 y 335

Taller: La mesa redonda del rey Arturo

339

Evaluación de síntesis 4 (Unidades 1 a 5)

352 - 355

Evaluación de síntesis 5 (Unidades 1 a 5)

356 - 359

Conocimientos previos220 - 221

Sintetizando y Revisemos lo aprendido

231, 242, 255 y 271

Objetivos Fundamentales y Transversales, Contenidos y Aprendizajes esperados

217 - 218

Algo más sobre triángulos

rectángulos

Unidad 4

Evaluación de síntesis 3 (Unidades 1 a 4)

286 - 289

Taller: Explorando mi barrio273

Evaluación Unidad 4274 - 285

INTRO MAT 3M (001-007).indd 6 2/11/11 14:58:58

Page 7: 003000.000 grou

7

Bibliografía399

Desigualdades, ¿parecidas a la igualdad?

152

Inecuaciones: ¿qué son?175

Sistemas de inecuaciones: ¿qué son?, ¿cómo se resuelven? y ¿en qué se aplican?

192

¿Para qué se usan las propiedades de las desigualdades?

157

Números reales: ¿qué número es el que está justo antes que otro?

162

¿Tendrán propiedades las desigualdades?154

¿Para qué sirven los intervalos?167

Inecuaciones lineales175

Inecuaciones fraccionarias y cuadráticas181

Inecuaciones con valor absoluto185

Variable aleatoria: ¿qué es?296

Probabilidad experimental y teórica... ¿se relacionan?

306

Algunas consideraciones de sucesos y probabilidades

314

Sucesos independientes... ¿cómo trabajar con ellos?

320

Sucesos dependientes... probabilidad condicionada

329

Euclides, Pitágoras y sus teoremas222

Otros temas de trigonometría262

Teorema de Pitágoras y teorema de Fermat

236

Trigonometría: ¿qué es y para qué se usa?

244

INTRO MAT 3M (001-007).indd 7 2/11/11 14:58:58

Page 8: 003000.000 grou

U N I D A D 1

Raíces y función raíz cuadrada

RAÍCES Y FUNCIÓN RAÍZ CUADRADA

Concepto de raíz

Cálculo de raíces cuadradas y

cúbicas

Propiedades de las raíces

Ecuaciones irracionales

Función raíz cuadrada

Aplicaciones de las raíces a la vida diaria

8

U1 MAT 3M (008-073).indd 8 2/11/11 15:20:28

Page 9: 003000.000 grou

O B J E T I V O S F U N D A M E N T A L E SY T R A N S V E R S A L E S

En esta unidad:

Conocerás y utilizarás conceptos matemáticos asociados al estudio de raíces y función raíz cuadrada.

Aplicarás y ajustarás modelos matemáticos para la resolución de problemas y para el análisis de situaciones concretas.

Modelarás situaciones o fenómenos cuyos modelos resultantes sean funciones raíz cuadrada.

Resolverás desafíos con grado de dificultad creciente, valorando tus propias capacidades.

Percibirás la matemática como una disciplina que recoge y busca respuestas a desafíos propios o que provienen de otros ámbitos.

Razonarás lógica y deductivamente para ir en búsqueda de nuevos métodos de solución a los problemas que se plantean.

9

U1 MAT 3M (008-073).indd 9 2/11/11 15:20:33

Page 10: 003000.000 grou

A P R E N D I Z A J E S E S P E R A D O S

C O N T E N I D O S

En esta unidad se espera que:

1 Conozcas y utilices procedimientos de cálculo algebraico en expresiones en las que intervengan raíces cuadradas y cúbicas.

2 Resuelvas ecuaciones que involucren raíces cuadradas y cúbicas e interpretes sus soluciones.

3 Analices la función raíz cuadrada en el marco de la modelación de algunos fenómenos sencillos.

4 Utilices algunas herramientas tecnológicas como ayuda en la resolución de problemas.

Raíces cuadradas y cúbicas.

Propiedades de las raíces (raíz de un producto, producto de raíces, raíz de un cociente, cociente de raíces, raíz de una raíz, composición y descomposición de raíces).

Racionalización, estimación y comparación de fracciones que tengan raíces en el denominador.

Ecuaciones irracionales.

Función raíz cuadrada (gráfico de y x= , 2y x= e identificación de 2x x= ,

dominio de una función raíz cuadrada).

Resolución de desafíos y problemas de planteo.

Generalización para raíces de otros índices.

Uso de herramientas tecnológicas apropiadas para los contenidos de la unidad.

10

U1 MAT 3M (008-073).indd 10 2/11/11 15:20:39

Page 11: 003000.000 grou

UN

IDA

D 1

11

El cálculo de las raíces cuadradas ha estado presente en la mayoría de las civilizaciones. Alrededor del 1700 a. C., se presentan tablillas babilónicas de cálculos aproximados de raíces cuadradas, probablemente, para la confección de calendarios que preveían los momentos óptimos de siembra y cosecha. El Papiro de Ahmes, datado en 1650 a. C., muestra cómo los egipcios extraían raíces cuadradas. En la antigua India, el conocimiento de aspectos teóricos y aplicados del cuadrado y la raíz cuadrada fue, al menos, tan antiguo como los Sulva Sutras, textos de carácter religioso anteriores a 200 d. C., que tenían instrucciones para la construcción de altares de sacrificios. En uno de ellos se encuentra una aproximación numérica de la 2.

El símbolo de la raíz cuadrada ( ) fue introducido en 1525 por el matemático Christoph Rudolff. Es una forma estilizada y elegante de la letra r minúscula. Este símbolo representa la palabra latina radix, que significa raíz.

La idea de utilizar un instrumento para manipular números no es nueva. El ábaco es considerado el más antiguo aparato de cálculo, y aún hoy se sigue usando en algunos lugares de Asia. La primera máquina mecánica de calcular, que sumaba y restaba, la inventó Blaise Pascal en 1645 y se llamó “La Pascalina”. Gottfried Leibniz creó la rueda escalada de Leibniz, que sumaba, restaba, multiplicaba, dividía y sacaba raíces cuadradas. Hoy en día nos valemos de la calculadora para ayudarnos con estos y otros cálculos.

Por otro lado, en el siglo XVIII surgió uno de los conceptos más fundamentales, hasta hoy, en matemática: la función. Se le atribuye al matemático Leonhard Euler el primer intento por definirla formalmente. Después se precisó una función como la relación entre dos variables, en la que una de ellas depende de la otra (definición que tú estudiaste el año pasado). Este concepto, seguramente, surgió desde los inicios de la matemática con algunas de las civilizaciones antiguas, como la babilónica, la china y la egipcia.

Así como ya conociste y estudiaste las funciones lineales, existen otras que pueden analizarse. Una de ellas es la función raíz cuadrada, con la que se modelan muchas situaciones de la vida cotidiana y de la ciencia.

La Pascalina, de Blaise Pascal (1645)

Leonhard Euler (1707- 1783)

U1 MAT 3M (008-073).indd 11 2/11/11 15:20:41

Page 12: 003000.000 grou

12

Conocimientos previosEn años anteriores aprendiste mucho sobre potencias; ahora recordaremos algunos conceptos importantes y cómo aplicarlos a ellas.

Primero aprendiste que una potencia ( ...n

n veces

a a a a a= ⋅ ⋅ ⋅ ⋅

) es una abreviación de una multiplicación de factores iguales (multiplicamos n veces ...n

n veces

a a a a a= ⋅ ⋅ ⋅ ⋅

por sí misma), en la que ...n

n veces

a a a a a= ⋅ ⋅ ⋅ ⋅

es cualquier número real y n es un número natural. Es decir, ...n

n veces

a a a a a= ⋅ ⋅ ⋅ ⋅

. Por ejemplo, 43 3 3 3 3 81= ⋅ ⋅ ⋅ = .

Recuerda que en ...n

n veces

a a a a a= ⋅ ⋅ ⋅ ⋅

, ...n

n veces

a a a a a= ⋅ ⋅ ⋅ ⋅

es la base de la potencia y n es el exponente.

Luego definiste algunas propiedades para trabajar con las potencias; ellas son:

a. Multiplicación de potencias de igual base: Para multiplicar potencias de igual base, se conserva la base y se suman los exponentes.

n m n ma a a +⋅ =Ejemplo:

i. 3 5 84 4 4 65536⋅ = = 65536

ii. 23

23

23

102459049

2 8 10

=

=

b. División de potencias de igual base: Para dividir potencias de igual base, se conserva la base y se restan los exponentes.

n m n ma : a a −=Ejemplo:

i. 3 2 18 :8 8 8= = ii. 5

23

7 7 497

= =

c. Potencia de una potencia: Para elevar una potencia a un número natural, se conserva la base y se multiplican los exponentes.

a an m n m( ) = ⋅

Ejemplo:

i. 2 2 327683 5 15( ) = = ii. −( )( ) = −( ) =6 6 46 6562 3 6

Luego ampliaste la definición de potencia para el caso en que el exponente fuera un número negativo o cero; esto es: 10 =a y

1nna

a− = (con 0a ≠ )

Por ejemplo:

i. 0

22

1 1 1 10 13 1 1 15 9 9 93

− − + = + = + = =

ii. a bab

a bba

a bba

ba

2 3 5

2

26 3

2

5

26 3

4

10

7

4( ) ⋅

= ⋅

= ⋅ =

Recuerda que en matemática las

divisiones por cero no están

definidas. Por lo tanto, solo tiene

sentido esta definición:

1n

naa

− = si 0a ≠

Recordar y archivar

U1 MAT 3M (008-073).indd 12 2/11/11 15:20:44

Page 13: 003000.000 grou

EvaluaciónMarca con una 8 el casillero correspondiente para evaluar tu trabajo de revisión.

IndicadorLo hice sin problemas

Me costó; necesito repasar un poco más

Necesito repasar los contenidos; tuve

muchas dificultadesLeí detenidamente los contenidos que se explican.Entendí los ejemplos resueltos.Pude resolver correctamente los ejercicios del ítem 1.Pude resolver correctamente los ejercicios del ítem 2.Pude resolver correctamente los ejercicios del ítem 3.Pude resolver correctamente los ejercicios del ítem 4.

Si marcaste tres o más cruces en la última columna, vuelve a leer los contenidos de los Conocimientos previos. Probablemente necesites repasar un poco más.

Estos ejercicios te ayudarán a recordar dichos conceptos y propiedades.

1 Calcula el valor de las siguientes potencias:

a. 24 = c. 24− = e. 2 21 2:

2 3

− =

b. −( ) =4 2 d. 2 43 2⋅ = f. −( ) − +

=5 3 12

72 3

0

2 Calcula el valor de las siguientes potencias usando las propiedades de las potencias:

a. 3 4 92 2 2−⋅ ⋅ =

b. 8

2 3 12 22

−− − ⋅ ⋅ =

c.

3 451 1: 3

3 3− ⋅ =

d. 2 12

23 42

5 1( ) ⋅

( ) =−

:

e. 3 3 31 2 4 2 5−( ) ⋅ −( ) ⋅ −( )( ) =

f. −

⋅ −

⋅ −( ) =−

−12

12

46 4

8 2

3 Reduce las siguientes expresiones usando las propiedades de las potencias:

a. 3 7m m−⋅ =

b. p p p4 2 5 12( ) ⋅( ) =−:

c. a b ab2 7 2 4 3⋅( ) ( ) =

− −:

d. d c

cd

2 3

5

44

8

⋅ ( )( )

=

4 Calcula el área de los siguientes paralelogramos:

a. Un cuadrado de lado 2a .

b. Un rectángulo de lados 2ab y ab( )3.

c. Un romboide de base 3 2x( ) y altura

113

.

UN

IDA

D 1

13

U1 MAT 3M (008-073).indd 13 2/11/11 15:20:48

Page 14: 003000.000 grou

14

Raíces, ¿qué son?

En la semana del aniversario del colegio de Pedro y Alejandra habrá pruebas para las alianzas. Uno de los desafíos es desarrollar un proyecto de servicio a la comunidad. Como Pedro y Alejandra son parte de la directiva de su curso, le plantearon al director la posibilidad de hermosear un sector eriazo de la plaza que está frente al colegio poniendo flores y arbustos. Habiendo aprobado la idea, el director pidió la autorización al departamento municipal correspondiente y les dio a los estudiantes las dimensiones del lugar: 40 m por 60 m.

Pedro, Alejandra y el grupo designado para llevar a cabo esta labor decidieron plantar también en una de las diagonales del terreno, pero no saben su medida. ¿Cómo averiguarlo si en ese momento no podían ir a medirla?

Recordaron que, en situaciones similares, lo habían resuelto aplicando el teorema de Pitágoras. En este problema tendremos que:

Entonces, tomaron sus calculadoras y encontraron que el valor de 5200 72 11102551= , .

Como este es un número decimal, debieron aproximar la medida de la diagonal a 72 m y luego terminaron su trabajo.

Desgraciadamente, Pedro no pudo calcular el valor porque su calculadora no tenía la tecla de raíz cuadrada. Debido a esto, planteó sus inquietudes: ¿se podrá hacer este cálculo sin calculadora? ¿Qué son realmente las raíces cuadradas?

Qué son las raíces y cómo se calcula su valor.Desarrollarás las siguientes habilidades:• Identificar•Calcular•Comprender•Resolver•Relacionar•Aplicar• Interpretar y generar ideasHabilidades por actividad:• Identificarycalcular:1, 2, 5, 6•Comprender y resolver: 3, 7•Relacionar y aplicar: 4a, 4b, 4d, 4e, 4f, 4g,

4h, 1, 2, 3, 4, 5, 6, 7• Interpretar y generar ideas: 4c

Trabaja más...

Habilidades por actividad:•Relacionar y aplicar: 1, 2, 3, 4, 5, 1, 2, 3,

4, 5

En esta sección aprenderás

B C

40 m

A

22 240 60 AC+ =

21.600 3.600 AC+ =

21.600 3.600 AC+ =

25.200 AC=

5.200 AC=5.200 AC=

60 m

1600

5200

5200

3600

U1 MAT 3M (008-073).indd 14 2/11/11 15:20:49

Page 15: 003000.000 grou

UN

IDA

D 1

15

Todo número real elevado al

cuadrado es siempre positivo o

cero, es decir, a a2 0≥ ∀ ∈, R.

Recordar y archivar ¿Qué son, en realidad, las raíces y qué se puede hacer con ellas?

Como ya lo has calculado antes, 4 2= , porque 22 4= ; entonces, entenderemos que a es un número que al elevarlo al cuadrado da como resultado a.

Ahora bien, si pensamos en el ejemplo anterior, podemos decir que−( ) =2 42

; entonces, tenemos que para a− se cumple también

que −( ) =a a2

.

Observa que 4− no es un número real, ya que ningún número real elevado al cuadrado dará como resultado un número negativo.

Por lo tanto, definiremos que:

Aplicando lo anterior, se puede establecer que:

i. 16 4= , porque 24 16=

ii. −( ) = −16 416 4− = − ; es lo mismo que −( ) = −16 4

iii. 1 19 3= , porque

21 1 1 13 3 3 9 = ⋅ =

iv. 1 19 3

− = − ; es lo mismo que 1 19 3

− = −

aa

a

= − representa, geométricamente,

la distancia que hay en la recta

numérica entre el cero y a

aa

= −

.

Algebraicamente, se define:

aa

a

= −

si 0a≥si 0a≤02

22 2n n

nn

< £0a≤

Toma notaa x= , si y solo si 2x a= para todo número { }0a +∈ R .

Es decir, la ecuación 2x a= tendrá dos resultados: a y a− .

Esto es equivalente a escribir que a a( ) =2

Observa que en toda raíz se tiene,

Recuerda que cuando hablamos de la raíz cuadrada su índice es dos y no se anota explícitamente.

Índice de la raíz

Cantidad subradicalan

U1 MAT 3M (008-073).indd 15 2/11/11 15:20:52

Page 16: 003000.000 grou

16

¿Cómo calcular el valor de raíces con resultados decimales sin calculadora?

Como ya has estudiado, 2 no es un número racional. Esto quiere decir que es un decimal infinito puro (tiene infinitas cifras decimales y no son periódicas ni semiperiódicas), por lo que solo podemos conseguir una aproximación de su valor. Cuando necesitamos resolver un problema, la única manera de escribirla, respetando su valor exacto, es como 2.

Pero ¿cómo logramos una aproximación?

Existen varios métodos, unos más prácticos que otros. Un buen sistema cuando se quieren pocos decimales (2 o 3) es la aproximación por exploración:

2 debe ser un número entre 1 y 2, ya que 21 1= y 22 4= , y 2, cantidad subradical, está entre 1 y 4.

Entonces, si calculamos 1 5 2,( ) , esto es igual a 2,25, por lo que 2 debe ser menor que 1,5.

⇒( ) =1 4 1 962, , , entonces debe ser mayor que 1,4 y menor que 1,5.

⇒( ) =1 41 1 98812, , , y 1 42 2 01642, ,( ) = .

Por lo tanto, debe ser mayor que 1,41 y menor que 1,42.

Así se pueden buscar los decimales deseados.

Gracias a la tecnología, hoy en día nos podemos ahorrar este trabajo; las calculadoras nos ayudan en esta tarea.

• Digitaentucalculadorayobtendrás1,414213562...

Toda raíz puede ser ubicada en

la recta numérica. Por ejemplo,

para encontrar 2, lo hacemos

geométricamente de la siguiente

manera:

21

12

+=

1

0 1 2

Recordar y archivar

Existen otros métodos para calcular raíces cuadradas y cúbicas sin calculadora. El siguiente link te lleva a descubrir algo más.http://www.monografias.com/trabajos44/raiz-cuadrada/raiz-cuadrada.shtml

Para saber más

7+¡$

><

2? = %

U1 MAT 3M (008-073).indd 16 2/11/11 15:20:55

Page 17: 003000.000 grou

UN

IDA

D 1

17

Trabaja

Resuelve los siguientes ejercicios en tu cuaderno.

1 Sin usar tu calculadora, encuentra el valor de cada una de las siguientes raíces:

a. 9

b. 36

c. 64

d. 16

e. 25

f. 196

g. 225

h. 169

i. 400

j. 625

2 Haciendo uso de tu calculadora y con aproximación a la centésima, indica el valor de cada raíz:

a. 3

b. 10

c. 144324

d. 75

e. 104

f. 210

g. 42,6

h. 867

i. 1,501

j. 10101

3 Usando el método de aproximación por exploración, determina el valor a la centésima de las siguientes raíces:

a. 5 b. 21 c. 37 d. 48 e. 59

4 Resuelve con tu compañero o compañera de banco los siguientes problemas:

a. Julieta quiere instalar, para su cumpleaños, un foco en el techo del pasillo y lo intenta subiéndose a una silla, pero no alcanza; entonces trae una escalera. Cuando llega al pasillo se da cuenta de que no la podrá colocar. No calculó que la muralla de la casa mide 2 metros de altura, que el pasillo tiene 1 metro de ancho y que la escalera mide 2,5 metros.

¿Puedes explicarle a Julieta por qué no puede usar esta escalera? ¿Cuál es la mayor longitud que debería tener la escalera para poder ponerla en el pasillo?

b. Felipe necesita un recipiente en forma de cubo para colocar 2 kilos de aserrín para la obra que el taller de teatro está montando. Pregunta a don Patricio, un auxiliar del colegio, si sabe las dimensiones de una caja que había en la bodega y si la puede usar. Don Patricio le dice que la prestaron a otro colegio y que no recuerda cuánto mide la caja, pero que necesitaron 1,5 m2 de papel para forrarla.

¿Podrá Felipe, con estos datos, saber si la caja le servirá? Justifica tu respuesta. (Considera que cada m3 de aserrín pesa 200 kg. Esto corresponde a la densidad del aserrín).

c. Ya sabes que las raíces cuadradas son números, racionales algunos e irracionales otros, que se pueden ubicar en la recta numérica; por lo tanto, se pueden ordenar. Esto se debe a que es posible establecer una relación de orden entre ellos, es decir, señalar cuándo un número es mayor o menor que otro.

¿Podrías enunciar una regla para comparar dos raíces cuadradas, sean racionales o irracionales, y así decidir cuál es mayor?

U1 MAT 3M (008-073).indd 17 2/11/11 15:20:56

Page 18: 003000.000 grou

18

Raíces cúbicas, ¿qué son?

La fábrica de helados Mejor que en el polo decide lanzar al mercado un nuevo helado familiar. Según el dueño, el envase debe ser un cubo que contenga 1,5 litros. Al proponer la idea al equipo de marketing, ellos lo piensan por un momento, calculan y surgen algunas dudas: ¿será apropiado el envase? ¿No generará desconfianza en el público acerca de la cantidad de contenido?

¿Qué piensas tú? ¿Estás de acuerdo con las dudas del equipo de marketing? ¿Puedes realizar los cálculos que ellos hicieron?

Bien, para calcular esto debemos recordar que el volumen de un cubo de arista a se determina por la fórmula 3V a= ; por lo tanto, se tiene que:

1 5 3, litros = a

1500 3cm3 = a

a = 15003

De la misma manera que definimos una raíz cuadrada, podemos

decir que, por ejemplo, 3 8 2= porque 32 8= .

Así, 3 8 es un número que al elevarlo al cubo (o a tres) da por resultado 8.

También, 33 125 5, ya que 5 5 5 5 125= = ⋅ ⋅ = y 3

31 1 1 1 1 1 1, ya que

27 3 3 3 3 3 27 = = ⋅ ⋅ =

ya que

3

31 1 1 1 1 1 1, ya que

27 3 3 3 3 3 27 = = ⋅ ⋅ =

Observa que en este caso ( )32 8− = − ; por lo tanto, no puede darse la misma situación que en las raíces cuadradas. En el caso de las raíces cúbicas, la cantidad subradical puede ser negativa.

Fíjate ahora, 3 27 3− = − , porque −( ) = −3 273.

Así, podemos definir que:

1l = 1 000 cm3 = 1 000 cc

Recordar y archivar

Otra definición de raíz, muy

usada, es aquella que la define

como una potencia de exponente

racional.

Así, tenemos que:

mn m na a=

Por ejemplo: 3 312= ,

x x2323=

Recordar y archivar

¿Cómo calcular raíces cúbicas?

Al igual que las raíces cuadradas, existen raíces cúbicas cuyo resultado se puede escribir como fracción (es decir, son números racionales) y otras que no. Estas últimas también son números irracionales y solo se pueden aproximar, cuando sea necesario, según el contexto del problema.

3 a x= , si y solo si 3x a= para todo a∈R.

La ecuación 3x a= tiene una solución en los números reales,

que es 3 a .

U1 MAT 3M (008-073).indd 18 2/11/11 15:20:59

Page 19: 003000.000 grou

Trabaja

Resuelve los siguientes ejercicios en tu cuaderno.

5 Sin usar tu calculadora, encuentra el valor de cada raíz:

a. 3 1

b. 3 216−

c. 3 125

d. 3 64−

e. 3 343

f. 3 1−

g. 13313

h. 3 729−

i. 3 27

j. −10003

6 Haciendo uso de tu calculadora y con aproximación a la centésima, indica el valor de cada una de las siguientes raíces:

a. 3 9−

b. 3 11

c. 351227

d. 3 81−

e. 3 100

f. 3343

125−

g. 3 71,4

h. 3 88,02

i. 3 0,37−

j. 100103

Las apariencias engañan

¿Cuál de las bolas rojas es más grande?

Sorprendentemente, ambas son del mismo tamaño.

Para entretenerse

Para encontrar un valor aproximado, puedes hacerlo por el método de aproximación por exploración, de la misma manera que lo hicimos anteriormente:

3 2 está entre 1 y 2, ya que 31 1= y 32 8= .

⇒( ) =1 5 3 3753, , , entonces 3 2 es menor que 1,5.

⇒( ) =1 2 1 7283, , y 1 3 2 1973, ,( ) = .

⇒ Será un valor entre 1,2 y 1,3.

O bien, puedes usar la calculadora y obtener que 2 1 259921053 ≈ ,3,14≈π ...

Volviendo al problema de la fábrica de helado y su envase, tenemos que la medida de la arista del cubo del envase de helado será

15003 , que es aproximadamente 11,45 cm.

¿Qué le sugerirías tú al dueño respecto del envase con estas medidas?

Apliquen lo aprendido y resuelvan.

1 En un programa de TV se premiará con un notebook a aquel estudiante que logre solucionar el siguiente problema: En el interior de una caja de madera caben exactamente 18 bombones esféricos, distribuidos en tres hileras de seis.

Trabaja

UN

IDA

D 1

19

U1 MAT 3M (008-073).indd 19 2/11/11 15:21:02

Page 20: 003000.000 grou

20

Hay algunos conceptos que no puedes olvidar:

•Unaraíz(cuadradaocúbica)esunnúmeroquepuedeserracionaloirracional.

•Cuandounaraízcuadradaocúbicaesunnúmeroracional,esfácilencontrarsuvalorsinusodecalculadora. ¿Qué debes hacer? Contesta y revisa tu respuesta con tu profesor o profesora.

•Cuandounaraízcuadradaocúbicaesunnúmeroirracional,solosepodrádarunvaloraproximadode ella; para esto, puedes utilizar calculadora o el método de aproximación por exploración. ¿Por qué? Contesta y revisa tu respuesta con tu profesor o profesora.

•Lasraícescuadradasdenúmerosnegativosnosonnúmerosreales.

•Lasraícescúbicasdenúmerosnegativossísepuedencalcular,yaquesonnúmerosreales.

•Todaraízsepuedeescribircomopotenciadeexponenteracionaldelasiguienteforma:m

n m na a= .

Sintetizando

Responde las siguientes preguntas:

a. ¿Puedo verbalizar los conceptos de raíz cuadrada y cúbica?

b. ¿Pude hacer las actividades?

c. ¿Aporté a mi grupo cuando tuvimos que trabajar juntos?

d. ¿Qué ejercicios de las actividades individuales y grupales me costaron más?

e. ¿Tuve que consultar a mi profesor o profesora con mucha frecuencia?

Si hasta aquí no tienes dudas y has logrado resolver correctamente los ejercicios, te invitamos a seguir con la próxima sección. Si has tenido dificultades, debes volver a leer la sección y resolver tus dudas con tu profesor o profesora.

Revisemos lo aprendido

Estimen cuáles son las medidas del interior de la caja considerando que el volumen del molde de fabricación de cada bombón es de 13,5 cm3.

•Considerenπ = 3 para hallar el volumen del interior de la caja.•Tienenexactamenteseisdíasparaenviarsusrepuestasalcorreoelectrónicodelprograma.•Lose-mailsconlasposiblesrespuestasempiezanallegar.•Sehanseleccionadolasdiezmejoresyrecibeslanoticiadequeentreellasestálatuya.Seleshacitado

al programa en vivo para resolver individualmente el problema. ¿Cuál fue la respuesta ganadora?

2 Un grupo ecológico necesita tres tambores metálicos para su plan de reciclaje de basura. El lugar donde se pondrán mide 3 m de largo y 1 m de ancho; por lo tanto, estos tambores deben tener, a lo más, 1 m de diámetro. En Internet encuentran el siguiente aviso: “Se venden tambores metálicos, usados, de 200 litros; el alto es igual al diámetro. $5000 c/u”. Con estas dimensiones, ¿es factible comprar estos tambores? Considere π = 3,14 luego, hagan sus cálculos y justifiquen su respuesta.

U1 MAT 3M (008-073).indd 20 2/11/11 15:21:02

Page 21: 003000.000 grou

UN

IDA

D 1

21

Trabaja más...Trabaja en forma individual

1 Margarita y Nancy han sido amigas por casi 60 años. Están hojeando una revista de corte y confección de la década del 50. Nancy le recuerda a Margarita lo complejo que fue calcular cuánto hilo necesitarían exactamente cuando decidieron ampliar esta figura a una que tuviera 45 cm2. ¿Cuántos centímetros de hilo ocuparon para hacer el borde de la cruz?

Cada cuadradito tiene 2 cm2 de área

2 Lorenzo y Pepita están disfrutando de un atardecer en la parcela después de un productivo día de trabajo. Él le comenta que falta construir un estanque cúbico para almacenar agua en caso de emergencia. Días después, estuvo conversando con el vecino de la parcela aledaña, quien posee un estanque cúbico con un recubrimiento de 600 m2 de área. Él le sugirió que solo construyera uno con 60% del área total de su estanque. ¿Cuáles debieran ser las medidas del estanque cúbico que necesita la parcela de Lorenzo y Pepita de acuerdo a su vecino?

3 César y David son instaladores eléctricos y deben revisar unas láminas cuadradas de cobre que se han colocado en una de sus maquinarias, ya que se dilatan con el calor. Antes de ir a terreno a chequearlas, deben realizar algunos cálculos para compararlos con lo que pasa realmente con las láminas. Recibieron un informe que dice lo siguiente: “Según lo estudiado, la dilatación de un metal está dada por la fórmula ∆ α ∆ ∆A A T A= ⋅ ⋅0 2 , donde22f iv a d v= ∆ + ∆ α ∆ ∆A A T A= ⋅ ⋅0 2 , donde22f iv a d v= ∆ +22f iv a d v= ∆ + es el cambio de la medida de la superficie de la lámina; 0A es el área inicial; ∆ α ∆ ∆A A T A= ⋅ ⋅0 2 , donde22f iv a d v= ∆ + es el cambio de temperatura, y α es una constante asociada al material de la lámina (llamada coeficiente de dilatación)”.

–En este caso –dijo César a David– la temperatura ha variado desde 20 °C a 22 °C y la lámina se ha dilatado 1 mm por lado.¿Cuál es el coeficiente de dilatación del cobre? –preguntó David.

–Es 17 10 6⋅ −

∞C°C –dijo César.

–Pues bien, ahora sí podemos calcular la medida del lado de la lámina de cobre.–¿Cuál es? Expresa tu respuesta en números enteros.

4 A Ricardo le picó, en su brazo izquierdo, un insecto tropical que le dejó, a la hora del suceso, una aureola circular de un diámetro de 8 mm. Al cabo de una semana falleció. El área afectada finalmente había aumentado en 9 π mm2. ¿Cuál fue el diámetro final de la aureola circular?

Esta es la pregunta que tú debes contestar y que fue importante para la ulterior investigación de su muerte.

5 –Nicolás, ¡con qué fuerza lanzaste la pelota derechito hacia arriba! Lograste rozar el techo del gimnasio, y desde el suelo hasta el techo hay 8 m.

–Así es, Matías; nunca imaginé que lo lograría. ¿A qué velocidad la habré lanzado si mis brazos estaban a un metro del piso? Ayuda a Nicolás a responder esta pregunta. Para ello, puedes usar la fórmula 2 2iv gh= , donde vi es la velocidad de salida o de disparo; g, la aceleración de gravedad, y h, la altura máxima alcanzada. Da tu respuesta aproximada a la centésima.

6 Usando el método de aproximación por exploración, determina el valor a la centésima de las siguientes raíces:

a. 3 5

b. 3 17

c. 3 28

d. 3 36

e. 3 72

U1 MAT 3M (008-073).indd 21 2/11/11 15:21:03

Page 22: 003000.000 grou

22

Mis apuntes

Trabaja en grupo

1 Margarita tiene un cubo de volumen igual a 6561 cm3 y quiere construir otro que tenga el triple del volumen del que ya tiene. ¿Cuánto debe medir cada una de las aristas del cubo que desea construir?

2 Pericles está en Internet buscando información sobre su juguete favorito.

Él lee que hay dos tamaños y que sus envases, que son dodecaedros como los de la figura, tienen volúmenes de 958 cm3 y 7664 cm3. Pericles quiere saber cuánto más grande es la arista de uno que la del otro, para decidir cuál comprar. ¿Puedes ayudarlo respondiendo su pregunta?

3 El florero más querido de la mamá de Julián es una esfera de cristal que le regalaron sus papás el día de su matrimonio. Como la familia de Julián está cambiándose de casa, su mamá le ha pedido que calcule las medidas de una caja en

la que puedan embalar el florero para que quede justo topando las paredes de la caja y no se vaya a quebrar con la mudanza. Julián, que no tiene el florero a mano para poder medirlo, le pregunta a su mamá cuántos litros de agua caben en el florero, y su mamá le responde que caben aproximadamente 4 litros. Con esto, Julián hace unos cuantos cálculos y le da la respuesta a su mamá. ¿Cuál fue esta? (π = 3)

4 Leticia está haciendo un trabajo de tecnología que debe entregar al día siguiente. Este es su tercer intento de construir una caja en forma de cubo que contenga los 1,728 dm3 que quiere su profesor. La última que construyó solo tenía 8 cm de arista. ¿Cuántos cm más de arista debería tener la caja?

5 El estante de la pieza de Alberto es un modular formado por 16 secciones cúbicas de 0,216 m3 cada una, como lo indica la figura. ¿Cuáles son las dimensiones del estante?

U1 MAT 3M (008-073).indd 22 2/11/11 15:21:06

Page 23: 003000.000 grou

UN

IDA

D 1

23

Propiedades de las raíces Multiplicación de raíces

La figura muestra el trabajo de Tecnología que el grupo de Amelia debe desarrollar. Consiste en un mosaico compuesto por dos cuadrados: ABCD y AEBF.

D

A

C

B

E

F

El profesor les da como instrucción que el lado del cuadrado menor debe medir 50 cm. Para poder comprar los materiales, necesitan saber cuál es el área del cuadrado grande. ¿Cómo la podrían calcular?

Amelia dice que en el 22f iv a d v= ∆ +ABE, rectángulo en E, podemos aplicar el teorema de Pitágoras:

22 250 50 AB⇒ + =2

2.500 2.500 AB⇒ + =2500 2

2.500 2.500 AB⇒ + = 2500 2

2.500 2.500 AB⇒ + =2

2.500 2.500 AB⇒ + =5000 2

5.000 AB⇒ =2

2.500 2.500 AB⇒ + =5000 = AB, entonces, AABCD = ⋅5000 5000

Pero Mario, compañero de Amelia, dice que él se dio cuenta de que el cuadrado ABCD está formado por 4 triángulos congruentes y que, como sus catetos miden 50 cm porque son los lados del cuadrado AEBF, el área de cada uno de ellos es:

50 502

1250⋅ = cm2

Por lo tanto, el área del cuadrado ABCD debería ser 1250 4 = 5000 cm2.

Después de pensarlo un momento, deciden llamar a su profesor y contarle su análisis. Él les dice que ambos razonamientos son correctos; entonces Mario y Amelia concluyen que:

5000 5000 5000⋅ = . Pero, ¿cómo es esto posible?

Mario y Amelia vuelven a pensar junto con su grupo y escriben que la única forma de que esto fuera posible es que,

5000 5000 5000 25000000 50002⋅ = = = .

El profesor, al ver su razonamiento, los felicita y les dice que han descubierto cómo se multiplican dos raíces.

Propiedades de las raíces que te permitirán operarlas y trabajar con ellas.Desarrollarás las siguientes habilidades:• Identificar•Calcular•Comprender•Resolver•Relacionar•Aplicar• Interpretar y generar ideasHabilidades por actividad:• Identificarycalcular:1, 2, 3, 4a, 4b, 4c,

4d, 5a-h, 4•Comprender y resolver: 4e, 4f, 4g, 4h, 4i,

4j, 5i, 5j, 5k, 1, 3•Relacionar y aplicar: 2, 5• Interpretar y generar ideas: 6, 7

Trabaja más...

Habilidades por actividad:• Identificarycalcular:7, 30, 31, 32•Comprender y resolver: 1, 2, 8, 9, 10, 17,

18, 19, 23, 25, 26, 28, 36•Relacionar y aplicar: 3, 6, 11, 12, 13, 14,

15, 16, 21, 22, 24, 27, 29, 34• Interpretar y generar ideas: 4, 5, 20, 33, 35

En esta sección aprenderás

U1 MAT 3M (008-073).indd 23 2/11/11 15:21:08

Page 24: 003000.000 grou

24

Si generalizamos el hallazgo del grupo de Amelia, entonces podemos escribir que:

Ejemplifiquemos multiplicando algunas raíces:

a. 2 8 2 8 16 4⋅ = ⋅ = =

b. 20 5 100 10⋅ = =

c. 2 2 3 18 2 3 2 18 6 36 6 6 36⋅− = ⋅− ⋅ ⋅ = − = − ⋅ = −

d. 6 3 5 3 30⋅ =

e. 2 7 2 2 2 14+( )⋅ = + (Usamos propiedad distributiva)

f. 5 4 3 2 3 2 15 8 9 2 15 8 3 2 15 24−( )⋅ = − = − ⋅ = −

g. 2 11 2 11 2 2 2 11 2 11 11 11

4 121 4 11 7

−( ) +( ) = ⋅ + − − ⋅ =

− = − = −

h. 2 3 2 2 2 3 3 2 2 6 3

5 2 6

2 2 2−( ) = ( ) − ⋅ ⋅ + ( ) = − + =

− (Cuadrado de binomio)

i. 4 3 4 3 4 3 4 3 4 322

+ ⋅ − = +( ) −( ) = − ( ) =

16 3 13− = (Suma por diferencia)

j. 3 3 34 2 8 2⋅ = =

Se pueden multiplicar raíces de igual índice. Para ello, se conserva la raíz y se multiplican las cantidades subradicales.

Esto es: a b ab⋅ = { }, 0a b +∀ ∈ R

Observa que también se puede mirar esta definición de la siguiente manera:

a b a b⋅ = ⋅ , esto es, que la raíz de un producto se puede escribir como el producto de las raíces de sus factores.

En general, se puede escribir que, n n na b ab⋅ =

Observa: a a a a a a a a b( ) = ⋅ = ⋅ = = ∀ ∈ { }+2

2 0, R .

U1 MAT 3M (008-073).indd 24 2/11/11 15:21:11

Page 25: 003000.000 grou

Trabaja

División de raíces

En una clase de Diseño se plantea lo siguiente: “Se están experimentando nuevos diseños de casas, con una habitación cúbica donde exista un pilar de 12 metros que vaya desde uno de los extremos superiores al extremo inferior contrario”.

“En este caso –dice el profesor– lo que se está pidiendo es que el pilar sea la diagonal del cubo. ¿Cuál será nuestro problema de medición?”

Ángelo, uno de sus estudiantes, recordó que en el colegio había aprendido que la fórmula de la diagonal de un cubo es 3D a= ⋅ , donde a es la arista del cubo. Después de hacer los cálculos correspondientes, dio su respuesta.¿Cuál fue el valor que encontró Ángelo para el lado de la habitación?

¿Por qué existe allí un problema concreto de medición y construcción?

Si 3D a= ⋅ , entonces se tendría que 12 3a= , lo que implica que 12

3a = . Pero ¿cómo se podrá calcular esto?

¿Cómo podemos dividir raíces? Pensemos primero en lo siguiente:

13 13⋅ =

13 13

⇒ ⋅ = / : 3

1 13 3

⇒ =

12

met

ros

UN

IDA

D 1

25

En general, podemos escribir que: 1 1a a= , donde a∈R+

(nota que 0a ≠ ).

Resuelve en tu cuaderno los siguientes ejercicios:

1 Desarrolla los productos indicados y, de ser posible, calcula el valor de la raíz:

a. 2 24,5⋅ d. 2 22

a a−( ) b. 2 12 5 4 3 203 3 3, ⋅ ⋅ e. 14 15 14 153 +( ) −( ) c. 7 13x x⋅ f. 12 5 3 2 523 33 23, a b a ab⋅ ⋅

U1 MAT 3M (008-073).indd 25 2/11/11 15:21:13

Page 26: 003000.000 grou

26

Pero ¿y si numerador y denominador son raíces? Pues bien, considera lo siguiente:

5 1 15 577 7

= ⋅ = ⋅(Usamos la propiedad de multiplicación de raíces)

1 557 7

= ⋅ =

Entonces, volvamos a los cálculos de Ángelo.

Él tenía que 12

3a = , entonces podemos escribir lo siguiente:

1443

a = (al escribir 12 como 144 , podemos ocupar la propiedad

de división de raíces que acabamos de deducir). Así,

144 48 6,933

a = = ≈ (nótese que este es un número irracional).

Como 48 es un decimal infinito, habrá un problema de aproximaciones en la construcción, pues no podemos determinar el valor exacto del lado de la pieza. Solo podremos encontrar un valor aproximado para poder construirla.

Ahora bien, por otro lado, tenemos que las construcciones no son planas, por lo que se pueden solucionar estos problemas de aproximaciones con el material al construir.

Ejemplos:

1. 200 : 40 200: 40 5= =

2. 33 332 : 4 8 2= =

3. 27 : 3 9 3= =

4. 12 26 2 2 6 13: =

5. 144 144 1225 525

= =

6. 4 2 22 3 2a b ab ab: =

Así, generalizando, tenemos que:

a aa : b

bb= = , donde { }0a +∈ R y b b∈ ≠( )R+ 0( )0b ≠ .

En general: a bab

bn n n: = ≠( )0( )0b ≠ .

Para dividir raíces de igual índice, se conserva la raíz y se dividen las cantidades subradicales.

U1 MAT 3M (008-073).indd 26 2/11/11 15:21:15

Page 27: 003000.000 grou

UN

IDA

D 1

27

TrabajaDesarrolla los siguientes ejercicios en tu cuaderno.

2 Resuelve las divisiones y, de ser posible, calcula el valor de la raíz.

a. 37037

b. 33 500 : 4

c. 91 133x x:

d. 3 33

y y:( )

e. 18 75 39 108 15 243 21 27 3 3− + −( ) :

f. 3 36 5 8 3 2 11:a b c a b c

g. 3 3

3 3

0,8 : 0,08

1,2 : 0,012

h. 2a ab

aa

b

i.

1 39 2 1,5213 5 1,25 4

3 135 5

⋅ − ⋅

j. 14 11 14 11 35 17 35 17

92 11 92 11 22 20 22 2

3

3

+( ) −( ) ⋅ +( ) −( )+( ) −( ) ⋅ +( )⋅ − 00( )

U1 MAT 3M (008-073).indd 27 2/11/11 15:21:17

Page 28: 003000.000 grou

28

Descomposición de raíces

Anteriormente, dijimos que podíamos escribir que a b a b⋅ = ⋅ .

¿Qué pasaría si probáramos hacer esto con 50?

Escribiríamos que 50 5 10 2 25 1 50= ⋅ = ⋅ = ⋅ .

Ahora, si nos fijamos bien: 50 2 25 2 5 5 2= ⋅ = ⋅ = .

Así, hemos logrado escribir 50 de una forma equivalente.

A este proceso se le llama descomposición de raíces.

Descomponer una raíz cuadrada a( ) es escribirla de la forma

b c , de modo que se cumpla que 2a b c= ⋅ .

En general, podemos descomponer n a y escribirla de la forma b cn si se cumple que na b c= ⋅ .

Para ejemplificar, verás la descomposición de raíces para los siguientes casos:

1. 162 81 2 81 2 9 2= ⋅ = ⋅ =

2. 3 300 3 3 100 3 100 3 3 10 3 30 3= ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ =

3. 12 4 3 4 3 4 3 2 3125 25 5 25 5 25 5 5 5

⋅= = ⋅ = ⋅ =⋅

4. 12 4 3 2 33 2x y x x y x xy= ⋅ ⋅ ⋅ ⋅ =

5. 16 8 2 2 243 33 3a a a a a= ⋅ ⋅ ⋅ =

TrabajaResuelve en tu cuaderno los siguientes ejercicios.

3 Descompón cada una de las siguientes raíces:

a. 18

b. 3 81 3 4x y

c. 50 2a b

d. 3 48

e. 2 44 3 7 9a a b c

f. 12

1283

g. 5 160 7 9 133a x y z

h. 8

9 23

x

i. 2 1254

25

3bb

j. 250 5 63 m n

U1 MAT 3M (008-073).indd 28 2/11/11 15:21:22

Page 29: 003000.000 grou

UN

IDA

D 1

29

Suma y resta de raíces

¿Te acuerdas de Amelia, su grupo y su trabajo de Tecnología? Pues bien, ellos ya compraron casi todos sus materiales. Ahora solo tienen que resolver un pequeño problema. Deben comprar la cantidad suficiente de palitos de maqueta para poner por el borde y así terminarlo. Entonces, todos miraron a Amelia y a Mario, esperando una respuesta.

Lo pensaron y respondieron lo siguiente:

“Ya habíamos calculado que AB = 5000, por lo que debemos sumar

tres veces 5000 y luego agregarle los catetos del triángulo AEB. Así,

tres veces 5000 3 5000= ⋅ , entonces debemos comprar

3 5000 100⋅ + . Si aproximamos el valor de 5000, tendremos que

comprar 3 70,7 100 312,1⋅ + = cm, o sea, aproximadamente 7 palitos

de 50 cm cada uno, lo que es más que suficiente”, dijo Amelia.

D C

BA

F

E

Mario señaló que estaba de acuerdo con su razonamiento, pero

agregó que de ser así, entonces se podría escribir que dos veces

5000 más dos veces 5000 serían cuatro veces 5000, lo que se

podría escribir como 2 5000 2 5000 4 5000+ = .

Su profesor, atento a los razonamientos de sus dos estudiantes, los felicitó otra vez y les dijo que aquello se podía generalizar de la siguiente manera:

Se pueden sumar o restar raíces que tengan igual cantidad subradical e igual índice. Para ello, sumamos o restamos el coeficiente numérico que antecede a la raíz y conservamos la raíz.

U1 MAT 3M (008-073).indd 29 2/11/11 15:21:24

Page 30: 003000.000 grou

30

TrabajaResuelve los siguientes ejercicios.

4 En tu cuaderno, realiza las sumas y restas de raíces y descomponlas cuando sea necesario.

a. 6 6 6 9 6+ ⋅ − ⋅

b. 3 3 3 37 11 11 3 11 5 11⋅ − − ⋅ + ⋅

c. 11 13 4 15x x x x x+ − − +

d. 7 12 7 7 74

3 3 3+ +

e. − + −2 54 6 24 8 6

f. 6 1898

15 87564

31 7216

3 3 3− +

g. 4 0,004 5 0,009 0,001⋅ − ⋅ −

h. 3 128 4 75 2 162 4 147− − +

i. 5 189 56 2 8753 3 3− +

j. 5 15 533 16 81

121 12 81⋅ + ⋅ − ⋅

Raíz de una raíz

Cuando Mario, Amelia y su grupo estaban terminando su trabajo, llegó su profesora de Matemática, motivada por lo que el profesor de Tecnología le había contado sobre ellos y sus razonamientos. Conversaron largo rato acerca de lo que habían descubierto y lo importante que era pensar y ser capaz de resolver nuevos desafíos sin darse por vencidos al primer intento. Como todos estuvieron de acuerdo con ello, la profesora les planteó el siguiente desafío: “¿Se podrá extraer raíz de otra raíz?”

Meditaron por un tiempo y no sabían qué hacer. Entonces, Pablo, otro integrante del grupo, recordó algo que vio en un libro y que le había parecido curioso: una raíz se podía escribir también como una potencia.

Para ejemplificar, se han resuelto los siguientes ejercicios de sumas y restas de raíces.

1. 2 10 3 10 5 10+ =

2. 8 11 14 11 11 5 11− + = −

3. 14

3 23

3 512

3− = −

4. 200 2 18 10 2 6 2 16 2+ = + = (Descomponemos cada raíz)

5. 18 50 3 2 5 2 8 2x x x x x+ = + =

U1 MAT 3M (008-073).indd 30 2/11/11 15:21:27

Page 31: 003000.000 grou

UN

IDA

D 1

31

¿Te acuerdas que ya lo aprendiste en la sección anterior?

Según Pablo, a a2323= ( ) . Si esto es así, entonces se podría escribir,

por ejemplo, que:

a a a4514

514

15

= =

Ahora bien, aplicando las propiedades de las potencias, se tiene que:

a a a14

15

120 20

= ( ) = .

Entonces, Pablo dijo que, en conclusión: 5 204 a a= .

Como todo el grupo estuvo de acuerdo con lo que dijo Pablo, fueron a buscar a su profesora para contarle su deducción. Ella los felicitó y agregó que, en general, podemos afirmar lo siguiente:

Como ya has aprendido, las raíces cuadradas de números negativos no son números reales; entonces, ¿qué son? Por siglos se pensó que estas expresiones no eran números. Sin embargo, el matemático Jerome Cardan se atrevió a trabajar con ellas como si lo fueran y logró resolver algunos de los problemas de ecuaciones en los que estaba enfrascado.

Aunque en su momento a todos les pareció una locura, el sólido trabajo de Cardan y de muchos matemáticos posteriores a él llevó en 1777 a otro matemático, Leonhard Euler, a definir formalmente a estos números como números imaginarios.

Para saber más

7+¡$

><

2? = %

Para extraer raíz de otra raíz, se deben multiplicar los índices de las raíces y conservar la cantidad subradical.

Esto es, n m n ma a⋅= .

Luego, la profesora escribió en la pizarra los siguientes ejercicios:

1. 4 256

Ellos dijeron que era muy fácil y respondieron:

84 256 256 2= =

2. 3 3 81 Lo pensaron un poco y respondieron: “¡Fácil!”

3 333 81 3 9 27 3= ⋅ = =

3. 5 2 Este ejercicio los complicó un poco más, pero luego de meditarlo

un tiempo, Pablo dijo a sus amigos que podrían resolverlo como potencias y escribieron:

5 2 5 2 5 2 5 2 5 2 5 2

12

12

12 1

212

12 1

214

24

14= ⋅ = ⋅

= ⋅

= ⋅ = ⋅ =

5 2 5 2 50214 24 4⋅( ) = ⋅ =

La profesora les dijo que, en general, podían escribir que:

n m mn ma b a b⋅= ⋅ .

U1 MAT 3M (008-073).indd 31 2/11/11 15:21:30

Page 32: 003000.000 grou

32

Ahora que tú también lo sabes, recorre paso a paso la aplicación de esta propiedad:

1. 320 320

64 5 64 5 2 5

3 6

6 6 6 6

=

= ⋅ = ⋅ =

(Multiplicamos los índices)

(Descomponemos)

2. 2 43 10 3 10 90= ⋅ = (Debemos introducir el 3 dentro

de la raíz y luego podemos multiplicar los índices)

3. 2 3 2 3 56 34 12 12 12a a a a a+ = + = (Aplicamos la propiedad de

raíz de raíz en cada uno de los sumandos y luego sumamos)

4. 2 3 2 2 3 2

2 18 2 18

288

2

4 44

8

= ⋅

= ⋅

=

(Debemos introducir los coeficientes numéricos dentro de la raíz, desde el que está

más adentro al que está más afuera)

(Aplicamos propiedad de raíz de raíz y luego introducimos el 2 dentro de la raíz cuarta que quedó)

(Aplicamos propiedad raíz de raíz nuevamente)

TrabajaResuelve en tu cuaderno los siguientes ejercicios.

5 Reduce a una sola raíz.

a. 9

b. 2

c. 3 64

d. 2 3

e. 2 3 5

f. 2 753

g. 3 2 5

h. 9 5 53 3−

i. 6 486+

j. 2 9 127

4 0 253 6⋅ ,

k. 9 0 33 1 2

33

3⋅ ,

,

TrabajaResuelve los siguientes problemas con tu grupo. Usa calculadora cuando sea necesario y aproxima tus respuestas a la centésima.

1 Cuando se produce un accidente de tránsito, Carabineros necesita estimar la velocidad a la que iba el automóvil según las marcas de derrape (marcas que dejan los neumáticos en el suelo al frenar).

Para calcularla, saben que la velocidad (en km/h) es la multiplicación de un factor: 3 6 2, º 0,23=µ , dado por

el material del camino, por dg, donde d es la medida de la marca en metros que dejan los

neumáticos y g la aceleración de gravedad 9 8 2, m s .

Si un automóvil dejó una marca de 95 m y el factor del suelo es 0,23=µ , ¿cuál era su velocidad en km/h al momento del accidente?

U1 MAT 3M (008-073).indd 32 2/11/11 15:21:34

Page 33: 003000.000 grou

UN

IDA

D 1

33

2 La profesora de Geometría les mostró a sus estudiantes que se podía construir un cuadrado a partir de un rectángulo de 2 por 18 cuadritos del cuaderno. Hecho esto, les planteó formar con él un cuadrado de igual área. Los alumnos lo hicieron fácilmente y formaron un cuadrado de 6 por 6 cuadraditos. Luego, los desafió a encontrar la medida del lado de un cuadrado que tuviera por área la misma que un rectángulo de lados 105 por 12 cm.

¿Cómo lo harían? Resuelvan el problema.

3 El curso de Eugenia está haciendo mantas de polar para los abuelitos del hogar de ancianos. El diseño que ves es el que realizó Eugenia. Hizo los cálculos del género que comprará, pero desea poner cintas en las uniones de los triángulos formados y esos cálculos la tienen complicada.

Ayuden a Eugenia a determinar la medida de los trazos al interior de la figura y respondan cuántos metros de cinta debe comprar.

1,5 m

1,5 m

1 m

1 m

0,75 m0,75 m

0,75 m 0,75 m

4 En el colegio de Roberto hay diarios murales para varias asignaturas: Lenguaje, Arte, Matemática, etc. En el de Matemática, los profesores siempre ponen desafíos para sus estudiantes. Este mes plantearon uno para 3º y 4º medio:

Usando las propiedades de las raíces, demostrar que 2 3 7 4 3 1+( )⋅ − = .

Les aseguro que ustedes también pueden hacerlo. Desarrollen ordenadamente y demuéstrenlo.

5 Una empresa de paisajismo va a embellecer el Parque Central de la Avenida Esperanza. Allí hay una figura que desean mantener: dos circunferencias concéntricas, donde se deberán plantar rosas y arbustos perennes.

El paisajista encargado aporta los siguientes datos: la circunferencia mayor tiene un área de 7850 m2 y el área de la menor es 1256 m2. Además, según su teoría, para que esta figura armonice con el resto del diseño, los radios de las circunferencias deben estar en una razón menor o igual a 0,75. ¿Servirán las circunferencias que están hechas o deberán reconstruirlas?

Hagan los cálculos correspondientes, sin calculadora, y fundamenten su respuesta.

r R

U1 MAT 3M (008-073).indd 33 2/11/11 15:21:35

Page 34: 003000.000 grou

34

•Hazunresumendelaspropiedadesestudiadasenestasecciónyescribeunejemplodecada una de ellas.•¿Cuáldelaspropiedadesesaquellaquemástecuestadistinguiryaplicar?Vuelvearepasarlos

contenidos referentes a esta propiedad.•¿Haslogradohacerlasactividades?•¿Tesientessegurodeloquehasaprendido?

Revisemos lo aprendido

Las propiedades de las raíces son aquellas reglas que nos dicen qué operaciones están permitidas con las raíces y cómo se realizan. Estas son:•Multiplicaciónderaícesdeigualíndice.•Divisiónderaícesdeigualíndice.•Raízdeunaraíz.•Descomposicióndeunaraíz.•Sumayrestaderaíces.

Sintetizando

6 La profesora les ha pedido resolver el siguiente desafío: “Tomen un número par, entre 2 y 10, cuya raíz cuadrada sea un número irracional. Luego dividan la raíz cuadrada de este número por la raíz cuadrada de 2. Vuelvan a dividir por la raíz cuadrada de 2 el resultado anterior y así sucesivamente. ¿A qué resultado tiende? ¿Se obtendrá esto siempre para cualquier número que se tome?”

7 Carola está estudiando para la PSU. Ella debe reforzar Geometría, por lo que ha empezado a recordar

algunas fórmulas de los triángulos. Así, descubrió que había olvidado que la medida de la altura de un

triángulo equilátero corresponde a la fórmula ha=2

3 , donde a es la medida del lado. Ella suspiró y se

dijo: “otra vez raíces”. Después de hacer varios cálculos, se dio cuenta de que nunca se podría tener que

altura y lado fueran ambos racionales. Dentro de sus cálculos, observó que si la altura era 12 , o 48 ,

o 108 , obtendría un triángulo que tenía por medida de su lado un número natural. Entonces pensó

que todas las raíces cuadradas de múltiplos de 12 seguían la misma regla, pero al calcularlo con 24

su razonamiento falló.

Realicen los cálculos que hizo Carola y decidan por qué falló este último caso y con qué raíces de

múltiplos de 12 se cumple la teoría de Carola.

U1 MAT 3M (008-073).indd 34 2/11/11 15:21:35

Page 35: 003000.000 grou

UN

IDA

D 1

35

Trabaja más...Trabaja en forma individual

1 Determina el valor de x en:

a. 5 32 18 75 6x = − ⋅ ⋅,

b. 52

6 25 2 2 0 253 3 23 3⋅ ⋅ ⋅ =, , x

c. 2

0 6 123x

, −=

2 Determina el área de un rectángulo si sus medidas, en unidades, son:

a. 9

32 3 8 2+ − y

62

b. 317 22 2

+ y 317 22 2

3 “Señorita Mireya, no entiendo cómo fabricar la cubeta de vidrio, o lo que usted llama paralelepípedo, con semejantes medidas y, más aún, garantizar que finalmente pueda contener 5 litros de manera exacta. Discúlpeme, pero me parecen poco prácticas las medidas que usted me ha dado. Se las voy a repetir en el mismo orden: 333 4 , 6,25 y 5dm dm dm dm, 333 4 , 6,25 y 5dm dm dm dm y 333 4 , 6,25 y 5dm dm dm dm”.

¿Será posible que con las anteriores medidas un paralelepípedo pueda contener exactamente 5 litros? Haz los cálculos respectivos para justificar.

4 A Luis le encantan las competencias en grupo que se realizan en las horas de Matemática. Siempre hay tres puestos entre los ganadores, que, de mayor a menor, se distribuyen en los grupos que realizan correcta y más rápidamente los desafíos. Esta vez el profesor les permitió usar calculadora y les pidió que multiplicaran rápidamente entre sí la raíz cuadrada de cada uno de los 10 primeros números naturales. Todos los grupos, excepto el de Luis, calcularon raíz por raíz y luego multiplicaron.

De acuerdo a lo que tú has estudiado en esta sección, ¿cuál fue la estrategia que usó el grupo de Luis gracias a la que obtuvo el mayor puntaje? ¿Cuál fue su respuesta?

5 El viejo almacenero de la otra cuadra de donde

yo vivo, en los momentos en que no entraba

ningún cliente a su negocio, leía y leía. Muy

aficionado a descubrir el secreto de los

números, encontró en uno de sus libros que, la

raíz cúbica de 7, provenía del producto de las

raíces cúbicas de 2, de 3 y de 76

. Exclamó: “¡Qué

frustrante no poder entenderlo! ¡Qué dura me

tocó la vida cuando era niño, ya que tenía que

trabajar y no tuve la oportunidad de estudiar

más allá de 6º básico!” Él no se percató de que

yo había entrado y que lo escuchaba.

Tú puedes mostrar que lo que dice el libro es

verdad. Hazlo.

6 “En efecto, Agustina, como tu tío abuelo te cuento que estaba escrito en la herencia que la diagonal del terreno cuadrado de nuestra tía Menche era simplemente una aproximación a la centésima de 735 m m. Ella misma lo había expresado así. Ahora bien, ¿de dónde sacaron este dato con raíz cuadrada? ¡No lo sé!, pero si sé que el viejo pillo que nos hizo los trámites de la transacción de ese terreno por este otro donde estamos viviendo ¡nos estafó! Porque este solo tiene 340 m²”.

¿Por qué dice esto el tío de Agustina? Calcula la diagonal del terreno actual y luego, haciendo uso de la calculadora, para aproximar ambas raíces a la centésima, encuentra el número de metros cuadrados en que fueron estafados.

7 Reduce al máximo posible la siguiente expresión:

13 64 2 10 3 9 46

3 33

3

− − +

8 ¿Cuántas veces cabe 3 21 en 3 168 ?

9 ¿Cuál es el número que se obtiene al dividir la raíz cuadrada de 0,28 por la raíz cuadrada de trece décimos?

U1 MAT 3M (008-073).indd 35 2/11/11 15:21:38

Page 36: 003000.000 grou

36

10 Despeja x en la siguiente ecuación: x 7 1225= .

11 El área de un triángulo es 6 cm². Si la longitud de la base mide 3 cm, ¿cuál es el valor de la altura?

12 Fabián hizo un bosquejo de un dibujo para su clase de Arte que consiste en dos rectángulos, como lo muestra la figura. Para realizar el dibujo final, tiene que considerar que el rectángulo mayor debe tener área igual a 25 cm2. ¿Cuánto debe medir el lado a del rectángulo mayor?

1 cm2 cm

a

13 Natalia está diseñando un jardín. Para ello, cuadriculó el terreno de manera que cada cuadrado tenga 1 m de ancho. En el bosquejo de la figura marcó tres puntos: A, B y C. En ellos colocará árboles y necesita calcular la distancia que debe haber desde el punto C hasta la línea que une A con B, considerando que el área del triángulo ABC tiene que ser de 6 m2. ¿Cuál es la distancia que necesita calcular Natalia? (Calcúlala aproximando a la centésima).

C

B

A

14 “Te desafío a resolver este problema –le dijo Tomás a Fulvio–. Escucha con atención: divide

k k k3 23 4 3 4+ + + por k3 ”.

¿Existirá algún valor de k que haga que la división sea un número natural?

15 El profesor de Física le ha propuesto a Georgina un nuevo problema, porque ella le comentó que en clases de Matemática están estudiando raíces. Él le pidió que encontrara la razón entre los radios de dos esferas en

función de sus volúmenes. Georgina lo hizo considerando que dos esferas son siempre cuerpos geométricos semejantes. Nombró por V y R al volumen y radio de la esfera mayor y por v y r al volumen y radio de la esfera menor.

¿Lo puedes hacer tú y dar la respuesta?

16 Luciano debe dibujar un hexágono regular como el de la figura. Para esto, solo tiene una condición para la altura de los triángulos interiores. Esta debe medir 18 cm. ¿Cuál debe ser la medida del lado del hexágono?

17 Descompón cada raíz en factores, de tal manera que demuestres que:

a. 81000 es igual a 90 10

b. 7 5 4a b c es igual a 3 2 2a b c ab

c. 21600

2

3

3 es igual a 36 50

18 Se sabe que 23 x yz es igual a 490. Además, 3 x vale 7 y 3 z , 5.

¿Cuál es el valor de 3 y ?

19 El volumen de un paralelepípedo de aristas a, b y c es 5 1283 cm3. Completa el siguiente cuadro con posibles medidas para c, descomponiendo, previa y adecuadamente, el volumen en factores.

a b c

5 cm 2 cm5 cm 4 cm

20 Manuel, junto con su hermano, están buscando en Internet una respuesta respecto de la fórmula de la diagonal de un cuadrado. Encontraron que se puede calcular conociendo previamente el doble de su área y, luego,

U1 MAT 3M (008-073).indd 36 2/11/11 15:21:41

Page 37: 003000.000 grou

UN

IDA

D 1

37

extrayendo su raíz cuadrada. Ambos se quedaron sorprendidos. ¿Es esta fórmula equivalente a la conocida por ellos, que dice que la diagonal de un cuadrado es igual al producto del lado por la raíz cuadrada de 2? Demuéstralo tú.

21 “A veces me ocurre que hago los ejercicios de raíces tan rápido que en las pruebas me salto pasos de desarrollo importantes de escribir. Fíjate que me pasó nuevamente en la última

prueba. Tenía que descomponer 812 en dos raíces cuyas cantidades subradicales fueran dos naturales sucesivos, y luego volver a descomponer si era posible, y yo solo anoté el resultado. Por supuesto, me bajaron puntos por no seguir instrucciones. ¿Puedes tú ayudarme a escribir los pasos del desarrollo?”

22 Blas le cuenta telefónicamente a su amigo Miguel una situación bochornosa que le ocurrió en su colegio.

“–... Así que, para impresionar a Roberta, le conté que el profesor de Matemática me había lanzado el desafío de descomponer la raíz cúbica de 48000 en cinco raíces distintas, donde al menos una de ellas tuviera raíz cúbica exacta y que yo lo había resuelto en un segundo. Entonces, ella me pidió que le dijera cuál era el resultado. Menos mal que justo tocaron el timbre y tuvimos que entrar a clases; después ya no la vi al salir”.

–¿Y le contarás que no tenías la respuesta, verdad? Supongo que no le mentirás – le dijo Miguel.

–Sí, sí, le contaré, pero ayúdame también con la respuesta, ¿ya?

Da tú también una posible respuesta para el problema de Blas.

23 “Perdóname, Juanita, pero no me es fácil pensar que 12 provenga de la descomposición sucesiva en raíces cúbicas de 1728. Tengo mis dudas”.

Haz todo el desarrollo y luego responde si es posible o no.

24 –Dora, Dora, llama a Willy porque tengo que darle una tarea.–Usted lo mandó al banco a hacer un depósito,

y no volverá hasta después de almuerzo. Son las 11:30 de la mañana. ¿Qué hay que hacer?–Hay que pintar por fuera este contenedor cúbico cerrado de 3375 litros, y no sé cuánta pintura vamos a necesitar.Dora se hizo cargo de la situación y calculó primero la superficie total por pintar. ¿Cuál crees que fue el valor que obtuvo? Expresa tu respuesta en m2.

25 Los lados de un cuadrilátero miden: 4 5 3 45 80; ; y 180, todos expresados en decímetros. ¿Cuál es el valor de su perímetro?

26 El radio de una circunferencia, medido en m, es 73 . Una segunda circunferencia, concéntrica a

la anterior, tiene por radio el triple del de la primera. Y en otra circunferencia, también concéntrica a las anteriores, su radio corresponde al doble del de la segunda. ¿Cuánto vale la suma de sus perímetros y de sus áreas?

27 Los cuadrados amarillos de la figura tienen por medida de superficie 8 5− unidades de área cada uno; sin embargo, el área del cuadrado verde es 8 5+ unidades de área. De la zona en blanco que completa el cuadrado que los contiene a todos no se tiene esta información de superficie.

a. Encuentra el valor del lado del cuadrado que los contiene.

b. ¿Cuál es el valor del área del cuadrado que los contiene?

c. ¿Cuál es el valor del área de la zona en blanco?

28 Cristina estaba aburrida en clases de Matemática. Por un momento se distrajo y en su cuaderno dibujó esta linda casita. Su profesora se dio cuenta de esto y, para su asombro, la profesora no la retó; solo le dio una tarea: calcular el perímetro de la casa.

U1 MAT 3M (008-073).indd 37 2/11/11 15:21:42

Page 38: 003000.000 grou

38

¿Puedes dar tú también la respuesta a esta pregunta, si cada cuadrado tiene un lado de longitud 1 cm?

1 u

29 Paolo comenzó hoy su primer trabajo en una empresa de mantención de tractores. Allí aprendió que los tractores tienen mecanismos de engranajes, como el que se muestra en la figura, para aumentar su velocidad de partida. Su jefe le ha dicho que debe crear un engranaje similar a este, en que cada una de las superficies de las piezas celestes tenga 3 π dm2 de área y la pieza central tenga 27 π dm2 de área, y le ha pedido que realice los cálculos necesarios para determinar cuál debe ser el diámetro de la circunferencia mayor (en rosado). Ayuda tú a Paolo y da la respuesta pedida.

30 A Fabiola le gusta mucho hacer deportes y decidió participar en una carrera que se efectuará el próximo mes. Averiguó y encontró un mapa del circuito que debe realizar (el de la figura adjunta), donde se presenta un plano cuadriculado. Sin embargo, hay una información que, según sus cálculos, está errada: se indica un circuito de 25 km por recorrer. ¿Estás tú de acuerdo? Haz los cálculos matemáticos y responde la pregunta.

Partida

Llegada

1 km

31 En la empresa de Ronaldo se están fabricando unas cajas para envasar regalos, como las que se muestran en la figura. Ronaldo debe determinar cuánta cinta se necesitará para cubrir las diagonales de las caras.

¿Puedes tú dar la respuesta a Ronaldo?

5 dm

2 dm3 dm

32 Maritza está diseñando una bandera para su club de amigos y pensó en colocar una estrella hecha con un cordón de satín. Para ello, la dibujó usando cuadrados de 10 · 10 cm, como se muestra en la figura adjunta. ¿Cuántos centímetros de cordón de satín debe comprar?

33 Ana, está dando una interrogación oral en estos

momentos en la pizarra. Tiene que escribir de

manera reducida la siguiente expresión: 3 3 91 .

Ella anotó 3 3 891 91= . Algo está mal, a

juzgar por la cara del profesor. ¿Cuál es la

respuesta correcta?

34 –¡A veces hay que ser preciso, pero nunca

tanto, Leonidas!

–Lo siento, jefe; usted ayer me tildó de

desordenado en mis cálculos y poco preciso, y

no le gustaron mis aproximaciones.

U1 MAT 3M (008-073).indd 38 2/11/11 15:21:42

Page 39: 003000.000 grou

UN

IDA

D 1

39

Entonces hoy calculé que si tenemos la

circunferencia de área 421 m2, como usted

dijo, entonces el diámetro respectivo mide

42

421π

m.

Tú que sabes matemática, ¿concuerdas con el

cálculo de Leonidas?

35 “A veces un simple ejercicio matemático sirve

para encontrar cosas inesperadas”, comentaba

el caballero que iba sentado en el bus al lado

del joven con audífonos puestos. Después

extrajo un papel y le mostró donde se leía:

“Uno se ve reflejado en 2 0 1253 , ”. El joven

lo miró extrañado, mientras alguien le hacía

gestos para que no le hiciera caso, porque el

caballero estaba un poco “loco”. Lo curioso es

que algo de verdad parece decir ese caballero.

Descúbrelo. Reúne todo en una sola raíz y

prosigue. Ya verás por qué decía esto el caballero.

36 “¿Quién desarmó mi fórmula? –gritó airado el

mago matemático–. ¡Mira como la han dejado!: 1Q

Tt A ε σ

= ⋅⋅ ⋅

. Si la tenía lista.

Había logrado colocar todo como expresión

de una sola raíz para remplazar valores y, en

una sola extracción, saber la temperatura T

que buscaba...”.

Ayuda al mago matemático a obtener

nuevamente la fórmula. ¿Cuál es tu respuesta?

Mis apuntes

U1 MAT 3M (008-073).indd 39 2/11/11 15:21:44

Page 40: 003000.000 grou

40

RacionalizaciónEl profesor de Tecnología de Amelia y Mario evaluó el trabajo y quedó muy impresionado. Como sabía del estusiasmo del curso, les propuso teselar el diario mural para hacer más grata su sala de clases, y ellos aceptaron gustosos. Entonces, surgió una duda entre los estudiantes: las medidas originales eran demasiado grandes; por lo tanto, tenían que reducir su mosaico.

¿Qué hacer en este caso? Debían encontrar un mosaico semejante, solo reducirlo a la mitad, a la cuarta parte, o a la octava parte.

Contentos, fueron a decirle a su profesor que lo harían muy rápido, pero, al parecer, esto no iba a ser tan fácil. Él les dijo que, efectivamente, había que hacer mosaicos semejantes, pero que el

desafío era que estuvieran en la razón 3 : 2 .

Este sí que era un problema complejo. Hicieron estos cálculos.

S

P

R

Q

T

U

D

A

C

B

E

F

La figura PTQRS debía ser más pequeña, por lo que para calcular la medida del lado TQ , tenían que resolver la siguiente proporción:

3 50 32 2

BE

TQ TQ= ⇒ = (Recuerda que el lado BE = 50 cm)

Despejando, se tiene que TQ = 50 23

. Pablo tomó entonces su

calculadora científica y calculó esta fracción, pero obtuvo como

resultado 50 6

3.

¿Qué había pasado? ¿Cómo podía aparecer una 6 y “desaparecer” la raíz del denominador? Inquietos por esta duda, decidieron preguntar a su profesora de Matemática.

Una vez planteado el problema, ella sonrió y les dijo: “Lo que la calculadora hizo fue racionalizar” . Veamos.Cuando tenemos expresiones fraccionarias con raíces o radicales en el denominador, conviene obtener expresiones fraccionarias equivalentes, pero que no tengan raíces o radicales en el denominador. A este proceso se le llama racionalización de radicales de los denominadores o divisores.

A transformar una expresión fraccionaria con raíces en el denominador, en otra equivalente con raíces solo en el numerador.Desarrollarás las siguientes habilidades:• Identificar•Calcular•Comprender•Resolver•Relacionar•Aplicar• Interpretar y generar ideasHabilidades por actividad:• Identificarycalcular:1, 1•Relacionar y aplicar: 2, 3

Trabaja más...

Habilidades por actividad:• Identificarycalcular:1, •Comprender y resolver: 2, 3, 4, 5, 3, 4• Interpretar y generar ideas: 1, 2, 5,

En esta sección aprenderás

2 : 3)(503

650

U1 MAT 3M (008-073).indd 40 2/11/11 15:21:46

Page 41: 003000.000 grou

UN

IDA

D 1

41

Existen varios casos de racionalización, dependiendo de la naturaleza del divisor. Veamos algunos.

a. Cuando el divisor es una raíz cuadrada

Miremos el siguiente ejemplo y sigamos el razonamiento dado.

1 1 11: 222 2

= = = . Ahora bien, si se quiere conseguir que el

divisor de la expresión original sea un racional, entonces

podemos escribir lo siguiente: 1 1 2 2 2 22 2 2 4 24= ⋅ = = =

Con esto tenemos que 1 2

22= .

Fíjate en lo siguiente. Si consideráramos que 12

se comporta

como una fracción, entonces tendríamos que

1 1 2 1 22 2 2 2 2

⋅= ⋅ =⋅

, lo que equivale a “amplificar”o multiplicar

el dividendo y el divisor por 2 .

Ejemplos:

1. 25

25

55

2 525

2 55

= ⋅ = =

2. 3 3 7 21 21

77 7 7 49= ⋅ = =

3. 72 11

72 11

1111

772 121

772 11

7722

= ⋅ = =⋅

=

(Nótese que basta multiplicar por 11 ).

4. 8 102 2

8 102 2

22

8 10 2

2 416 20

2 2

4 2 54

2 2 5

2 22 5

2

+ = + ⋅ =+( )

= +⋅

+ =+( )⋅

= +

5. x

y

x

y

y

y

x yy2 2 2

= ⋅ =

b. Cuando el divisor es una suma o resta de raíces cuadradas

Por ejemplo: 3

2 5+. Siguiendo el mismo razonamiento

anterior, tenemos que transformar esta división en otra

equivalente, pero donde el divisor sea un número racional.

U1 MAT 3M (008-073).indd 41 2/11/11 15:21:47

Page 42: 003000.000 grou

42

c. Cuando el divisor es una raíz cúbica

Analicemos el siguiente ejemplo: 3

52

.

Si pensamos de forma análoga al caso (a), tenemos que lograr

que el divisor se transforme en 233( ) o, lo que es equivalente,

233( ); entonces deberíamos proceder de la siguiente manera:

52

52

22

5 42

5 423 3

23

23

3

33

3

= ⋅ = =

1. 3

2 53

2 52 52 5

3 2 5

2 5 2 5

3 2 5

2 5

3 2 5

22 2

+=

+⋅ −

−=

−( )+( ) −( ) =

−( )( ) − ( )

=−( )−55

3 2 5

3

3 2 5

3

2 5 5 2

=−( )

−=− −( )

−=

− −( ) = −

2. 2 73 1

2 73 1

3 13 1

2 7 3 1

3 1 3 12 3 2 21 7

3 12

2

+−

= +−

⋅ ++

=+( ) +( )−( ) +( ) =

+ + +

( ) −

22 3 2 21 73 1

2 3 2 21 72

+ + +−

= + + +

3. 4 5 54 5 5

4 5 54 5 5

4 5 54 5 5

4 5 5 4 5 5

4 5 5 4 5 5

4 5 5−+

= −+

⋅ −−

=−( ) −( )+( ) −( ) =

−( )22

22

22

4 5 5

4 2 4 5 5 5 5

16 12516 40 5 125

109141 40 5

10

−( )

=− ⋅ ⋅ + ( )

−= − +

−=

−− 99

141 40 5109

= − +

4. a b

b a

a b

b a

b a

b a

ab a b abb a

ab a bb a

−+

= −+

⋅ −−

= − − +−

= − −−

2

Para esto deberíamos lograr que cada una de las raíces del divisor quede elevada a 2. Si pensamos un poco en los productos notables, recordaremos que al resolver una suma por diferencia, se consigue como resultado la diferencia de los cuadrados de los términos de los binomios.

Esto es: ( )( ) 2 2a b a b a b+ − = − . Entonces bastará multiplicar por una expresión que forme una suma por diferencia (el mismo binomio donde uno de sus términos sea inverso aditivo del dado). Ejemplos:

U1 MAT 3M (008-073).indd 42 2/11/11 15:21:50

Page 43: 003000.000 grou

UN

IDA

D 1

43

Ejemplos:

1. 325

35

35

55

3 55

3 553 23 23

3

3

3

33

3

= = ⋅ = =

2. 12

2

12

2

2

2

48

2

8 62

2 62

63

23

3

23

23

23

23

3 33

23 23 2x

x

x

x

x

x

x

x

x

x

x

x

x= ⋅ = =

⋅= =

33

x

3. 1 98 3

1 98 3

33

1 9 9

8 39 81

8 39 27 3

24

9

3

3

3

3

23

23

3 3

33

3 3 3 3+ = + ⋅ =+( )

= +⋅

= + ⋅ =

33 33 324+

1. En general, para racionalizar una división donde el divisor sea una raíz cuadrada, se multiplican el dividendo y el divisor por el divisor.

a

b

a

b

b

b

a b

b

a bb

= ⋅ = =2

b ≠( )0( )0b ≠

También lo puedes pensar de esta manera:

a

b

ab

ab

bb

a b

b

a bb

= = ⋅ = =2 2 2

2

b ≠( )0( )0b ≠

2. En general, para racionalizar una división donde el divisor es una suma o resta de una expresión que tenga al menos una raíz cuadrada, se multiplica el dividendo o divisor por una expresión que forme una suma por diferencia con el divisor.

Así, si el divisor es de la forma ba + , a ≠( )0( )0b ≠se multiplicará por ba − .

Y si es de la forma ba − , b ≠( )0( )0b ≠

se multiplicará por ba + .

3. En general, para racionalizar una división donde el divisor es una raíz cúbica, se multiplican el dividendo y el divisor por una raíz cúbica, de manera que la cantidad subradical resultante sea un cubo perfecto.

Así, si el divisor es, por ejemplo, de la forma 3 a , se

multiplicará por 3 2a .

Puedes mostrar que una

expresión fraccionaria con raíces

en el denominador es

equivalente a su expresión

fraccionaria racionalizada de la

siguiente manera. Tomemos las

expresiones 50 2

3 y

50 63

. Si

son iguales, entonces podemos

verificar los productos cruzados:

⇒ ⋅ = ⋅

⇒ =

⇒ = ⋅

⇒ = ⋅

⇒ =

50 2 3 50 6 3

150 2 50 18

150 2 50 9 2

150 2 50 3 2

150 2 150 2

Por lo tanto, las dos expresiones

fraccionarias sí son equivalentes.

Toma nota

Cuando la profesora terminó de explicar, los estudiantes entendieron. La calculadora había hecho lo siguiente:

50 23

50 23

33

50 63

= ⋅ =

Entonces fueron donde su profesor de Tecnología y le contaron que solo podían encontrar un valor aproximado del lado del cuadrado menor del nuevo mosaico, y que era 40,82 cm.

U1 MAT 3M (008-073).indd 43 2/11/11 15:21:54

Page 44: 003000.000 grou

44

El profesor, contento con sus estudiantes, les dijo que habían cumplido con creces el desafío impuesto y que ahora eran libres de reducir su mosaico al tamaño que quisieran. Decidieron reducirlo a la mitad. Desde entonces, el diario mural ha estado adornando su sala.

Trabaja1 Racionaliza las siguientes expresiones. Resuelve estos ejercicios en tu cuaderno.

a. 12

b. 5 35

+

c. 33

d. 3

52

e. 3

24

f. 2 52 7+

g. 12 3+

h. 2 23 2+−

i. 5 15 1+−

j. 2 3 5

2 2 5−+

TrabajaResuelvan los siguientes problemas:

1 –¿Será posible escribir 4 como 16? –le pregunta Orlando a Vicky.

–Por supuesto que sí –le responde Vicky rápidamente–. También lo puedes escribir como 3 64.

Después de un rato, él la vuelve a interrumpir:

–En el libro que estoy leyendo dice que “4 se puede escribir como

112,5 42

2

+”.

¿Será cierto? Ustedes que saben mucho sobre raíces, seguro que responderán esta pregunta.

2 “No sé por qué se complican tanto con eso de aplicar la racionalización –dice Lucy a Matías después

de terminar primeros en reducir el ejercicio 18 8 3218 8 32

+ +− −

. Con el método que encontramos para

calcularlo, creo que no nos equivocamos”. Matías está de acuerdo. Van donde su profesor y este

encuentra que tanto el desarrollo como la respuesta están correctos.

¿Cómo creen que lo resolvieron si ni siquiera usaron calculadora?

El profesor les dice: “Está muy bien. Ahora, ¿cómo resuelven 12 3 5+ −

sin usar calculadora?”

Y ustedes, ¿cómo lo solucionarían?

Sugerencia: Soliciten ayuda a su profesor o profesora para que los oriente en la manera de iniciar el

desarrollo, o bien revisen en algún libro de la biblioteca o en alguna página de Internet.

U1 MAT 3M (008-073).indd 44 2/11/11 15:21:55

Page 45: 003000.000 grou

3 Germán y Gilda están chateando. Ella le consulta si resolvió en la prueba el último ejercicio, aquel que

decía: “Encontrar la expresión equivalente a 20 958

− ”. Él le contestó: “Separé la expresión dada en la

resta de otras dos, racionalicé dos veces y obtuve lo pedido”. Ella le dijo que había racionalizado, pero

solo una vez. Curioso, ambos tuvieron la respuesta correcta.

a. Escriban el desarrollo posible que hizo Germán.

b. ¿Cuál fue el desarrollo de Gilda?

c. ¿Cuál es la respuesta correcta?

Marca con una 8 cada casillero según la evaluación que hagas de lo aprendido en esta sección:

MB: Muy bien (7,0 - 6,0)B: Bien (5,9 - 5,0)S: Suficiente (4,9 - 4,0)I: Insuficiente (3,9 - 1,0)

Indicador MB B S I

Soy capaz de explicar por qué se debe racionalizar.Distingo los tres casos de racionalización y sé qué debo hacer en cada uno de ellos.Pude resolver correctamente los ejercicios de la sección.Aporté a mi grupo durante el trabajo en clases.

Si has tenido dos o más cruces en las columnas de Suficiente o Insuficiente, debes volver a revisar los contenidos y los ejercicios resueltos. Recuerda que ser honesto con tu propio aprendizaje te ayudará a aprender mejor.

Revisemos lo aprendido

Cuando racionalizamos, queremos transformar el divisor que en un principio era una raíz en un número racional.

Estudiamos tres casos de racionalización:•Sihayunaraízcuadradaeneldenominador

3 50 32 2

BE

TQ TQ= ⇒ = racionalizar por la misma raíz.

•Sihayunasumaorestaderaícescuadradaseneldenominador3 50 32 2

BE

TQ TQ= ⇒ = racionalizar por el mismo

binomio, pero con operación contraria para formar una suma por diferencia.•Sihayunaraízcúbicaeneldenominador

3 50 32 2

BE

TQ TQ= ⇒ = racionalizar por una raíz cúbica, cuidando que la

cantidad subradical se transforme en un cubo perfecto.

Da un ejemplo de cada una y revisa tu respuesta con tu profesor o profesora.

Sintetizando

UN

IDA

D 1

45

U1 MAT 3M (008-073).indd 45 2/11/11 15:21:55

Page 46: 003000.000 grou

46

Trabaja más...Trabaja en forma individual

1 En un triángulo rectángulo, la razón entre el cateto mayor con respecto al cateto menor es “tres es a raíz cuadrada de tres”. Escribe dicha razón de manera racionalizada.

2 Para racionalizar 5 2 4

4

3

3

+, un estudiante inició

de manera habitual el proceso, amplificando

por 3 16 , y su compañera de igual manera,

pero amplificando por 3 2. ¿Habrán obtenido el

mismo resultado? Hazlo de ambas maneras

para justificar tu respuesta.

3 ¿Qué tipo de número, racional o irracional, resulta al dividir raíz cuadrada de 2 más 5 veces la raíz cuadrada de tres, por raíz cuadrada de 2, menos 5 veces la raíz cuadrada de tres? Justifica tu respuesta haciendo las reducciones necesarias.

4 Dada la siguiente sucesión de números, ordénalos de menor a mayor. Para ello, racionaliza y descompón cuando sea necesario.

2 3 3 3 3 33 ; 27 ; ; ;

3 3 3+

5 En la figura, AC y BD son paralelas.

OA AB OC CD x= = = =3 3 2 93 3cm; cm; cm; ; Encuentra el valor de x. Expresa tu respuesta

racionalizando el denominador.

A

C O

B

D

Trabaja en grupo

1 Pascual estaba estudiando para su prueba de

Matemática. Desarrollando unos ejercicios de

racionalización se dio cuenta que al

racionalizar la expresión 3 2 2 3

3 2++

,

obtenía por resultado 6, y que si tomaba

2 5 5 25 2++

, obtenía por resultado 10.

Entonces pensó: “¿Será cierto que al

racionalizar expresiones del tipo a b b a

b a

++

se obtiene siempre por resultado ab?”

Demuestren que la afirmación de Pascual

es verdadera.

2 El profesor de Matemática del curso de Mónica

les ha dado una tarea. En ella hay una pregunta

que complica a Mónica y que dice así:

¿Por cuál de los siguientes factores: 3 32 22 3+ ;

3 32 22 3− ; 3 32 232 6 3− + se debe amplificar

la expresión 3

3 3

22 3+

para que quede

completamente racionalizada? Ayuden a

Mónica respondiendo la pregunta.

3 A Camilo le gusta la materia que están

estudiando en el colegio y decidió hacer todos

los ejercicios que aparecen en el libro. Uno de

los que le parecieron más entretenidos y fáciles

fue el siguiente.

¿Puedes encontrar un número que multiplicado

por 5 dé por resultado 5

7 2 3+?

U1 MAT 3M (008-073).indd 46 2/11/11 15:21:57

Page 47: 003000.000 grou

UN

IDA

D 1

47

Camilo resolvió el problema y volvió a recordar

que estas raíces que parecen tan complejas en

realidad son solo otros números. Ustedes

también pueden resolver este problema.

¡Háganlo!

4 Teresita pensó en la prueba de Matemática que

acababa de dar y en lo que sus amigas estaban

comentando. Una de ellas señalaba que en la

pregunta 6, que decía 3 3

3

108 5004+

es igual

a... había marcado la letra D, es decir, 5 2

2

3

. Pero

Teresita había marcado la letra E, que indicaba

que la respuesta era 8.

¿Cuál de ellas estaba en lo cierto?

5 Fernando discutía con su compañero de curso,

Ismael, acerca de un problema que estaban

resolviendo. Fernando sostenía que para

racionalizar la expresión 23 5 7+ +

se debía

amplificar por 3 5 7− + .

Ismael, por su parte, señalaba que se debía

amplificar por 3 5 7+ − . Ambos estaban

muy complicados, pues al final de su desarrollo

les habían dado resultados distintos.

¿Qué le podrías decir tú a Ismael y a Fernando

acerca de su problema?

Mis apuntes

U1 MAT 3M (008-073).indd 47 2/11/11 15:21:58

Page 48: 003000.000 grou

48

Ecuaciones irracionales

Marcia fue a visitar a su bisabuela, pues tenía una tarea escolar. El profesor de Historia le había pedido narrar cómo era la vida entre los años 1920 y 1950. Mamá Elvira, bisabuela de Marcia, había nacido en el año 1915 y se acordaba perfectamente de su vida, y además contaba unas historias entretenidísimas. Hablando de su niñez y juventud, le contó que en su casa tenían un gran reloj de pared, de esos con péndulo y cucú, y que un día se cortó la luz y ella se asustó, porque estaba sola en casa. Prendió una vela y se puso a mirar el péndulo por mucho rato. Se dio cuenta entonces de que se demoraba aproximadamente 2 segundos en ir y volver al punto de partida. Pensó: “Ese péndulo tiene una hermosa cadena. ¿Cuánto medirá?” Luego cambió de tema y siguió con lo que a Marcia le preocupaba en ese minuto.

Marcia hizo su tarea, pero se quedó pensando en darle una respuesta a Mamá Elvira. ¿Cómo podía hacerlo? Decidió pedir ayuda a sus profesores.

La profesora de Física le explicó que el tiempo que se demora un péndulo en ir y volver al punto inicial se llama período (T, medido en segundos) y está dado por la fórmula,

TLg

=2 ¿ 3,14≈π

L es el largo del péndulo (medido en metros) y g es la aceleración debida a la gravedad (que es igual a 9,8 m/s2).

Así, según los datos dados por Marcia, se tenía que:

2 29,8

L= ⋅π . Si consideramos 3,14≈π , tenemos que:

2 2 3 149 8

= ⋅ ,,L

.

Pero ¿cómo podía resolver esta ecuación tan extraña, donde el valor que ella debía encontrar estaba dentro de una raíz?

Estas ecuaciones se llaman Ecuaciones irracionales y son aquellas en que al menos una de las incógnitas se encuentra en la cantidad subradical de alguna de las raíces que aparecen en la ecuación.

Qué son las ecuaciones irracionales, cómo se resuelven y para qué sirven.Desarrollarás las siguientes habilidades:• Identificar•Calcular•Comprender•Resolver•Relacionar•Aplicar• Interpretar y generar ideasHabilidades por actividad:• Identificarycalcular:1, 2•Comprender y resolver: 3, 1•Relacionar y aplicar: 4, 5, 6, 3, 4, 6, 7• Interpretar y generar ideas: 2, 6, 5

En esta sección aprenderás

U1 MAT 3M (008-073).indd 48 2/11/11 15:21:59

Page 49: 003000.000 grou

UN

IDA

D 1

49

Para resolverla, dijo la profesora, debes dejar a un lado de la igualdad solo la raíz y luego elevar al cuadrado ambos lados de la ecuación, ya que así podrás eliminar la raíz cuadrada.

Así: 2 29 8

= ⋅¿ L,

3,14≈π m/s2

⇒ =2 6 289 8

6 28,,

/ : ,L

0,3189,8

L⇒ =

/( )2

(Aproximamos a 3 decimales)

⇒( ) =

0 318

9 82

2

,,L

0,1011249,8

L⇒ = / 9,8⋅

⇒ =0 9910152, m L 0,9910152 m = LEsto es, aproximadamente, 1 metro.

Marcia, contenta, agradeció a su profesora; ya tenía la respuesta para Mamá Elvira.

Se fue a su clase de Matemática. El profesor enseñó ecuaciones irracionales e hizo varios ejemplos como estos:

1. 2 4 42 4 16 4

2 20 210

2x

x

x

x

− = ( )− = +

==

/// :

Las ecuaciones irracionales, al igual que las demás ecuaciones, siempre hay que comprobarlas. Para ello se debe verificar que se cumpla la igualdad planteada en la ecuación irracional al remplazar la incógnita por el valor encontrado.

Comprobación: 2 4 4x − =

2 10 4 20 4 16 4⋅ − = − = = . Como la igualdad planteada se cumple, entonces x = 10 es solución de la ecuación.

2. x x x x

x

x

x

x

+ + = + −

+ = ( )+ = −

==

5 1 9

5 1 95 1 81 1

5 80 516

2

/

/// :

(Recuerda que se debe dejar solo la raíz a un lado de la ecuación)

Comprobación: x x x+ + = +5 1 9

16 5 16 1 16 9+ ⋅ + = +

16 81 16 9+ = +16 9 16 9+ = +

Por lo tanto, x = 16 es solución de la igualdad.

Puedes ver una clase donde se

explica cómo se resuelven estas

ecuaciones en:

http://matematicasies.

com/spip.php?article917

Links de interés

(Se debe comprobar que ambos lados de la igualdad

den el mismo valor)

U1 MAT 3M (008-073).indd 49 2/11/11 15:22:03

Page 50: 003000.000 grou

50

3. (¡Cuidado! Cuando eleves al cuadrado

el lado izquierdo de la ecuación, quedará un cuadrado de binomio)

1 2 3 2+ − = − ( )x x /

1 2 32 2

+ −( ) = −( )x x

1 4 1 4 3

5 4 1 3 5

4 1 8 4

1 21 4

2

+ − + + = −

+ − + = − − −

− + = − −

+ = ( )+ =

x x x

x x x x

x

x

x

/

/ :

//−−

=1

3x

1 2 1 2 2 32

2+( ) − ⋅ + ⋅ + = −x x x

Comprobación: 1 2 3x x+ − = −1 1 2 3 3+ − = −

4 2 0− =2 2 0− = ; por lo tanto, x = 3 es solución

de la ecuación.

4. 2 2 2 2x+ + + = /( )2

2 2 2 4x+ + + = / 2−

2 2 2x+ + = /( )2

2 2 4x+ + = / 2−

( )22 2/x + = /( )2

2 4 / 2x + = −/ 2−2x =

; por lo tanto, x = 2 es solución de la ecuación.

2 2 2 2x+ + + =

2 2 2 2 2+ + + =

2 2 4 2+ + =

2 2 2 2+ + =

2 4 2+ =

2 2 2+ =

4 2=

Comprobación:

U1 MAT 3M (008-073).indd 50 2/11/11 15:22:05

Page 51: 003000.000 grou

x x x x x

x x x

2 2 23 4 4 43 4 4 4 3

+ − = + + −− = + −

//

x x x−( ) +( )( ) = +( )1 4 22 2

214

xx

x

+− =+ / 4x⋅ +

1 4 2x x x− ⋅ + = + /( )2

4 4x− = + / 4−8 x− =

5.

Comprobación:214

xx

x

+− =+

8 28 18 4

− +− − =− +694

−− =−

Pero 9− y 4− no están definidas en los números reales; por lo tanto, la ecuación no tiene solución.

3 1 2x − = /( )3

x +( ) =1 233

3

9x =1 8x − = / +1

6.

3 1 2x − =3 9 1 2− =3 8 2=2 2=

Comprobando se tiene que:

Por lo tanto, x = 2 es solución de la ecuación.

Toma nota¿Puede existir solución para la

ecuación 2 3x + = − ?

No, pues una raíz cuadrada no

puede tener un valor negativo en

el conjunto de los números

reales; por lo tanto, decir que

2 3x + = − contradice la

definición de raíz cuadrada.

TrabajaResuelve los siguientes ejercicios.

1 Calcula y comprueba las ecuaciones irracionales planteadas a continuación.

a. 8 2x − =

b. 2 2 1 9x x x− + = −

c. 1 2 1 2+ − =x

d. 5 3 1 0− + =x

e. 18 311

x+ =

f. 2 10 2 3 1x x+ − + =

g. 24 11

x xx

+ − − =−

h. 3 8 2x − =

i. 4 5 2 93+ − =x

j. 15 7 1 123− − =x

UN

IDA

D 1

51

U1 MAT 3M (008-073).indd 51 2/11/11 15:22:09

Page 52: 003000.000 grou

52

2 ¿Cuál es el valor de x que hace igual a 8 la expresión 3 8 7x− ?

3 Si la raíz cúbica de Z se aumenta en trece unidades, resulta ser el triple de dicha raíz cúbica, pero sumada a siete unidades. ¿De qué valor de Z se trata?

4 Los lados de un triángulo, de perímetro 20 cm, miden , 11x x + y 9 cm, respectivamente.

a. Encuentra el valor de x correspondiente.b. ¿Cuáles son las medidas de los lados que se desconocen?

5 Dada la ecuación 13 133 x =

a. ¿Cuál es el valor de x que la satisface? b. Usando los conceptos estudiados en la presente unidad, ¿qué relación se puede establecer entre

13 y el valor hallado para x?

6 Las longitudes de los lados de un rectángulo, medidas en metros, son 5 2 2+ x y 5 2 2− x . Si su área es 3 m2:

a. Halla el valor de x.b. ¿Cuáles son las medidas de los lados?

TrabajaPlanteen la ecuación irracional correspondiente y resuélvanla. Recuerden dar respuesta en forma completa y escrita.

1 El señor Donoso trabaja en la compañía de electricidad supervisando la colocación de postes en las calles. Para que un poste de 4 m quede bien seguro, se debe colocar un cable tensor que una el extremo superior del poste con el suelo. Claudio, su hijo, le escuchó decir que aquel cable medía 12 m y se preguntó: “¿A qué distancia del poste, en el suelo, debe ir anclado el cable tensor?”

2 En su época, Pedro Urdemales tuvo que resolver lo siguiente:

5 2 2 3 2 3 5 2− = −x x

Animoso, hizo el siguiente desarrollo:

•Copió nuevamente el ejercicio: 5 2 2 3 2 3 5 2− = −x x .

•Agrupó los términos con x: 5 2 2 3 2 3 5 2x x− = − .

•Aplicó una de las propiedades de las raíces que tú conoces: 5 2 2 3 2 3 5 2x x− = − .

•Factorizó por x x: 5 2 2 3 2 3 5 2−( ) = − .

U1 MAT 3M (008-073).indd 52 2/11/11 15:22:12

Page 53: 003000.000 grou

UN

IDA

D 1

53

•Despejó x :

x = −−( )

2 3 5 25 2 2 3

; recordó que:

2 3 5 2 5 2 2 3− = − −( ).•Hizo el siguiente cambio:

2 3 5 2 5 2 2 3− = − −( ) por 2 3 5 2 5 2 2 3− = − −( )x =

− −( )−

5 2 2 3

5 2 2 3.

•Simplificó y obtuvo: 1x = − .

•Elevó al cuadrado en ambos miembros de la ecuación y finalizó diciendo que: x = 1•Comprobó su respuesta y no pudo creerlo: ¡estaba equivocado!¿Dónde está su error?

3 Un matemático puede obtener mucha información a partir de la resolución de una ecuación. Por ejemplo,

al resolver correctamente la siguiente ecuación x x2 4 69 0 7+ = +, , puede encontrar el valor de la raíz cuadrada de un cierto número. Resuélvanla (recuerden comprobarla) y luego escriban cuál es el número y cuál es su raíz cuadrada.

4 Francisco, en un terreno heredado, ha instalado circuitos de autitos de carrera. Muy preocupado por la seguridad de los usuarios, cada auto es monitoreado a través de una pantalla. En una parte del circuito, de forma triangular y con un tramo total de 300 m por recorrer, al doblar la última esquina y entrando al tramo mayor, ocurrió que un auto no logró ser monitoreado en la vuelta completa, perdiéndose la señal antes de los metros finales. Las medidas de los tramos, de menor a mayor, son 50 m, 120 m y 200 900x + m.

Determinen el valor de x.

5 “En la última clase que tuvimos con la señorita Ana María, ella nos dijo que todavía no estamos

preparados para resolver el ejercicio x x24 6 9 5+ + = , aun si pensamos elevar la ecuación a la cuarta,

pues aún no hemos visto cómo se resuelven ecuaciones que tengan x2. Pero nos dijo que

desarrolláramos esta más sencilla: 3 5x + = ”.

¿Cuál es la solución de esta última? ¿Será solución también de la que no se pudo resolver

anteriormente?

6 “Cuando pasábamos frente al último poblado, íbamos a 60 km/h, y como solo faltaban 50 km para llegar a nuestra casa de campo, me distraje y me quedé profundamente dormida. En sueños sentía que íbamos paulatinamente acelerando y que gritaban diciendo: “¡No vayas tan rápido, papá, no tanto. Mira que ya vamos a 120 km h y solo nos faltan 10 km para llegar”. Todo fue muy rápido. Solo sentí el impacto en mi cabeza y ahora estoy en el hospital”.

Así decía el parte de Carabineros publicado en el diario y que nuestro profesor nos leyó. Él nos

comentó que, de una manera muy sencilla, puedes hallar la aceleración usando la fórmula v a d vf i= +2 2∆ 22f iv a d v= ∆ + , donde vf es la velocidad final del auto; vi, su velocidad inicial; a, la aceleración que

llevaba, y 22f iv a d v= ∆ +, el camino recorrido entre el poblado y el lugar del volcamiento. Luego nos preguntó:

¿cuál fue la aceleración del auto?

Comenten su resultado con su profesor o profesora de Física y escriban qué datos nos proporciona

la solución.

U1 MAT 3M (008-073).indd 53 2/11/11 15:22:15

Page 54: 003000.000 grou

54

Sr. Pérez:

Como encargada del grupo de investigación sobre la disminución numérica de la población joven de lobos de mar en la zona 1, le informo que hay una relación con la merma del número de peces pequeños presentes allí. Así, en un primer acercamiento, una población de 12000 peces pequeños solo permite alimentar a 60 individuos, y esto hace que no tengamos a los 80 que esperábamos encontrar. Por esto, este factor nutritivo es de alta preocupación.

Le adjunto la fórmula encontrada para calcular el número de lobos de mar (L) en relación con el número de peces (p) existentes:

50120

pL = +

Atte. Adriana Díaz

7

Calculen el número de peces que se necesita para alimentar a los 80 lobos y luego comparen su resultado con la información entregada por Adriana.

Responde y luego comparte y compara tus respuestas con tus compañeros y compañeras.

a. ¿Cómo reconoces una ecuación irracional?b. Haz una lista de los pasos que debes seguir para resolver una ecuación irracional.c. En la actividad de la página 51, ¿cuántas ecuaciones pudiste resolver correctamente y sin ayuda?d. ¿Planteaste bien los problemas y los resolviste?

Revisemos lo aprendido

Las ecuaciones irracionales son aquellas en que al menos una de las incógnitas está en la cantidad subradical de una raíz. Para resolverlas no tienes que olvidar que:

•Debes,enloposible,dejarsololaraízaunladodelaecuación.

•Elevaralcuadradooalcubo,dependiendosilaraízescuadradaocúbica,ambosladosdelaecuación para eliminar la raíz.

•Sienalgunosdelosladoshayunasumaoresta,cuandoseelevaalcuadradosedebedesarrollarcomo cuadrado de binomio.

•Siempredebencomprobarse.

Da un ejemplo de ecuación irracional con raíz cuadrada y uno con raíz cúbica, y revisa tu respuesta con tu profesor o profesora.

Sintetizando

U1 MAT 3M (008-073).indd 54 2/11/11 15:22:19

Page 55: 003000.000 grou

UN

IDA

D 1

55

Función raíz cuadrada

A analizar la función raíz cuadrada y a ocuparla para resolver algunos problemas cotidianos.Desarrollarás las siguientes habilidades:• Identificar•Calcular•Comprender•Resolver•Relacionar•Aplicar• Interpretar y generar ideasHabilidades por actividad:• Identificarycalcular:1, 4•Comprender y resolver: 3, 9, 12, 13•Relacionar y aplicar: 5, 6, 7a, 10, 11• Interpretar y generar ideas: 2, 7b, 8

En esta sección aprenderásEl papá de Rubén trabaja como administrador de una parcela dedicada a la apicultura (cría de abejas y producción de miel). El dueño de la parcela mandó a hacer un estudio de mercado para poder predecir, de cierta forma, cómo se comportaría su negocio.

El informe final señalaba que la población de abejas de la parcela se

comportaba bajo la siguiente función: p t t( ) = +16 1200, donde p

representaba la población de abejas (en decenas) y t el tiempo

transcurrido (en meses).

Una tarde, Rubén visitó a su papá y vio, sin querer, sobre la mesa el informe. Como estaba en 4º Medio, recordó que había estudiado funciones y le comentó a su papá que una función es una expresión matemática que relaciona dos variables; en este caso, la función relaciona el número de abejas (población) con el tiempo que ha transcurrido.

Hay funciones de distintos tipos, dependiendo de qué expresión matemática relacione las variables; en este caso, la expresión matemática tiene una raíz cuadrada; por lo tanto, la función se llama función raíz cuadrada.

Si consideramos el mes en que partió el negocio como mes 0 (porque no ha transcurrido ningún mes aún), se tiene que 0t = . Así: p 0 16 0 1200 1200( ) = ⋅ + = . Esto quiere decir que el negocio partió con 1200 decenas, es decir, con 12000 abejas.

Transcurrido el primer mes, se tiene que t = 1, entonces:p 1 16 1 1200 4 1200 1204( ) = ⋅ + = + = decenas.

Esto significa que al mes había 12040 abejas.

Así se puede calcular cuántas abejas había en un determinado mes y en qué mes habrá un determinado número de abejas, si todo se comporta normalmente.

El papá de Rubén se alegró por todo lo que sabía su hijo. Contento con lo que su papá le había dicho, quiso repasar más. Buscó sus cuadernos y encontró los siguientes apuntes:

Cada tipo de función está representada por un gráfico distinto. Así como la recta es la gráfica que corresponde a una función lineal, la función raíz cuadrada también tiene una gráfica.

Analicemos la función y x= .

Para graficarla, podemos hacer dos cosas: construir una tabla de valores y hacer el gráfico manualmente o bien utilizar un programa para graficar funciones:

Cuando se tiene una función

f x( ) definida por una expresión

algebraica cualquiera, se

reconocen dos variables: una

dependiente y una

independiente bajo f x( ). A x se le llama variable

independiente o preimagen; a

f x( ) (o y) se le llama variable

dependiente o imagen.

En el ejemplo de las abejas,

cuando calculamos el número de

ellas en cierto mes, estamos

calculando imágenes y cuando

calculamos el mes en que habrá

cierta cantidad de abejas,

estamos calculando preimágenes.

Recordar y archivar

U1 MAT 3M (008-073).indd 55 2/11/11 15:22:21

Page 56: 003000.000 grou

56

Sigue con nosotros los pasos para graficar con el programa Graphmatica (recuerda que lo puedes bajar en forma gratuita desde Internet; para ello, basta que coloques en Google: Graphmatica gratis y lo instales).

Acá debes colocar la función. Recuerda que x elevado a 0,5 (un medio) es igual

a la raíz cuadrada de x.

Luego haces enter y aparecerá la función graficada.

Si graficamos la función que modela el comportamiento de las abejas de la parcela, p t t( ) = +16 1200, tendremos:

Tabla de valoresx y

0 01 14 29 3

16 425 5 –1

–11

1

2

3

4

2 3 4 5 6 70

y

x

U1 MAT 3M (008-073).indd 56 2/11/11 15:22:23

Page 57: 003000.000 grou

UN

IDA

D 1

57

2000

1000

4000

3000

0 500010000 20000 30000 40000 50000 60000

15000 25000 35000 45000 55000

y

x

Te darás cuenta de que en ambos gráficos las curvas mantienen la misma forma, solo varía el punto de partida de la gráfica debido a los cambios en la función.

En el caso de las abejas, nota que aunque el gráfico aparece como una curva continua, no lo es. Esto se debe a que el número de abejas solo puede tomar valores naturales; por lo tanto, estrictamente se debiera ver como una serie de puntos que forman dicha curva.

Como recordarás, el Dominio (Dom) (valores que puede tomar la variable x para que la función esté bien definida) y el Recorrido (Rec) (valores que toma la variable y, que depende de x) dependen de cada función.

Si te fijas con cuidado en los gráficos, verás que:

•Paralafunción f x y x( ) = = se tiene que:

Dom f x( ) = { }R+ 0 (recuerda que no existe un valor en los

números reales que sea igual a x− ), y Rec f x( ) = { }R+ 0

(recuerda que el valor de una raíz cuadrada es siempre positivo).

•Paralafunción y x= +16 1200 se tiene que:

Dom f x( ) = { }R+ 0 (mira el eje x),

y Rec f x y y( ) = ∈ ≥{ } / 1200 (mira el eje y. Recuerda que los valores

de y están medidos en decenas).

El papá de Rubén está muy interesado en el tema y preguntó a su

hijo si se podría saber cuánto variará la población de abejas entre el

primer año y el segundo.

Rubén, gustoso, le respondió lo siguiente:

Al primer año (12 meses habrán transcurrido) el número de abejas

será: f 12 16 12 1200 13 8 1200 1213 8( ) = ⋅ + = + =, , decenas de

abejas; esto es 12138 abejas.

La apicultura se define como: “Ciencia aplicada que estudia la abeja melífera (productora de miel). Mediante la tecnología se obtienen beneficios económicos”.Fuente: http://www.infoagro.com/agricultura_ecologica/apicultura.htm

U1 MAT 3M (008-073).indd 57 2/11/11 15:22:25

Page 58: 003000.000 grou

58

Al segundo año se tendrá:

f 24 16 24 1200 19 6 1120 1219 6( ) = ⋅ + = + =, , decenas de abejas;

esto es 12196.

Por lo tanto, la población habrá aumentado en 58 abejas.

Investiga. ¿Cuánto crecen las poblaciones de abejas en un año normal? ¿Es posible esta situación? Da tu opinión al respecto.

Ahora, observa la siguiente función y su gráfica: f x x( ) = +6.

y

x

f x x f x x( ) = ( ) = −y

f x x f x x( ) = ( ) = −y

2

–2

–4

4

6

8

10 2 3 4 5 6 7 8 9 10 11 12

10

Si te fijas, Dom f x x x( ) = ∈ ≥ −{ }R / 6 . En este caso, la variable x puede tomar valores negativos porque 6x + será positivo o cero si

6x ≥ − y, por lo tanto, la raíz cuadrada estará bien definida.

Observa los gráficos de las funciones f x x f x x( ) = ( ) = −y y f x x f x x( ) = ( ) = −y

y

x

f x x( ) =

f x x( ) = −

2

1 2 3 4 5 6 7 8 9 10 11 12–2

–4

4

6

8

10

Nota que un gráfico es el simétrico del otro (con respecto al eje x). Además, ambas funciones tienen un punto de partida. En el caso de f x x( ) = (gráfico rojo), este punto es el valor mínimo de la función (el menor valor que toma la función). En el caso de la

función f x x( ) = − (gráfico naranja), este es el punto máximo (mayor valor que toma la función).

U1 MAT 3M (008-073).indd 58 2/11/11 15:22:28

Page 59: 003000.000 grou

UN

IDA

D 1

59

Observa ahora la gráfica de la función 2y x=

2

–6 2–4 4–2 6

–2

Mira lo curioso que es. ¿Qué ha pasado? ¿A qué función es igual? ¿Por qué sucede esto?

Sí, efectivamente, es la misma función que estudiaste hace un par de años: es la función valor absoluto.

Pensemos un poco. Si x toma valores negativos, como debe elevarse al cuadrado, la cantidad subradical quedará positiva; por lo tanto, esta función admite en su dominio a todos los números reales.

Además, para 1x = y 1x = − se tiene que 2 1x = , por lo que la imagen de 1 y –1 será la misma. Esto hace que nuestro gráfico sea igual al del valor absoluto.

Entonces, podemos escribir que: 2y x x= = .

Ejemplos:

1. Martín estudió hoy en clases que el tiempo (en segundos) que

un cuerpo en caída libre se encuentra en el aire está dado por la

función td

g= 2

,

donde d es la distancia recorrida por el cuerpo (en metros) y g la aceleración de gravedad (igual a 9,8 m/s2). Él quiere saber cuántos segundos demorará una pelota de tenis en llegar al suelo si la lanza desde el tercer piso de su colegio.

Para ello, Martín calculó que desde la ventana hasta el suelo hay, aproximadamente, 5 metros; entonces:

2 5 10 1,019,8 9,8

t⋅= = =

(Por lo tanto, se demorará aproximadamente 1 segundo)

2. La verdad es que Nibaldo no se sentía muy bien preparado para la prueba de Física. Solo llevaba aprendidas de memoria algunas fórmulas sobre el movimiento rectilíneo uniformemente acelerado, que era el tema de la prueba; pero había desarrollado correctamente los ejercicios de la guía de preparación.

U1 MAT 3M (008-073).indd 59 2/11/11 15:22:28

Page 60: 003000.000 grou

60

Leyó toda la prueba y después de un rato se dio cuenta de que la

tercera pregunta era similar a un problema que había resuelto en

su casa. Pensó: “Hay que usar la fórmula td

a= 2

, donde d, en

este caso, es 1250 m, t = 600 s y luego despejar a, que es la

aceleración”. Hizo los remplazos y obtuvo el valor aproximado:

0 007, ms2 .

Estaba seguro de que la respuesta era la correcta. ¿Cómo lo hizo para despejar y conseguir el valor de a?

Veamos.

Remplazando los valores tenemos:

a =0 007, ms2

600 2 1250 2= ⋅ ( )a

/

600 25002 = ⋅a

a/

a =⋅

2500600 6000,00694a =

TrabajaAplica lo aprendido.

1 Dada la función y x= +3 4, encontrar:

a. la imagen de 1,3.b. la imagen de –3.

c. la preimagen de 0.d. la preimagen de –1.

e. Su dominio.f. Su recorrido.

2 Dado el siguiente gráfico y sabiendo que representa una función de la forma y ax b= + , determina la función raíz cuadrada. (*)

0 1–5 2–4 3–3 4–2 5–1

y

1

–1

2

3

4

x

(*)Nota: Define dos puntos por los que pasa la función, reemplázalos en la función para plantear un sistema y así determinas los valores de a y b.

U1 MAT 3M (008-073).indd 60 2/11/11 15:22:31

Page 61: 003000.000 grou

UN

IDA

D 1

61

3 “La energía cinética de una partícula y su relación con su masa y su velocidad viene dada por E mv=0 5 2, ”. Esto escuchaba Maritza de boca de su hermana mayor que estudia Física de partículas en la universidad. Por ejemplo, decía que si una bolita de acero de 5 g, es decir, 0,005 kg, va rodando a

0 70, ms

, entonces su energía es:

E = ⋅ ⋅

=0 5 0 005 0 7 0 0012252

, , , ,kg ms

J (J: Joule, que es una unidad de energía).

“Ahora bien, ¿me puedes ayudar a despejar v?”

Maritza le dijo tímidamente: vE

m= 2

.

“Muy bien, hermanita. Veo que has aprendido a despejar. Ahora, ayúdame nuevamente a responder”:

a. ¿Cuál debería ser la velocidad de esta partícula para que su energía se duplique?

b. Si la velocidad de la bolita después de chocar es de 0,4 m/s, ¿cuál es el valor de su energía cinética?

c. ¿Cuál debería ser la velocidad de otra bolita de acero con masa de 2,5 g para que tenga la misma energía que la primera antes del choque?

4 Usando el programa Graphmatica u otro similar, grafica las siguientes funciones. Compáralas, indica sus mínimos o máximos, similitudes y diferencias.

a. y x=

b. y x=2

c. 6y x= +

d. 6y x= +

e. y x= −

f. y x= − −5

5 Dadas las funciones y x= −1 0 5, e y x= −2 5 5,

a. ¿Cuál es el valor de x para que ambas funciones tengan la misma imagen?b. ¿Cuál es el valor de dicha imagen?

6 ¿En qué punto las gráficas de las funciones de ecuación y x= −3 11 y 3 11 y 13y x y x= − = + se intersectan?

7 Dada la función y x= −3 11:

a. ¿Cuál es el valor de x para el que el valor de y sea el menor posible?b. ¿Es verdad que a medida que aumenta el valor de las preimágenes de esta función aumentan

también los valores de las imágenes correspondientes? Grafica para justificar tu respuesta.

8 “Me cargan las adivinanzas”, replicaba Marmaduque ante las pesadeces matemáticas que Atanasio le planteaba. Le decía: “Adivina qué número resulta al triplicar 9 y disminuirlo en dos unidades y, acto seguido, extraer su raíz cuadrada”. Marmaduque decía: “El que tienes en tu cabeza”. Atanasio insistía una y otra vez.

Bonifacio, que por allí pasaba, escuchó reiteradamente la pregunta, lo pensó y escribió en la tierra: 3 9 2 25⋅ − = . La raíz cuadrada de este número es 5.

“5 es el número que pides Atanasio, pero ahora adivina tú: ¿Qué número debo triplicar, disminuirlo en dos, extraer raíz cuadrada y obtener 0?”

Atanasio intentó resolverlo, pero no pudo llegar a nada correcto.

¿Cómo resuelves la adivinanza de Bonifacio? ¿Cuál es el número aludido? ¿Cómo relacionarías el resultado obtenido y el problema enunciado a través una función raíz cuadrada?

U1 MAT 3M (008-073).indd 61 2/11/11 15:22:35

Page 62: 003000.000 grou

62

9 Maximiliano está realizando un experimento de laboratorio sobre el crecimiento de bacterias. Su profesora le ha dicho que el crecimiento de la colonia que está observando se comporta según la función C t t( ) = +5 8, donde C es el número de bacterias a los t días de comenzado el experimento. De acuerdo con su profesora, Maximiliano estableció en su informe final algunos datos trascendentes de su experimento, los que fueron anotados en la siguiente tabla. ¿Puedes tú completarla?

Evento Número

Número de bacterias al inicio del experimento

Número de bacterias transcurridos cinco días

Tiempo en que las bacterias han llegado a 18 individuos

10 Patricia, ejecutiva de un banco, está revisando el comportamiento de las cuentas de dos empresas a su cargo. Durante los 5 primeros años de existencia de las empresas A y B, su crecimiento estuvo dado por las siguientes funciones. Para A U t t: ( ) = − +2 5 3. Para B U t t: ( ) = − +4 12 3, donde U representa las utilidades, en millones de pesos, y t, el tiempo transcurrido en años desde que se comienzan a tener utilidades.

Patricia debe determinar en qué momento ambas empresas logran obtener las mismas utilidades. ¿Puedes tú responder esto?

11 La temperatura registrada en cierta ciudad durante los primeros 15 días del mes en curso ha ido en aumento en forma constante. Julieta, a quien le gustaba mucho explicar los fenómenos naturales en forma más científica, observó los datos y llegó a la conclusión de que esta situación podría modelarse bajo una función de la forma: T d d a b( ) = + − , donde T representa la temperatura registrada diariamente en grados Celsius, y d, la cantidad de días transcurridos en el mes. Por su parte, a y b son constantes.

Julieta anotó dos datos con los que tú podrás determinar la función, es decir, encontrar los valores de a y b. Ella dijo que el primer día se habían registrado –5 °C y que el quinto día se registraron –3 °C. Determina la función pedida.

12 Una empresa de artículos médicos inició su actividad el año 2008 con 200 clientes. Este año la gerenta

general de la empresa encargó un estudio de mercado, que en una de sus partes establece que el

número de clientes ha crecido según la función C mm( ) = +50254

200+300 , donde C es el número de

clientes y m los meses transcurridos desde que la empresa comenzó a funcionar. Determina:

a. la cantidad de clientes que tenía el año 2010.b. la cantidad de clientes que tendrá el año 2013.

13 En una empresa de alimentos se necesita estudiar el tiempo de enfriamiento de una mezcla. Según las instrucciones dadas por el químico a cargo, la mezcla debe calentarse hasta los 80ºC para que sus componentes se unan, y luego debe enfriarse hasta solidificarse, estado que logra a los 5ºC. La temperatura de enfriamiento de la mezcla se comporta bajo la función T m m( ) = − +80 30 525, donde T es la temperatura de la mezcla, en grados Celsius, a los m minutos. El técnico a cargo necesita determinar en cuántos minutos se solidificará y qué temperatura alcanzará después de una hora.

U1 MAT 3M (008-073).indd 62 2/11/11 15:22:37

Page 63: 003000.000 grou

UN

IDA

D 1

63

Completa el siguiente mapa conceptual. Trata de hacerlo sin mirar el cuaderno y/o el libro. Revísalo con tus compañeros y compañeras. Pregúntale a tu profesora o profesor si tienes dudas. Luego, responde las preguntas dadas.

Función raíz cuadrada

Dominio: Qué es y cómo se calcula.

________________________________________________________________________

Recorrido: Qué es y cómo se calcula.

________________________________________________________________________

Su gráfico: ¿Cómo es?

________________________________________________________________________

Imagen: Qué es y cómo se calcula.

________________________________________________________________________

Preimagen: Qué es y cómo se calcula.

________________________________________________________________________

•¿Pudistecompletarelmapaconceptualsinayudaysinmirarelcuaderno?•¿Paraquéconceptostuvistequebuscarayuda?¿Lostienesclarosahora?•¿Resolvistecorrectamentelasactividadesdelasección?•¿UsastecorrectamenteelprogramaGraphmatica?

Recuerda que si no has entendido algo, debes volver a repasar los contenidos en el libro y pedir ayuda a tu profesor o profesora.

Revisemos lo aprendido

Las funciones raíces cuadradas son aquellas en que la variable independiente aparece dentro de una raíz cuadrada. De ellas podemos destacar que:

•Soncurvascrecientesquetienenunpuntomínimo(sisondelaforma x ) o decrecientes que tienen un punto máximo (si son de la forma − x ).

•Eldominioyrecorridonuncasontodoslosnúmerosreales.

•Modelanalgunosproblemascotidianos.

Sintetizando

U1 MAT 3M (008-073).indd 63 2/11/11 15:22:38

Page 64: 003000.000 grou

64

Taller de profundización

A generalizar las propiedades, ya aprendidas, de raíces cuadradas y cúbicas a raíces de otros índices.Desarrollarás las siguientes habilidades:• Identificar•Calcular•Comprender•Resolver•Relacionar•Aplicar• Interpretar y generar ideasHabilidades por actividad:•Comprender y resolver: 1, 2, 3, 4, 5

En esta sección aprenderás Recuerda que las mismas propiedades que hemos estudiado para las raíces cuadradas y cúbicas se utilizan para operar raíces de otros índices.

Recordemos estas propiedades de manera general:

1. n n na b ab⋅ =

2. : :n n n na

a b a bb

= =

3. n m n ma a⋅=

4. a b a bn nn=

5. a anm

mn( ) =

Desarrollemos juntos algunos ejemplos:

1. (Aplicamos propiedad de multiplicación de raíces)

(Separamos para descomponer)

(Extraemos raíz y simplificamos el índice y la potencia de la cantidad subradical)

2. (Dividimos los coeficientes numéricos que acompañan a las raíces y luego aplicamos

la propiedad de división de raíces)

4.

5. (Aplicamos fórmula de cuadrado de binomio)

(Simplificamos el índice de la raíz con el de la potencia y

aplicamos propiedad de multiplicación de raíces)

4 3 2 4 24 4x xy x y⋅ =

4 4 24x y= ⋅

x y=

(Aplicamos composición de raíces)

(Aplicamos propiedad de raíz de una raíz)

3. (Aplicamos propiedad de la división de

raíces distribuyendo)

20 9 5 3 4 35 5 5: =

18 12 3 6 426 26 3 6 6x xy xyx

yy−( ) = −:

2 3 2 3

32 3 96

54 554

520 520

x x

x x

= ( ) ⋅

= ⋅ =

2 3 2 2 2 3 34 42

42

4 4 42

+( ) = ( ) + ⋅ ⋅ + ( )x x x

= + +2 6 2 94 x x

U1 MAT 3M (008-073).indd 64 2/11/11 15:22:40

Page 65: 003000.000 grou

Resuelvan en su cuaderno los siguientes ejercicios.

1 Apliquen las propiedades de las raíces, reduzcan al máximo cada expresión. Expongan y compartan sus resultados.

a. 3 32 4 81 6 7295 4 6+ −

b. 4 4 42 3 6

2⋅ ⋅

c. 9 35 1511 19 45x x x⋅ ⋅

d. 4 4 42 3 4

4 43 2

c c c

c c

⋅ ⋅

e. a ab ba ab b

2 2

2 24

22

− ++ +

f. 2 25 5p q

p qp q+− ⋅−

g. 5 5 64 645 5

26 6aaa

− ⋅ +−

h. 2 44 42

+( )

i. 27 3125 25a a: ( )

j. 3 16 948 28a b:

k. 2 354 4a a⋅

l. 3 183 6a b:

2 ¿Cuál es el perímetro de un rectángulo cuyo largo es 5 5434 unidades de longitud y su ancho es

4 3 63 unidades de longitud?

3 Las bases de un trapecio miden 5 16 cm cm y 5 60,75 cm cm. Determinen su área si su altura mide 5 4 cm cm.

4 El área de un cuadrado mide 27 64 mm mm2. ¿Cuál es el valor de su lado?

5 La medida de la superficie de un rectángulo es 606 2m . Si uno de los lados es 6 7,5 mm, ¿cuál es el valor de su perímetro?

Trabaja

Responde las siguientes preguntas:

• ¿Entendílosejerciciosresueltos?¿Pudeampliarlosconocimientosaprendidosenlaunidadparalas raíces de índice mayor que 3?

• ¿Puderesolvercorrectamentelosejercicios?

UN

IDA

D 1

65

Revisemos lo aprendido

U1 MAT 3M (008-073).indd 65 2/11/11 15:22:44

Page 66: 003000.000 grou

66

Evaluación Unidad 1

Raíces

Definición Propiedades Función raíz cuadrada

Índice de la raíz

Cantidad subradical

n a•Engeneral, n a b= si y solo

si, na b= .•Algunasraícessonnúmeros

irracionales.•Unaraíztambiénesuna

potencia de exponente racional.

•Multiplicaciónderaícesdeigual índice.

•Divisiónderaícesde igual índice.

•Descomposicióndeunaraíz.•Raízdeunaraíz.•Racionalización.•Sumayrestaderaíces.

•Estodafunciónquecontengauna raíz cuadrada.

•Sugráficaestásiemprerepresentada por una curva.

•Sudominioyrecorridodependen de la forma en que la función esté definida.

Ecuaciones irracionales

•Sonecuacionesenquealgunadelasincógnitasestáenlacantidadsubradicaldeunaraíz.•Pararesolverlasdebesocuparlaspropiedadesyladefiniciónderaíz.•Sonútilesenlaresolucióndeproblemasqueinvolucrenfunciónraízcuadrada.

I. Coloca V (verdadero) o F (falso) en cada una de las siguientes afirmaciones según corresponda. No olvides revisar tus respuestas al final del libro cuando hayas terminado.

1 ____ Una raíz cuadrada no está definida en los números reales si su cantidad subradical es negativa.

2 ____ Las raíces cúbicas no son números reales si su cantidad subradical es negativa.

3 ____ 4 8 03+ =

4 ____ El dominio de la función f x x( ) = −2 3 es el conjunto de todos los reales positivos y el cero.

5 ____ Para multiplicar raíces de igual índice se conserva el índice y se multiplican las cantidades subradicales.

6 ____ Todo número real se puede escribir como una raíz.

7 ____ Siempre se puede extraer raíz de una raíz.

Síntesis conceptual de la unidad

Mira el siguiente mapa conceptual y recuerda lo estudiado. Luego, contesta las preguntas de verdadero y falso. Corrige tus respuestas. Recuerda que los resultados están al final del libro.

U1 MAT 3M (008-073).indd 66 2/11/11 15:22:45

Page 67: 003000.000 grou

UN

IDA

D 1

67

II. Resuelve en tu cuaderno los siguientes ejercicios. Puedes trabajar con tus compañeros y compañeras. Calcula el valor de las siguientes raíces (no utilices calculadora):

1 25600

2 3 0,027

3 12964

4 5 243−

5 6 729

6 7 128−

7 102410

8 10000006

9 4 0,0625

10 4,41

III. Usando las propiedades de las raíces, desarrolla los siguientes ejercicios. Recuerda simplificar cada expresión, de ser posible.

1 22 1

3 2 210 10− −+ +

2 25436

+ =

3

3

417416

+

4 2 150 4 54 6 294− +

5 1080 135 7 5 403 3 3 3− + +

6 15 50 18 32 6 200 3 2+ −( ) :

7 7 3 5 5a b

8 4964

2 4 83 a b c

9 mn m n2 23

10 2 1234 6 3xy xy xy+ −

11 2 3 102 2ab a b:

12 43

43

927

27

327

27

+

:

13 1

3 0 23,

IV. Resuelve las siguientes ecuaciones irracionales. No olvides que debes comprobar la solución.

1 3 9 2x − =

2 7 3 1 0− + =x

3 12 2 120

x+ =

4 13 53

x− =

5 3 30,375 4 3 10 1,5y+ + − =

6 1 23 7

13−+

= −xx

7 x x x x2 3 3 4− = + −

8 141

xx

x

++ =−

9 12 21

7 22−

−= +x

xx

10 1 41 8

21 2

−+

= −+

x

x

x

x

11 x x x2 3 21 1− + = +

12 32 5 1x+ + =

13 1 3 2 1x− + − = −

U1 MAT 3M (008-073).indd 67 2/11/11 15:22:52

Page 68: 003000.000 grou

68

V. Resuelve los siguientes problemas:

1 María José ha construido una caja para guardar sus pinceles. La caja tiene 20 cm de largo, 10 cm de ancho y 5 cm de alto. ¿Cuánto medirá el pincel más largo que puede guardar en su caja?

2 Gerardo es el gerente general de una empresa que confecciona artículos para autos. Debido a la baja en sus utilidades, él solicita un estudio que relacione el costo de la fabricación de sus productos con las utilidades de las ventas. El informe final establece que la función que relaciona utilidad versus costo es U c c( ) = −1, donde U son las utilidades, en millones de pesos, y c es el costo de producir cada artículo, en miles de pesos. ¿Cuál es el costo que debería tener cada artículo para que las utilidades de la empresa sean $2000000?

3 A Esteban le entretiene mucho la matemática. Después de haber estudiado y entendido, piensa que ya no es tan difícil como le parecía antes. Entonces, inventa un juego recordando el problema de los mosaicos visto en clases. Según lo que recuerda, a partir de un cuadrado se podían construir otros que tuvieran como lado la diagonal del anterior (fíjate en la figura). Esteban comenzó con un cuadrado de lado 2 cm y ahora va en el décimo cuadrado construido. ¿Cuál es la medida del lado de este décimo cuadrado?

4 El profesor de Matemática de Julia había comentado en su clase que los grandes matemáticos pasaron largas horas, días, meses y hasta años descubriendo ciertas regularidades matemáticas (reglas que se cumplían al probar varios casos) que llegaron a ser grandes teoremas de la historia. Julia,

que no entendía esto, pensó: “¡¿No tenían nada mejor en que gastar su tiempo aquellos hombres?!” Ella, sin duda, tenía algo más práctico, aunque no más entretenido que hacer: debía estudiar para su prueba de raíces. Aburrida, comenzó a

multiplicar 1 2 2⋅ = , 2 3 6⋅ = ,

3 4 12⋅ = , 4 5 20⋅ = , 5 6 30⋅ = .

De pronto, se detuvo y exclamó: “¡Soy una genio!”

¿Qué descubrió Julia? Justifica tu respuesta.

VI. Desarrolla los siguientes ejercicios y marca la alternativa correcta. Revisa tus respuestas al final del libro y calcula tu porcentaje de logro.

1 ¿Cuál(es) de los siguientes números es(son) irracional(es)?

I. 2 8⋅

II. 2 8 2 2+

III. 5

25a. Solo Ib. Solo IIc. Solo III

d. Solo I y IIIe. Solo II y III

2 El valor de 169 144− es:

a. 1

b. 5c. 25

d. 5e. 12

3 La suma de 12 300+ da como resultado:

a. 2 78b. 13 2c. 12 3

d. 312

e. No se pueden sumar.

4 El valor de x que satisface la igualdad

4 8x + = es:

a. 4b. 8c. 16

d. 24e. 144

U1 MAT 3M (008-073).indd 68 2/11/11 15:22:54

Page 69: 003000.000 grou

UN

IDA

D 1

69

5 50 512 242 2+ −( ) =:a. 10

b. 10 2

c. 8 5

d. 32

e. 40

DEMRE

6 Si 2 3 2 3 t+ − − = , entonces el valor de 2 2t − es:

a. 2 3 2−

b. 0

c. 2 3

d. 2

e. –2

DEMRE

7 3

22=

DEMRE

a. 3 4

b. 3 2

c. 6 8

d. 6 2

e. 1

8 Si 2 a= , 3 b= y 5 c= , entonces ¿cuál(es) de las expresiones siguientes

es(son) equivalente(s) a 60 ?

I. 2 bc II. 4 2 2a b c III. 2a bc

DEMRE

a. Solo Ib. Solo IIc. Solo III

d. Solo I y IIe. Solo I y III

9 5 2 3 3 5 2−( ) +( ) =

DEMRE

a. −25 5

b. 24 5

c. 7

d. 47

e. 0

10 Al multiplicar 2 2 3 2a b c⋅ ⋅ se obtiene:

a. 12 abc

b. 2 6 abc

c. 6 2abc

d. 6 2abc

e. 2 6 abc

11 Sobre el número 3 343− podemos afirmar que:

a. Es un número natural.b. Es un número entero.c. No es un número real.d. Es un número decimal infinito periódico.e. Ninguna de las anteriores.

12 El dominio de la función f x x( ) = −2 5 es:

a. 25

x ≤

b. 52

x ≤

c. 25

x ≥

d. 52

x ≥

e. 0x ≥

13 Determina el lado de un cuadrado de área 8 cm2:

a. 2 cm

b. 2 2 cmc. 4 2 cm

d. 4 cm

e. 64 cm

14 Determina el volumen de un cubo cuya área total es 12 cm2:

a. 2 cm3

b. 8 cm3

c. 32 cmcm3

d. 2 2 3cm

e. 3 312 cmcm3

15 El valor de x en la ecuación 2 2 1x x x+ = − es:

a. 12

b. 14

c. 12

d. 14

e. No tiene solución.

16 ¿Cuál es el valor de 3 3 3 3

3+ + +

?

a. 3

b. 43

c. 43

d. 4

e. 2

U1 MAT 3M (008-073).indd 69 2/11/11 15:22:59

Page 70: 003000.000 grou

70

17 La expresión 10 215⋅ es equivalente a:

a. 25

b. 2 33

c. 2 55

d. 3

6

e. 6

3

18 ¿Cuál(es) de los siguientes números es(son) irracional(es)?

I. 18 2⋅

II. 8 3 8+

III. 8

32a. Solo IIb. Solo I y IIc. S0lo I y III

d. Solo II y IIIe. I, II y III

19 Si 10a b= + con 10b > − , entonces 2 b es igual a:

a. 2 10a−

b. 2 102a −

c. 4 10 2a −( )

d. 2 102a −( )e. 2 10 2

a −( )

20 1

m mm

⋅ + =

a. 0

b. 1

c. m

d. 1 m+

e. 1m

21 Un número racional comprendido entre

5 y 7 es:

a. 5 7)

25 7)

2)2,4)2,7)2,8

A

B

C

D

E

+

−b.

5 7)2

5 7)2

)2,4)2,7)2,8

A

B

C

D

E

+

c. 2,4

d. 2,7

e. 2,8

22 Al resolver y reducir la siguiente expresión se obtiene:

5 1 5 12

−( ) +( )a. 4

b. 4 6

c. 4 5 4+

d. 4 5 1−( )e. 6 5 1−( )

23 El valor de la expresión 2 2 es:

a.

4

) 4

) 8

) 16

) 64

) 8

A

B

C

D

E

b.

4

) 4

) 8

) 16

) 64

) 8

A

B

C

D

E

c.

4

) 4

) 8

) 16

) 64

) 8

A

B

C

D

E

d. 4

) 4

) 8

) 16

) 64

) 8

A

B

C

D

Ee. 4

) 4

) 8

) 16

) 64

) 8

A

B

C

D

E

24 ¿A cuál de los siguientes conjuntos

pertenece 54 ?

a. { }/6 7x x∈ < <R

b. { }/7 8x x∈ < <R

c. { }/26 28x x∈ < <R

d. { }/ 8x x∈ >R

e. { }/ 8x x∈ ≥R

25 De los elementos del conjunto

{ }3 5 327, 32, 125− − − , podemos afirmar

que:

a. Ninguno de ellos es un número realb. Todos son enteros negativosc. Todos son irracionalesd. Algunos son enteros y otros irracionalese. Todos son números naturales

26 ¿Cuál es el valor de x en la ecuación 625 5x = ?

a. 14

b. 12

c. 2

d. 4

e. 5

U1 MAT 3M (008-073).indd 70 2/11/11 15:23:05

Page 71: 003000.000 grou

UN

IDA

D 1

71

27 Si 5 2,236≈ , entonces el valor aproximado de 1,25 es:

a. 0,059b. 0,559c. 0,759

d. 1,011e. 1,118

28 Al racionalizar la expresión 5 2 33 2 5−−

se obtiene:

a. 4 3 1511

b. 3 15 411

c. 4 3 1517

d. 3 15 417

e. 4 3 1597

29 ¿Cuál(es) de las siguientes afirmaciones es (son) correcta(s) con respecto a la función f x x( ) = + −3 5 ?

I. f 6 4( ) =II. Su mínimo es − −( )3 5,

III. Dom f x( ) = − ∞] [3,

a. Solo Ib. Solo IIc. Solo I y III

d. Solo II y IIIe. I, II y III

30 El gráfico de la figura representa a la función:

–2

2

1 50 2 63 74 8

4

6

8

10

y

x

a. f x x( ) = +2

b. f x x( ) = 2

c. f xx( ) =2

d. f x x( ) = +2

e. f x x( ) = +4

31 Se puede afirmar que 2x + es un número racional si:

I. 2 3 20x +( ) =II. 2 2 2x p p= + + con p∈ N

a. (I) por sí sola

b. (II) por sí sola

c. Ambas juntas, (I) y (II)

d. Cada una por sí sola, (I) o (II)

e. Se requiere información adicional

32 El valor de 36 2 401

27 32

12

14

13

15

+

es:

a. 1

11−

b. 15

c. 15

d. 135

e. 1311

33 Si 2 3a = + , 3 1b = − y 1 3c = + , entonces el valor de 2a bc+ es:

a. 9

b. 9 2 3+

c. 9 4 3+

d. 11 2 3+

e. 11 4 3+

34 Si x∈R+, ¿qué expresión se le debe restar a

x +( )52

para obtener un número racional?

a. 5

b. 5−

c. x

d. – x

e. No se puede determinar

U1 MAT 3M (008-073).indd 71 2/11/11 15:23:13

Page 72: 003000.000 grou

72

35 Al reducir la expresión

x y xy y x xy⋅ +( ) − ⋅ −( ) se obtiene:

a. 2 xy

b. 2 xy xy

c. xy x y+( )

d. x y y x+

e. 2 xy x y y x+ +

36 Un rectángulo tiene área 40 12−( ) cm2.

Si uno de sus lados mide 8 cm, ¿cuánto

mide el otro lado?

a. 5 3−

b. 10 3−

c. 10 6−

d. 2 5 62−

e. 10 6

2−

37 El valor de 3

5

254

2( )+ es:

a. 5

b. 1

c. 5 5

d. 6 5

e. 6 55

38 Al desarrollar 5 7357 5

⋅ −

se obtiene:

a. – 24

b. – 2

c. 0

d. 12

e. 74

39 Si se extrae raíz cuadrada al triple de un número aumentado en una unidad se obtiene ocho. ¿Cuál es el número?

a. 9

b. 493

c. 21

d. 653

e. 27

40 La diagonal de un cuadrado mide

2 12 3 3+( ) cm. Entonces, su área,

en cm2, es:

a. 16,5b. 27,75c. 73,5

d. 55,5e. 111

Mis apuntes

U1 MAT 3M (008-073).indd 72 2/11/11 15:23:19

Page 73: 003000.000 grou

UN

IDA

D 1

73

Criterios para autoevaluar tu aprendizaje

Marca con una 8 según la evaluación de tu trabajo en esta unidad. Recuerda que hacer esta evaluación responsablemente te entregará información sobre tu proceso de aprendizaje.

Indicadores +++ ++– +––

Revisé detenidamente el mapa conceptual de la síntesis.

Contesté correctamente el ítem I de la síntesis conceptual.

Desarrollé correctamente los ejercicios de los ítems II, III, IV y V.

Me fue fácil porque tenía claros los conceptos y tipos de ejercicios.

Tuve dificultades porque me equivoqué en la operatoria, pero sé los conceptos y lo que debo hacer.

Me fue difícil resolver los ejercicios porque no tengo claros los conceptos y la operatoria involucrada en los ejercicios.

Pedí ayuda cuando necesité que me explicaran algún contenido o ejercicio.

Me siento preparado para resolver cualquier ejercicio de este tema.

Calcula el porcentaje de logro que obtuviste en el ítem VI.

Porcentaje de logro

PL = .Nº de respuestas correctas2040

100

Porcentaje de logro

Nota obtenida

Nivel de mi aprendizaje

Cómo mejorar

29% a 0% 1,0 a 2,5 AlertaLos contenidos no han sido comprendidos. Debes repasarlos nuevamente y rehacer los ejercicios. Fíjate muy bien en los ejercicios resueltos. Debes pedir ayuda. ¡Ánimo! con trabajo y estudio se puede.

49% a 30% 2,6 a 3,5 Muy bajoLa mayoría de los contenidos no han sido comprendidos. Debes volver a repasarlos y rehacer los ejercicios incorrectos. Pídeles ayuda a tus compañeros o compañeras. Vuelve a estudiar; seguro que lo lograrás.

59% a 50% 3,6 a 3,9 BajoUna gran parte de los contenidos no han sido comprendidos en su totalidad. Rehaz aquellos ejercicios incorrectos, pero antes, vuelve a estudiar los contenidos. Trata nuevamente.

69% a 60% 4,0 a 4,7 Medio bajoAdquiriste una parte de los contenidos, pero aún faltan. Debes corregir aquellos ejercicios incorrectos y revisar los contenidos de los temas en que fallaste. Bien, has avanzado, aunque aún queda camino por andar.

79% a 70% 4,8 a 5,4 MedioHas logrado entender una buena parte de los contenidos; sin embargo, aún faltan otros y afianzar los primeros. Corrige las respuestas erróneas; puedes pedir ayuda si lo deseas. Revisa los contenidos. Puedes hacerlo mucho mejor.

89% a 80% 5,5 a 6,2 Medio altoHas logrado adquirir gran parte de los contenidos. Revisa los ejercicios en los que fallaste y repasa los respectivos contenidos. ¡Lo has hecho bien!

100% a 90% 6,3 a 7,0 AltoHas logrado aprender todos o casi todos los contenidos tratados. ¡Muy bien! has logrado los objetivos propuestos. Sigue así.

U1 MAT 3M (008-073).indd 73 2/11/11 15:23:19

Page 74: 003000.000 grou

U N I D A D 2

Ecuaciones cuadráticas

y función cuadrática

ECUACIONES CUADRÁTICAS Y FUNCIÓN CUADRÁTICA

Problemas de aplicación a la vida diaria

Concepto de ecuación cuadrática

Concepto de función cuadrática

Tipos de ecuaciones cuadráticas y métodos

de resolución

Análisis de la función cuadrática

74

U2 MAT 3M (074-145).indd 74 2/11/11 15:27:08

Page 75: 003000.000 grou

O B J E T I V O S F U N D A M E N T A L E SY T R A N S V E R S A L E S

En esta unidad:

Conocerás y utilizarás conceptos matemáticos asociados al estudio de ecuaciones cuadráticas y función cuadrática.

Aplicarás y ajustarás modelos matemáticos para la resolución de problemas y el análisis de situaciones concretas.

Modelarás situaciones o fenómenos a través de funciones cuadráticas.

Resolverás desafíos con grado de dificultad creciente, valorando tus propias capacidades.

Percibirás la matemática como una disciplina que recoge y busca respuestas a desafíos propios o que provienen de otros ámbitos.

Razonarás lógica y deductivamente para ir en búsqueda de nuevos métodos de solución a los problemas que se plantean.

75

U2 MAT 3M (074-145).indd 75 2/11/11 15:27:10

Page 76: 003000.000 grou

76

A P R E N D I Z A J E S E S P E R A D O S

C O N T E N I D O S

En esta unidad se espera que:

1 Plantees y resuelvas problemas que involucran ecuaciones de segundo grado; explicites procedimientos de solución y analices la existencia y pertinencia de las soluciones obtenidas.

2 Analices la función cuadrática en el marco de la modelación de algunos fenómenos sencillos.

3 Conozcas la parábola como un lugar geométrico, reconozcas su gráfica e identifiques aquellas que corresponden a una función cuadrática.

4 Identifiques algunas de las propiedades y aplicaciones de la función cuadrática en diversos ámbitos de la tecnología.

Concepto de ecuación cuadrática.

Ecuaciones cuadráticas incompletas y método de resolución.

Ecuaciones cuadráticas completas factorizables y método de resolución.

Resolución de ecuaciones cuadráticas por completación de cuadrados.

Ecuaciones cuadráticas completas y fórmula general.

Función cuadrática: concepto y análisis de sus

principales características, gráficos 2y ax= ; 2 ,y x a a= ± > 0 2 ,y x a a= ± > 0; y x a a= ±( ) >2 0, y x a a= ±( ) >2 0;

2y ax bx c= + + . Discusión de los casos de

intersección de la parábola con el eje x.

Aplicación de ecuaciones cuadráticas y función cuadrática en problemas de planteo.

Uso de herramientas tecnológicas apropiadas para los contenidos de la unidad.

U2 MAT 3M (074-145).indd 76 2/11/11 15:27:15

Page 77: 003000.000 grou

UN

IDA

D 2

77

La resolución de la ecuación de segundo grado se remonta a los comienzos del desarrollo de la matemática en general y a los del álgebra en particular. La ecuación de segundo grado y su solución tiene antiguo origen. En el 2000 a. C., los ingenieros chinos, egipcios y babilónicos se topaban con un problema. Sabían el valor del área de un terreno rectangular o en forma de T, pero no podían encontrar las longitudes del terreno en cuestión. Es decir, lo que en nuestros días se resolvería usando una ecuación cuadrática.

En Egipto, los ingenieros se dedicaban a calcular el valor de las áreas de los posibles cuadrados y rectángulos por utilizar, construyendo así tablas como una forma de resolver el problema de las longitudes. En China se usó una doble comprobación de operaciones simples matemáticas para resolver este problema, las que fueron asombrosamente fáciles por el empleo extendido del ábaco. En Babilonia, la tablilla cuneiforme BM13901 contiene abundante material relativo a la resolución de ecuaciones de segundo grado con una incógnita, donde se pueden apreciar los conocimientos que, sobre el particular, tenían los matemáticos babilonios.

En Grecia, la ecuación de segundo grado fue desarrollada por el matemático Diofanto de Alejandría. Por el año 628 d. C. en la India, una ecuación de segundo grado equivalente a la actual x x2 10 9− = − fue tratada por el matemático indio Brahmagupta, quien propuso una forma de resolverla. Posteriormente, en el siglo IX, el matemático árabe Mohamed ibn Musa al-Khowarizmi utilizó una estrategia para resolver la ecuación x x2 10 39+ = .

La solución de las ecuaciones de segundo grado fue introducida en Europa por el matemático judeoespañol Abraham bar Hiyya en su Liber embadorum.

Ahora bien, con el desarrollo de las funciones, se fue estudiando un tipo especial de ellas: las llamadas funciones polinómicas, es decir, aquellas que están definidas por un polinomio. Por ejemplo, f x x( ) = +3 1 , que es una función polinómica de tercer grado.

En esta ocasión conoceremos las funciones cuadráticas, es decir, aquellas de grado dos; estudiaremos su gráfica y nos valdremos de ellas para profundizar más en su análisis. También conoceremos qué situaciones se modelan con este tipo de funciones. Emprendamos este viaje al mundo de las ecuaciones y funciones cuadráticas.

Diofanto de Alejandría (200 d. C. - 284 d. C.)

U2 MAT 3M (074-145).indd 77 2/11/11 15:27:17

Page 78: 003000.000 grou

78

Conocimientos previosEn 1° y 2° medio trabajaste y aprendiste conceptos fundamentales en el desarrollo de la matemática. Uno de ellos es el de factorización. Aunque muchas veces no le veas utilidad a lo que estás estudiando, de seguro llegará el momento en que lo necesitarás para seguir aprendiendo.Para desarrollar nuestra unidad, debemos recordar algunas cosas de este tema.Hagámoslo juntos.

FactorizaciónLlamaremos factorizar al proceso de transformar una expresión algebraica en el producto de otras expresiones algebraicas más simples, no factorizables nuevamente (es algo así como “expresiones algebraicas primas”).

Como recordarás, había muchos casos de factorización. Repasaremos tres de ellos, que son los que utilizaremos en esta unidad.

a. Factor común: Una expresión algebraica se puede factorizar por este caso cuando existe, en todos sus términos, un factor común, es decir, letras que se repiten (con el menor exponente que aparezcan), y/o un máximo común divisor entre sus coeficientes numéricos.Por ejemplo:

2 3 2 3xy xz x y z+ = +( )

2. (Factor común, 2x . Recuerda que

siempre puedes comprobar tu

factorización. Si distribuyes

2 22 2x x2 2( )2 2( )2 2 3( )3x x( )x x2 2x x2 2( )2 2x x2 2 y( )y+( )+ , deberías obtener la

expresión con la que comenzaste)

1. (Debes poner fuera del paréntesis el factor común; en este caso, x)

4 10 2 2 52x xy x x y− = −( )

3. 12 3 9 3 4 1 32 3 2 2 2 2 2x y x y x y x y y y+ − = + −( )b. Trinomio de la forma 2x bx c+ + : Una expresión algebraica de

esta forma se puede factorizar, en algunas ocasiones, en dos binomios con un término común.Por ejemplo:

1. x x x x2 6 5 5 1+ + = +( ) +( ) (Buscamos dos números que multiplicados den 5 y sumados 6)

2. x x x x2 7 18 9 2+ − = +( ) −( )3. x x x x2 15 36 12 3− + = −( ) −( )

U2 MAT 3M (074-145).indd 78 2/11/11 15:27:20

Page 79: 003000.000 grou

c. Trinomio cuadrado perfecto: Una expresión algebraica se puede factorizar por este caso, cuando es un trinomio en que dos de sus términos son cuadrados perfectos y el tercer término es el doble producto de las raíces cuadradas de los términos anteriores. Este es el desarrollo de un cuadrado de binomio. Por ejemplo:

x x x2 26 9 3+ + = +( )1.

cuadrado de x cuadrado de 3doble producto de x y 3

2. 4 20 25 2 52 2x x x− + = −( )

3. 9 24 16 3 42 2x x x+ + = +( )

Junto con una compañera o compañero, resuelve los siguientes ejercicios. Factoriza las expresiones algebraicas. Identifica primero a cuál de los tres casos que repasaste corresponde cada ejercicio.

EvaluaciónResponde las siguientes preguntas:

•¿Recordécómofactorizaryloscasosdefactorizaciónplanteados?

•¿Entendílosejerciciosresueltos?

•¿Pudehacercorrectamentelosejerciciospropuestos?

•¿Colaboréconmiscompañeroseneldesarrollodelasactividades?

Recuerda que si has tenido dificultades para hacer los ejercicios y no te sientes seguro o segura en los contenidos, debes volver a repasar o pedir ayuda a tus compañeros o compañeras y/o a tu profesor o profesora.

UN

IDA

D 2

79

1 4 3b b−

2 14 21 35a b− +

3 4 202m am−

4 ax bx cx+ +

5 4 43a bx bx−

6 20 12 4x xy xz+ +

7 x x2 3 4+ −

8 a a2 4 3+ +9 m m2 5 14+ −

10 2 9 20y y− +

11 2 6t t− −

12 p p2 9 8− +

13 u u2 10 25− +

14 9 6 2− +x x

15 16 40 252 4+ +x x

16 1 49 142+ −m m

17 36 12 2 4+ +m m

18 2 2x x+ −

19 20 212+ −a a

20 x x x4 3 22 3− −

21 2 6 16 24 325 4 3 2x x x x x− − + +

22 x x2 24 144− +

23 34

98

2 2x y xy−

24 n n2 6 16+ −

U2 MAT 3M (074-145).indd 79 2/11/11 15:27:29

Page 80: 003000.000 grou

80

Ecuaciones cuadráticas: ¿qué son, cómo se resuelven y para qué sirven?

Qué son las ecuaciones cuadráticas, cómo se clasifican, cómo se resuelven y qué problemas se pueden resolver con ellas.Desarrollarás las siguientes habilidades:• Identificar•Calcular•Comprender•Resolver•Relacionar•Aplicar• Interpretar y generar ideasHabilidades por actividad:•Comprender y resolver: 1, 2, 3, 7a, 8, 6, 1,

2a, 2d, 2e, 3, 9 •Relacionar y aplicar: 7b, 2b, 2c, 5, 6, 7, 8

Trabaja más...

Habilidades por actividad:•Comprender y resolver: 1, 2, 3, 5, 6, 5, 9,

10, 11, 12, 13, 14, 16, 1, 2, 3, 6, 7, 9, 10•Relacionar y aplicar: 4, 8, 15, 17, 18, 4, 5, 8

En esta sección aprenderás En el consejo de curso, Daniel y Paulina darán a conocer los costos que tendrá su fiesta de graduación. Junto con sus familias, han reunido $1197000. El señor Lucas Montecinos, encargado de la empresa que más les gusta, les dijo que si él les rebajara en $1000 el costo por persona, entonces podrían ir 12 personas más. Interesados por esta oferta, deben hacer los cálculos de la cantidad de personas que pueden ir y cuánto costaría el menú por cada uno; la idea es que vayan con sus parejas y, tal vez, los papás.

Celeste, la hermana de Daniel, que estaba escuchando la conversación,ledijoaDaniel:“¡¿Perocómopuedencalculareso?!” Daniel le explicó:

Llamemos x a la cantidad de personas que van e y al costo de la cena, por persona, entonces podemos anotar que:

x y⋅ =1197 000

Ahora bien, como nos rebajarán $1000 y podrán ir 12 personas más, podemos anotar también que:

x y+( )⋅ −( ) =12 1000 1197 000

Despejamos la incógnita y de la primera ecuación y luego la remplazamos en la segunda:

Si x y yx

⋅ = ⇒ =1197 000 1197 000.

Remplazando en la segunda ecuación, tenemos que:

xx

+( )⋅ −

=12 1197 000 1000 1197 000.

Multiplicando término a término, se tiene:

1197 000 1000 14364 000 12000 1197 000 1197 000− + − = −xx

/

⇒− + − = ⋅1000 14364 000 12000 0xx

x/

⇒− + − =1000 14364 000 12000 02x x

Daniel le dijo que estas eran un tipo de ecuaciones distintas y que en 3° medio las estudiará en el colegio.

Al igual que Celeste, que lo hará pronto, estudiemos nosotros estas ecuaciones para terminar luego de resolver el problema de Daniel y Paulina.

U2 MAT 3M (074-145).indd 80 2/11/11 15:27:32

Page 81: 003000.000 grou

UN

IDA

D 2

81

Un polinomio es una expresión

algebraica con más de dos

términos; por ejemplo, 24 3 4 1x xy z− + − .

Se llama polinomio en una sola

variable a aquel en que el factor

literal de sus términos está

compuesto solo por potencias de

una misma variable; por

ejemplo: 22 2 2x x+ − .

Se llama grado de un polinomio

en una variable al mayor

exponente de los términos de un

polinomio; por ejemplo:

el polinomio 32 4x − tiene grado

3 y el polinomio 4 23 1x x− − +

tiene grado 4.

Recordar y archivar

Analizaremos los distintos tipos de ecuaciones cuadráticas y su manera de resolverlas, partiendo desde las más sencillas hasta las más complejas.

Ecuaciones cuadráticas incompletas de la forma ax2 + c = 0, con a ≠ 0

En este caso, solo se distinguen términos de grado dos y grado 0 (o término libre).

Para resolverla debemos despejar la incógnita.

Por ejemplo:

1. 2 8 0 82 8 2

4

2

2

2

x

x

x

− = +⇒ =⇒ =

// :

Observa que debes encontrar un número que al elevarlo al cuadrado dé por resultado 4.¿Teacuerdasqueenlaunidadanteriordijimosque las soluciones de esta ecuación eran 4 o 4− ?

Por lo tanto, al extraer raíz, tendremos dos soluciones: 4x = o 4x = − ; esto es, 2x = o 2x = − son las soluciones.

Veamos otro ejemplo en el que no se presenta directamente el tipo de ecuación que estamos estudiando, sino que al desarrollar y reducir se obtiene este caso:

2. (¿Te das cuenta de que esta

ecuación presenta solo términos de grado 2 y

grado 0 para x?)

3 5 2 92 2x x−( ) = +⇒ − = + −3 15 2 9 22 2 2x x x/

⇒ =x 2 6 x = −2 6(descomponiendo)

son las soluciones.

2 15 9x⇒ − = +/ 152 24x⇒ = /

24x⇒ = 24x = −o

o

3. x x x2 2 253

4 15

14 115

− + − = − /m.c.m. 15

Recuerda que esta es una ecuación fraccionaria; por lo tanto, amplificaremos por el m.c.m para eliminar los denominadores.

5 5 3 4 1 14 1

5 25 12 3 14 1

2 2 2

2 2 2

x x x

x x x

−( )+ −( ) = −

⇒ − + − = −

(¿Estamos en este mismo caso? Pues sí, ya que no hay

términos de grado 1 en x)

A las soluciones de una ecuación

se les llama también raíces de la

ecuación. Aunque se nombran de

manera similar, no son lo mismo

que las raíces estudiadas en la

unidad anterior.

Recordar y archivar

Definiremos ecuación cuadrática a aquella ecuación en la que al menos una de las incógnitas involucradas está elevada al cuadrado, siendo la mayor potencia de ella.

Así, una ecuación cuadrática será toda ecuación de la forma 2 0ax bx c+ + = , con 0a ≠ .

U2 MAT 3M (074-145).indd 81 2/11/11 15:27:35

Page 82: 003000.000 grou

82

⇒ − = − +⇒ = + −⇒ =

⇒ =

17 28 14 1 2817 14 27 143 27 3

9

2 2

2 2 2

2

2

x x

x x x

x

x

/// :

/⇒ =x 9 x = − 9⇒ =x 3 x = −3

o

o son las soluciones.

(Recuerda que debes factorizar los denominadores para calcularlo)

4. + −+ =− + −2

2 2 402 2 4

x xx x x

/m.c.m. x x−( ) +( )2 2

x x x x

x

x

x

2 2

2

2

2

4 4 4 4 402 8 40 82 32 2

16

+ + + − + =+ = −=

=

// :

/

(¿Es este el caso que estamos estudiando?)

x x+( ) + −( ) =2 2 402 2

x = 4 o x = −4 Recuerda que en las ecuaciones que tienen expresiones

algebraicas en los denominadores de una expresión fraccionaria, debes comprobar que ninguno de ellos se haga 0 al remplazar la incógnita por el valor obtenido, pues no existe una fracción con denominador 0. En este caso, esa ya no sería solución.

Veamos: x x−( ) +( )2 2 se hacen cero solo si =2x o si = −2x ; por lo tanto, ambos resultados obtenidos serán soluciones de la ecuación.

Miraahoraestaecuación.¿Recuerdasqueyahemosestudiadoalgunassimilaresenlaunidadanterior?Sonecuacionesirracionales.

5 9 19 2

5 9 19 8 19

5 9 27

5 9 729 95 7

23 3

2

2 2

2

2

x

x

x

x

x

+ − = ( )+ − = +

+ = ( )+ = −=

/

/

/

/220 5

1442

/ :

/x =

(Y aquí tenemos, nuevamente,

ecuaciones de la forma que estamos

estudiando)

5.

x =12 o x = −12

Comprobando (recuerda que siempre debes hacerlo con las ecuaciones irracionales), se tiene que:

= ⇒ ⋅ + − =3 212 5 12 9 19 2xSi

⋅ + − =3 5 144 9 19 2

− =3 729 19 2

− =3 27 19 2=3 8 2

U2 MAT 3M (074-145).indd 82 2/11/11 15:27:40

Page 83: 003000.000 grou

UN

IDA

D 2

83

Esto es cierto; por lo tanto, x = 12 es solución.

x = − ⇒ ⋅ −( ) + − =12 5 12 9 19 223

⋅ + − =3 5 144 9 19 2

Es el mismo caso anterior; entonces x = –12 es solución. Así, las soluciones de la ecuación son x = 12 y x = –12.

+ =+ −

12 2

x xx x

(¿A cuál de los anteriores ejemplos se parece?)

6. /m.c.m. x x−( ) +( )2 2

x x x x x x

x x x x x

x x x

x

−( )+ +( ) = −( ) +( )− + + = −= − −

= −

2 2 2 2

2 2 42 4

2 4

2 2 2

2 2 2

2

/

//x = −4 x = − −4o

Pero −4 no existe (o no está definida) en los números reales; por lo tanto, la ecuación no tiene solución en R.

7. Arnoldo está preparando su primer trabajo para el taller de diseño. Le han pedido que haga un collage sobre una madera de área 900 cm2 con cuadraditos de colores de 2 x 2 cm. La madera es un rectángulo, donde el largo y el ancho difieren en 80 cm. ¿CómopodráArnoldosabercuántoscuadraditoscolocaráalolargoyaloancho?

Después de un momento de nerviosismo, decidió, ingeniosamente, calcular los lados del rectángulo, para lo que hizo el siguiente bosquejo:

(Suma por diferencia)x x+( ) −( ) =40 40 900− =2 1.600 900x +/ 1.600=2 2.500x /=50x o = −50x

1600 = 900 16002500

Si analizamos las respuestas, vemos que x = –50 no es solución, porque una medida de longitud no puede ser negativa; por lo tanto, la solución es x = 50. Entonces, el largo será 50 + 40, es decir, 90 cm, y el ancho será 50 – 40, es decir, 10 cm. Así, deberá colocar 45 cuadraditos a lo largo y 5 a lo ancho.

( )−40x

( )+40x

Observa que, en este caso, si la ecuación tiene solución, los resultados de las ecuaciones son uno el inverso aditivo del otro, es decir, si uno es a, entonces el otro será –a.

U2 MAT 3M (074-145).indd 83 2/11/11 15:27:43

Page 84: 003000.000 grou

84

TrabajaResuelve en tu cuaderno.

1 Incluye todo el desarrollo y comprueba tus respuestas en el solucionario.

a. x2 – 12 = 0

b. 6 11114

12

2

xx

−+

=

c. + =2 1 0x

d. 14 5 1 9x x x x+( ) −( ) = −( )

e. + − = −

21 52 7 2 12 2

y y y

f. x x2 262

44

5− − + =

g. xx

xx

xx x

+−

+ −−

+− +

=42

24

46 8

02

h. 14

19

1242 2z z

− =

i. 2 1 0 5 1662+ =, x

j. 5 63 2

12

23

xx−+

=

Ecuaciones cuadráticas de la forma ax2 + bx = 0, con a y b números reales y a ≠ 0

En este tipo de ecuaciones solo se distinguen términos de grado dos y grado uno; no hay término libre. Por lo tanto, ya no se puede despejar la incógnita para igualarla a un número y luego extraer raíz cuadrada. Miremos algunos casos, a modo de ejemplo.

1. − =2 9 0x x Si factorizamos por x, tendremos que:

(Ahora bien, si miramos que este es un producto o multiplicación que es igual a 0, esto solo se

puede cumplir si alguno de los factores es 0; por lo tanto, podemos separar esta ecuación en dos)

son las soluciones.

x x −( ) =9 0

=0x

=0x

− =9 0xo

o

+/ 9=9x

2. x x x+( ) + −( ) = +( )4 3 52 2 2

Esta es una ecuación en la que debes desarrollar los cuadrados de binomios y reducir términos semejantes. Veamos lo que obtenemos.

x x x x x x

x x x x

x x x

2 2 2

2 2

2 2

8 16 6 9 10 252 2 25 10 25 252 2

+ + + − + = + ++ + = + + −+ =

/++ −10 10x x/

(¿Notas que esta ecuación tiene

solo términos de grado 2 y 1?)

2 82 2 2x x x x− = −/

(Por lo tanto, debemos resolverla como lo hicimos

en el ejercicio anterior)

x x

x x

2 8 08 0

− =−( ) =

(Debemos igualar a 0 para poder resolverla)

son las soluciones.

x =0 o x − =8 0x =0 o x =8

U2 MAT 3M (074-145).indd 84 2/11/11 15:27:49

Page 85: 003000.000 grou

UN

IDA

D 2

85

3 5

5

2 70

717 35

2 2x xx

−−

−= +

( ) ( )/ m.c.m. 3.

(¿Por qué debemos amplificar por

el m.c.m?)

21 105 10 700 595 3511 595 595 35 59511 35 35

2 2

2

2

x x x

x x

x x

− − + = ++ = + −= −

// xx

x x11 35 02 − =

21 5 10 70 35 17

21 105 10 700 595 35

11 5

2 2

2 2

2

x x x

x x x

x

− − − = +

− − + = +

+

( ) ( ) ( )

995 595 35 595

11 35 352

= + −

= −

x

x x x

/

/

(¿Ya lo notaste? ¡Muy bien!, esta ecuación

es del mismo tipo de las que estamos estudiando)

11 35 0

11 35 0

0 11 35 0 3511 35 11

3511

2x x

x x

x x

x

x

− =

− =

= − = +

=

=

( )o /

/ :

(Factorizamos)

x =0 11 35 0 35x − = +/11 35 11

3511

x

x

=

=

/ :

o

Por lo tanto, las soluciones son: x = 0 o 3511

x =

x x x+ − − = + −9 1 4 1/4.(Recuerda que debemos

aislar una raíz)

x x+ = + − ( )9 4 12

/

x x+ = + −( ) ( )9 4 12 2 (Recuerda que se ha formado

un cuadrado de binomio)

2 8 8 1

4 32 64 64 1

4 32 64 64 64 64 64

2 2

2

2

x x

x x x

x x x x

−( ) = −( )− + = −( )− + = − − +/

44 32 04 32 0

2x x

x x

− =−( ) =ox =0 4 32 0 32x − = +/ox =0 4 32 4x = / :

2 8 8 1

2 8 8 1

4 32 64 64 1

4 32 64 6

2

2 2

2

2

x x

x x

x x x

x x

− = − ( )−( ) = −( )− + = −( )− + =

/

44 64 64 644 32 0

4 32 0 324 32 4

8

2

− − +− =−( ) = +

==

x x

x x

x x

x

x

/

// :

x x x

x x x x

x x

x

+ = + − + −

+ = + − − − +

− = −

− = −

( )( )

9 16 8 1 1

9 17 8 1 17

2 8 8 1

2 8 8 1

2

2

/

/

xx( )2 (Nuevamente, cuadrado de binomio y además potencia de una multiplicación)

(Factorizamos, ¿para qué?)

x =0 o x =8Comprobando (recuerda que debes comprobar las ecuaciones irracionales):

Si = ⇒ + − − =0 0 9 1 0 4x − ≠3 1 4 ; por lo tanto, =0x no es solución.

Si = − ⇒ − + − −− =8 8 9 1 8 4x − ≠1 3 4; por lo tanto, = −8x no es solución.

En consecuencia, la ecuación no tiene solución.

U2 MAT 3M (074-145).indd 85 2/11/11 15:27:57

Page 86: 003000.000 grou

86

¿QuélerespondióNawelalapuerta?

Este es su razonamiento:

Llamemos x a la medida del lado de la puerta; entonces tendremos que:

Como el lado de la puerta no podía medir 0 metros, entonces debía medir 3metros.Naweldiolarespuestaylapuertaseabrió.

Observa que, en este caso, siempre hay dos soluciones reales, donde una de ellas es siempre 0 y la otra es un número real cualquiera.

... después de mucho andar y aventurar, Nawel llegó frente a una gran puerta cuadrada en aquel país lleno de sorpresas. Con voz profunda, la puerta le preguntó: “¿Queréis pasar, extranjero?” “Sí”, respondió Nawel, casi adivinando lo que venía y ya muy cansado para devolverse. “Pues bien –dijo la puerta–, deberás hallar mis medidas, sabiendo que si a 8 veces mi área, en metros cuadrados, le restas 12 veces la medida de mi lado, tendrás nuevamente 12 veces la medida del lado”.

Aplica lo aprendido.

2 Desarrolla cada ejercicio en tu cuaderno y verifica tus respuestas consultando en el solucionario.

a. 5 41 02x x− =

b. 9

222

xx

=

c. 19 123 2 2 3

22x

x x+

+( ) −( ) = −

d. xx x

2 43 5

415

+−( ) −( ) =

e. 4 6 34

7316

2

+ −

=y

f. 7 11 11 7 1 4 19 42−( ) −( ) − −( ) = −( )x x x x

g. x x x x x2 2 221

44 5

124 5

3+ −

−( )=

+( )

h. 2 12

1 22

442

xx

xx

xx

−+

− −−

=−

i. 1 0 4 1 0 4 5 1 4 0 2− + = +( ), , , ,x x x

j. 175 1127

32z z

z−

=

Trabaja

5. La profesora pidió que escribieran un cuento de fantasía. Esto es parte de lo que Aukán escribió:

(Factorizamos)

x =0 o 8 24 0 24x − = +/

8 12 12 128 24 0

8 24 0

2

2

x x x x

x x

x x

− = −− =−( ) =

/

8 24 83

x

x

==

/ :

U2 MAT 3M (074-145).indd 86 2/11/11 15:28:03

Page 87: 003000.000 grou

UN

IDA

D 2

87

Trabaja

1 Resuelvanenparejaslossiguientesproblemas.Haganeldesarrolloensucuaderno.Noolvidenchequear sus respuestas en el solucionario.

a. El profesor de Lenguaje de Macarena le pidió como tarea que hiciera un poema que tuviera rima e integrara las asignaturas de Lenguaje y Matemática. A Macarena le gustaban los desafíos, así que después de un rato escribió:

Un número entero soy y qué cansado estoy.

Ocho veces han multiplicado mi sucesor

por mi antecesor hoy

y nadie entiende cómo he terminado

ocho unidades

menor que yo mismo, aquí donde estoy...

¿AquénúmeroserefiereMacarenaensupoema?

b. A Bastián le dijo su mamá que se puede encontrar un número que al sumarle 6 y 8, se forman otros dos cuyo producto es 48.¿Serácierto?¿Cuálesestenúmero?

c. Evelyn tiene mucha imaginación y decidió hacer una ruleta como la de la figura, donde se deben numerar del 1 al 6 los sectores circulares, desde el rojo y en sentido antihorario. Para que sea más entretenido y plantee algún desafío para quienes juegan, pensó colocar ecuaciones que den por resultado los números deseados (obviando la solución que se repite en todas ellas). Esta es la lista deecuacionesplanteadas.¿Puedescolocarlascorrectamenteenlaruleta?

2 21

xx

= −−

x x−( ) +( ) + =7 2 14 0

x −( ) =2 42

4 2 2 14x x x x−( ) = − −( )

x x −( ) =1 0 x x x x x+( )+ −( ) =1 3 2

d. A Octavio le gusta coleccionar monedas de $500. Él guarda siempre la misma cantidad de dinero en cada una de las bolsas que tiene destinadas para ello. Un día su mejor amigo le pregunta cuántas bolsas tiene y Octavio le responde: “Tú crees que tengo el mismo número de bolsas que de monedas en cada bolsa, pero no es así. Partiendo de tu supuesto, te diría que debes disminuir en 50 las bolsas y en 30 las monedas de cada bolsa para obtener $750000”.

Ahoradime,¿cuántasbolsasycuántasmonedastieneOctavio?

U2 MAT 3M (074-145).indd 87 2/11/11 15:28:07

Page 88: 003000.000 grou

88

e. El hermano menor de Francisca cantaba por la casa: “Le sumo 5, le sumo 10, al doble le sumo 3, le sumo 6”. Francisca lo escuchó y pensó que era otra de las locuras de su hermano. Después de un rato y cansada de escuchar lo mismo, le preguntó qué era todo aquello. Él le dijo que existía un número que generaba otros cuatro si hacías lo que él cantaba, donde estos últimos formaban una proporcióncolocándolosenelmismoordencantado.Miróasuhermanaylepreguntó:¿Cuáles?

Responde tú también la pregunta.

Ecuaciones cuadráticas de la forma ax2 + bx + c = 0, con a, b y c números reales y a ≠ 0, donde el trinomio es fácilmente factorizable

En este caso, hay términos de grado dos, uno y cero (o término libre) y, además, el trinomio ax2 + bx + c se puede factorizar. Aplicaremos el mismo razonamiento que para el caso anterior.

Veamos:2 7 12 0x x+ + =1.

(Factorizamos)

(Recuerda, buscabas dos números que multiplicados dieran 12 y sumados, 7.

Separamos el producto en dos factores iguales a 0)

x x+( ) +( ) =3 4 0

(Resolvemos cada una de las ecuaciones)

3 0x + = o 4 0x + =

son las soluciones.3x = − o 4x = −

2. (¿Qué hacemos? Desarrollamos; resuelve como suma por diferencia)

x x x+( ) −( ) − = −6 6 8 1 4

3. xx

x xx

+ −−

= + − −( )33

24 6

24

4/ m.c.m. 12

¿Estásdeacuerdoqueamplificaresloquedebemoshacer?

4 4 48 24 2 8 3 18 244 4 72 5 26 24 5 26

2 2 2

2 2 2

x x x x x x

x x x x x

− − − = − + − +− − = − + − +/ xx

x x

−− + − = ⋅−

2422 96 0 12 /

4 3 4 24 2 4 3 2 4x x x x x x+( ) −( ) − = −( )+ −( ) −( )4 12 24 2 8 3 6 82 2 2x x x x x x− −( )− = − + − +( )

x x

x x x

x x

2

2

2

36 8 1 444 1 4 1 44 45 0

− − = −− = − − ++ − =

/(¿Se podrá factorizar? Sí.

Recuerda que debes encontrar dos números que multiplicados

den –45 y sumados, 4)

son las soluciones.

x x+( ) −( ) =9 5 09 0x + = o 5 0x − =

9x = − o 5x =

U2 MAT 3M (074-145).indd 88 2/11/11 15:28:10

Page 89: 003000.000 grou

UN

IDA

D 2

89

x x2 22 96 0− + = (Es más fácil factorizar si el coeficiente

numérico de x2 es positivo)

(¿Cuál debe ser el producto y cuál la suma de los números que buscas para factorizar?)

(Factorizamos)x x−( ) −( ) =16 6 0

16 0x − = o 6 0x − =16x = o 6x =

Si nos fijamos en los denominadores, x – 4 solo se hará 0 (cero) si x = 4; por lo tanto, las soluciones de la ecuación son: x = 16 o x = 6

4. 92

62

1 22

−−( )

= −x

x / m.c.m. /m.c.m. 2

9 6 2 22− −( ) = −x x(Recuerda mantener el signo – delante del paréntesis porque

después debes cambiar signos)

9 12 36 2 212 27 2 2 2 210 25 0 1

10

2

2

2

2

− + − = −− + − = − − +− + − = ⋅−

x x x

x x x x

x x

x

//

xx + =25 0

9 12 36 2 22− − +( ) = −x x x

x x−( ) −( ) =5 5 05 0x − = o 5 0x − =

5x = o 5x =

(Factorizamos, ¿para qué?)

En este caso, ambas soluciones son iguales; por lo tanto, decimos que la ecuación solo tiene una solución, que es x = 5

5. La mamá de Humberto está postulando a un trabajo en una empresa importadora. En la entrevista, el dueño le pide que resuelva un problema sencillo de cálculo: Para poder ganar un tanto por ciento igual al precio de compra de cadareloj,¿cuáleselpreciodeimportaciónsidebenvenderlosrelojes de pared a USD 75cadauno?La mamá de Humberto, que sabía mucho, tomó papel y lápiz y escribió:

Sea x el precio de importación %100

xx⇒ =

100x

x⇒ ⋅ es el porcentaje de ganancia (es el x % de x).

Además, el precio de venta debe ser igual al precio de importación más las ganancias; entonces podemos escribir que:

75100

xx x= + ⋅

0 100 75002= + −x x0 150 50= +( ) −( )x x

150 0x + = o 50 0x − =150x = − o 50x =

7500 100 75002= + −x x /

/m.c.m. 100

U2 MAT 3M (074-145).indd 89 2/11/11 15:28:14

Page 90: 003000.000 grou

90

Observa que en este caso puedes tener dos soluciones reales y distintas o dos soluciones reales e iguales.

Aplica lo aprendido.

3 En tu cuaderno, desarrolla cada ejercicio, sin olvidar comprobar tus respuestas en el solucionario.

a. x x2 14 45 0− + =

b. 4 4 1 02x x− + =

c. 2 7 4 02x x+ − =

d. 24 1 9 4y y+ = +

e. 2 11 5

35x

xx+ + − =

f. 3 8 152

3 9 4 45

2 2x x x x x x− + =

+( )+ −( ) +

g. x x x x−( ) +( ) =3 3 18

h. 4 5xx

+ =

i. 117x

x

+=+

j. 2 18

1xx

+ =

Trabaja

Como x representa el precio de un reloj, no puede ser negativo; por lo tanto, solo es solución x = 50. Entonces, cada reloj costó USD 50. El dueño quedó muy satisfecho con la mamá de Humberto y ella consiguió su trabajo.

U2 MAT 3M (074-145).indd 90 2/11/11 15:28:17

Page 91: 003000.000 grou

UN

IDA

D 2

91

2 Desarrolla los siguientes problemas con tu grupo. Revisen las respuestas encontradas.

a. “Mira –le dijo Lucía a Reinaldo–, aquí tengo 4 ecuaciones cuadráticas que, de a pares, poseen las mismassoluciones”.¿Puedesencontrarlosdosparesydecircuálessonsussoluciones?

A: A : x x2 8 15 0− + =

B: x x x+( ) = − +( )+3 5 4 5

C: x x x−( ) = +( )−5 3 7 36

D: D: x x2 8 15 0+ + =

b. A Jasmín se le ha presentado el siguiente problema: debe dibujar dos triángulos semejantes, como muestralafiguraadjunta.¿Cuáldebeserelvalordex?

D

E

A

B

C

6 cm

6 cm

AB // EC

x −( )3 cmx +( )2 cm

c. Cristián debe hacer un diseño para el marco de uno de sus cuadros. Él quiere que tenga forma trapezoidal, de manera que la base mayor y la menor tengan 5 dm más y 2 dm menos, respectivamente, que su altura. Para ello, realizó algunos cálculos y determinó que el área de la tela que debe colocar en el marco debe ser de 76 dm2.¿Cuálesseránlasmedidasdelasbasesylaalturadelmarco?

d. La profesora del curso de Carolina ha decidido hacer un concurso de conocimientos. La última pregunta del concurso decía que ganaría quien diera correctamente, en el menor tiempo posible, la solución de las ecuaciones A: x x −( ) =7 18 y B: 2 1 3 5 15 512x x x x+( )− +( ) = − − . Carola, que fue la ganadora, respondió correctamente y se demoró 1 minuto y 35segundos.¿Puedestúsuperar aCarola?

e. El señor Montero, dueño de una plantación de almendras, plantó 324 árboles en una parte de su terreno. Por razones de producción del resto de su fundo, necesita mover estos árboles, de manera que ocupen un terreno rectangular, donde el número de árboles colocados en cada fila supere en 15unidadesalnúmerodeárbolespuestosencadacolumna.¿Cuántosárbolesdebecolocarencadaunadelasfilasyencadaunadelascolumnas?

Trabaja

U2 MAT 3M (074-145).indd 91 2/11/11 15:28:20

Page 92: 003000.000 grou

92

Podemos estudiar ahora otro método para resolver ecuaciones cuadráticas, llamado método de completación de cuadrado. Esto es, transformaremos el trinomio dado en una expresión que contenga un cuadrado de binomio. Con esto conseguiremos una ecuación que se puede reducir a dos ecuaciones lineales.

Por ejemplo:

1. x x2 2 1 0− − = Analicemos los términos x x2 2− . Si estos fueran los dos primeros

términos del desarrollo de un cuadrado de binomio del tipo

x −( )2, entonces se tendría que:

Por una parte, x x x−( ) = − ⋅ ⋅ +2

2 22 y, por otra, x2 – 2x debería

ser igual a 2 2x x− ⋅ ⋅ , con lo que 1= , necesariamente.

Entonces, x x x−( ) = − +1 2 12 2 . Para que esta expresión sea igual a la inicial, se debe escribir que:

x x x x x2 2 22 1 2 1 2 1 2− + = − + − = −( ) −

Volviendo a nuestra ecuación,

Método de completación de cuadrado

Para resolver ecuaciones cuadráticas, los matemáticos usaban también un método llamado completación de cuadrado. Te lo queremos mostrar en este link. Míralo. Deberás tener en cuenta, eso sí, que como es un método geométrico, se aceptarán solo valores o soluciones positivas. http://www.rena.edu.ve/Terce raEtapa/Matematica/TEMA26/ ecuacionesCuadraticas.html

Para saber más

7+¡$

><

2? = %

De aquí, 2 1x = + o 2 1x = − +

( )21 2 0x⇒ − − =x −( ) − =1 2 02

( )21 2x⇒ − =x −( ) =1 22 /1 2x − = o 1 2x − = −

(Extraemos raíz cuadrada)

x x2 2 1 0− − =

Pero, 3 12

9 3 14

22x x x−

= − + , entonces,

⇒ − − = − + − − = −

−9 3 6 9 3 1

414

6 3 12

254

2 22

x x x x x

2. (Completemos cuadrado)

(Para que el primer término sea un cuadrado perfecto)

⇒ −( ) = − ⋅ ⋅ + ⇒ ⋅ ⋅ = ⇒ =3 9 2 3 2 3 3 12

22 2

x x x x x

− + + =⇒− + + = ⋅−⇒ − − =

3 2 03 2 0 3

9 3 6 0

2

2

2

x x

x x

x x

/

U2 MAT 3M (074-145).indd 92 2/11/11 15:28:25

Page 93: 003000.000 grou

4 Resuelve los siguientes ejercicios por el método de completación de cuadrado. Compara tus desarrollos y resultados con tu grupo y luego verifiquen sus respuestas en el libro.

a. x x2 32 144 0+ − =

b. x x2 6 1 0− − =

c. 2 9 5 02x x− − =

d. x x2 7 1− = −

e. 5 2 5 02x x+ + =

f. 2 1 3 4 2 3 1x x x x+( ) −( ) − +( ) =

g. x

xx

x+ − −

+=21 2 5

23

5 Resuelve los siguientes problemas. Para ello, desarrolla las ecuaciones cuadráticas planteadas por el método de completación de cuadrado.

a. Josefina debe construir una maceta de base rectangular para su invernadero, de modo que el largo de la base tenga 30 cm más que su ancho, y su altura sea de 20 cm. Además, la maceta debe poder contener 3360 dm dm3detierra.¿Cuálesdebenserlasmedidasdelamaceta?

b. Alipio está decidido a resolver el problema que le planteó su mejor amigo como desafío. Él debe encontrar un número x tal que el producto de otros dos números, uno 3 unidades mayor que x y otro 8 unidades menor que x, sea 390. Ayuda a Alipio a encontrar el número x.

Trabaja

Volviendo a la ecuación original:29 3 6 0x x⇒ − − =

21 253 02 4

x ⇒ − − =

21 2532 4

x ⇒ − = /

1 532 2

x⇒ − = o 1 532 2

x − = −

1x⇒ = o 23

x = −

Aunque este método es muy útil, no es siempre tan directo o tan fácil de utilizar, por lo que los matemáticos pensaron en tener una regla que sirviera para todas las ecuaciones cuadráticas, y en especial, para aquellas que fueran trinomios no factorizables fácilmente.

UN

IDA

D 2

93

U2 MAT 3M (074-145).indd 93 2/11/11 15:28:28

Page 94: 003000.000 grou

94

Ecuaciones cuadráticas de la forma ax2 + bx + c = 0, con a ≠ 0, donde el trinomio no es fácilmente factorizable y a, b, c pertenecen a los reales

En este caso, analizaremos la ecuación 2 0ax bx c+ + = , con a ≠ 0, de manera general, y deduciremos una fórmula para encontrar sus soluciones.

Esta fórmula puede ser usada en todos los casos, pero anteriormente quisimos mostrarte que podías solucionar el problema de manera fácil, sin necesidad de conocimientos nuevos y solo con las herramientas matemáticas que ya tienes.

Veamos qué hicieron los matemáticos hace años.

Si miramos 2 0ax bx c+ + = , solo podríamos transformar esto en dos ecuaciones lineales (como en el caso estudiado donde factorizábamos) siempre y cuando pudiéramos transformar ax2 + bx + c en un cuadrado de binomio para luego extraer raíz cuadrada.

Analiza pausadamente los siguientes pasos:

(Haremos que el primer término sea un cuadrado perfecto)

2 0ax bx c+ + = / a⋅

(Formaremos el cuadrado) 2 2 0a x abx ac+ + = / ac−

2 2a x abx ac+ = −

Si abx es el término central del desarrollo del binomio, entonces debería

ser el resultado de 22b

ax⋅ ⋅ , con lo que el término que nos falta para

completar nuestro cuadrado de binomio es el cuadrado de 2b

. Sumemos,

entonces, a ambos lados, 2

4b

.

(Despejando ax y sumando dentro de

la raíz)

2

2 4b b

ax ac+ = − o 2

2 4b b

ax ac+ = − −

2 22 2

4 4b b

a x abx ac+ + = − +(Escribimos el lado izquierdo como cuadrado de binomio)

2 2

2 4b b

ax ac + = −

/

(Dividiendo por a y descomponiendo la raíz)⇒ = − + −

axb b ac

24

4

2 o ax

b b ac= − − −2

44

2

(Juntando ambas)

⇒ =− + −

xb b ac

a

2 42

o xb b ac

a=− − −2 4

2

⇒ =− ± −

xb b ac

a

2 42

U2 MAT 3M (074-145).indd 94 2/11/11 15:28:30

Page 95: 003000.000 grou

UN

IDA

D 2

95

Si 2 0ax bx c+ + = (con aπ0) es una ecuación cuadrática,

entonces su solución está dada por la fórmula 2 4

2b b ac

xa

− ± −= . Esta fórmula es conocida como fórmula

general para resolver cualquier ecuación cuadrática.

Veamos ahora cómo se aplica.

Ejemplo:

2. ¿TeacuerdasdelproblemadeDaniel,PaulinayCelesteysufiestadegraduación?

Daniel llamó x a la cantidad de personas que van a la fiesta e y al costo de la cena por cada uno; entonces anotó que:

x y⋅ =1197 000. Ahora bien, como les rebajaron $1000 y podían ir 12 personas más, anotó también que:

x y+( )⋅ −( ) =12 1000 1197 000 Después de despejar y de la primera ecuación y remplazarla en la

segunda, se obtuvo que:

− + − = ⋅−1000 14364 000 12000 0 12x x /1000 12000 14364 000 0 10002x x+ − = / :x x a b c2 12 14364 0 1 12 14364+ − = = = = −/ , ,

Por lo tanto, tenemos dos soluciones:

Así, las soluciones de la ecuación son: 57

x = o 13

x = −

1. (Nota que para aplicar la fórmula, uno de los miembros de la ecuación debe ser 0)

221 8 5 0x x− − =

(Coeficiente numérico de x2)21a⇒ =(Coeficiente numérico de x)8b⇒ =−

(Término libre)5c⇒ =−

(Remplazando los valores de a, b y c)

x =− −( )± −( ) − ⋅ ⋅−

⋅8 8 4 21 5

2 21

2

8 64 42042

x± +=

8 484 8 2242 42

x± ±= =

8 22 30 542 42 7

x+= = = o 8 22 14 1

42 42 3x

− − −= = =

⇒ =− ± −

xb b ac

a

2 42

U2 MAT 3M (074-145).indd 95 2/11/11 15:28:33

Page 96: 003000.000 grou

96

Aunque podríamos tratar de factorizar esta ecuación, es decir, buscar dos números que multiplicados den –14364 y sumados, 12,pareceunpococomplicado,¿noescierto?

Entonces, el mejor método es utilizar la fórmula que acabas de aprender.

x

b b ac

a=− ± −2 4

2

x =

− ± − ⋅ ⋅−⋅

12 12 4 1 143642 1

2

x =

− ± +⋅

=− ±

= − ±12 144 57 4562 1

12 57 6002

12 2402

12 240 228 1142 2

x− += = = o 12 240 252 126

2 2x

− − −= = = −

Pero como x representa el número de personas, entonces la solución –126 no tiene sentido en este contexto; por lo tanto, solo será solución x = 114.

Ahora bien, como tenían que x y⋅ =1197 000

⇒ ⋅ =114 1197 000 114y / :

⇒ =y 10500

Por lo tanto, si el presupuesto inicial era para 114 personas y cada una de ellas debía pagar $10500, con la oferta final del señor Lucas Montecinos podrán ir 126 personas (12 más que las anteriores) porque les rebajará $1000 a cada una, y el costo final será $9500 c/u.

La siguiente es una ecuación irracional que contiene una raíz en el denominador. Desarrollémosla de manera similar a las ecuaciones fraccionarias, es decir, amplifiquemos por el m.c.m.¿Teparece?

3. x xx

x+ − − =+

+5 5 15 85

5/ m.c.m.

x x x

x x x x x

x x

+( ) − −( ) +( ) =

+ − + − − = − −

− + − =

5 5 15 5 8

5 5 25 15 75 8 5

5 10 75

2

2

2

/

33

5 10 75 3

5 10 75 9 6 6 94

2

22 2

2 2 2

− ( )− + −( ) = −( )

+ − = − + − + −

x

x x x

x x x x x x

x

/

/22

2

16 84 0 44 21 0+ − =

+ − =x

x x

/ :

En esta ocasión puedes elegir factorizar o usar la fórmula general. Para que no tengas ninguna duda de cómo usarla, apliquémosla:

U2 MAT 3M (074-145).indd 96 2/11/11 15:28:36

Page 97: 003000.000 grou

UN

IDA

D 2

97

⇒ =− ± −

= = = −xb b ac

aa b c

2 42

1 4 21/ , ,

24 4 4 1 21 4 16 84 4 100 4 102 1 2 2 2

x− ± − ⋅ ⋅− − ± + − ± − ±⇒ = = = =

⋅4 10 6 3

2 2x

− +⇒ = = = o 4 10 14 7

2 2x

− − −= = = −

Comprobando: Si 83 3 5 5 3 15

3 5x = ⇒ + − ⋅ − =

+

88 08

⇒ − =

8 888

⇒ =

8 8⇒ = ; por lo tanto, 3x = es solución.

Si 87 7 5 5 7 157 5

x = − ⇒ − + − ⋅− − =− +

, con lo que se tienen

raíces con cantidades subradicales negativas, que no son

números reales; por lo tanto, 7x = − no es solución.

Entonces, la única solución de la ecuación es x = 3.

4. Rayén estudia en la Escuela Militar y tendrá que ayudar en la preparación del desfile previo a la Parada Militar. Debe ordenar a su grupo y su teniente le ha presentado el siguiente problema: “Tenemos 180 cadetes y debemos ordenarlos de manera tal que el número de filas sea 8 unidades menos que el número de cadetes en cada fila.

¿Cuántoscadetesdeberánformarcadafilaycuántasfilastendremosennuestraunidad?”

Rayén pensó e hizo los siguientes cálculos: sea x el número de cadetes en cada fila y x – 8 el número de filas. Por lo tanto:

x x

x x

x x a b c

xb b

−( ) =− = −− − = = = − = −

⇒ =− ±

8 180

8 180 1808 180 0 1 8 180

2

2

// , ,

22 42

− ac

a

x =

± −( ) − ⋅ ⋅−⋅

= ± +⋅

= ± = ±8 8 4 1 1802 1

8 64 7202 1

8 7842

8 282

2

8 28 36 18

2 2x

+= = = o 8 28 20 10

2 2x

− −= = = −

Como x representa el número de soldados, no puede ser –10; por lo tanto, la solución es x = 18. Entonces, deberán formarse en 10 filas de 18 cadetes cada una.

Si las soluciones o raíces de

una ecuación cuadrática se

calculan por la fórmula

⇒ =− ± −

xb b ac

a

2 42

, entonces, que

una ecuación tenga dos

soluciones reales o una solución

real, o no tenga soluciones reales,

dependerá de la cantidad

subradical de la raíz, a la que se le

llama discriminante y se

representa por ∆.

Así, 2 4b ac∆ = − y tendremos que

si 0∆ > ⇒ la ecuación cuadrática

tendrá dos soluciones reales y

distintas.

0∆ = ⇒ la ecuación cuadrática

tendrá solo una solución real (o

dos soluciones reales e iguales).

0∆ < ⇒ la ecuación cuadrática no

tendrá soluciones reales (pues la

cantidad subradical será

negativa).

Toma nota

U2 MAT 3M (074-145).indd 97 2/11/11 15:28:39

Page 98: 003000.000 grou

98

Aplica lo aprendido.

6 Desarrollacadaejercicioentucuaderno.Noolvideschequeartusrespuestasenelsolucionario.

a. 3 35 12 02x x+ − =

b. 2 7 1 06 3

x x− + =

c. 9 12 29 02x x− + =

d. 2 1002 2+( ) = −y y

e. 9 44 2

xx x

+=− +

f. x

xxx

xx

+ + − = −−

5 2 3 32

g. 2

1 2 8xx

− =

h. 3 2 23 6 4 4

x x xx

+ −− = +−

i. 5 6 7 1x x+ − + =

j. 2 2 1 5 4 7x x x+ = + + −

7 Desarrolla cada ejercicio y da respuesta a la pregunta planteada.

a. Al dividir 961porunciertonúmeroresultaestemismonúmero.¿Cuáleselnúmero?b. Dividiendo 229 por y, se obtiene ycomococienteyrestoigualacuatro.¿Cuáleselvalordey?

8 La medida de superficie de un triángulo equilátero de lado a es 2192 m m2.¿Cuáleselvalorde superímetro?

Trabaja

TrabajaResuelvejuntocontuscompañerosycompañeraslossiguientesproblemasdeecuacionescuadráticas.Noolviden que definir bien la incógnita es de gran ayuda. Hagan el desarrollo en su cuaderno.

3 Mi abuelo me dijo que existe una relación entre la velocidad de escape en la Luna, en km/s,

(velocidad mínima de un cuerpo para despegar hacia el espacio, sin orbitar el planeta, desde el suelo)

y su fuerza de gravedad, en m/s2. Según lo que he averiguado en esta revista astronómica, esto es:

velocidad de escape en la Luna = fuerza de gravedad en la Luna radio2 ⋅ ⋅ llunar . Como la velocidad

de escape en la Luna es, numéricamente 1,46 veces su gravedad y el radio lunar es aproximadamente

1734 km, entonces... hagamos los cálculos, y estimemos la fuerza de gravedad lunar en m/s2 y su

velocidad de escape en km/s. Usa tu calculadora y aproxima tus resultados a la centésima.

4 “Necesitocalcularelvolumendelacajitacilíndricaqueustedesnosofrecena$2223 la unidad y que tendría 1 cm menos de radio del que necesitamos. Y entiendo, además, que lo que ustedes cobran por hacerla está detallado en el diseño siguiente”.

U2 MAT 3M (074-145).indd 98 2/11/11 15:28:41

Page 99: 003000.000 grou

¿Puedescalcularlamedidadelradiodelacajaofrecida?¿Cuálesladiferenciaenelvolumenconrespectoalaquenecesitaban?(considera 3π = ).

Detalles de costos

r

r1 cm

10 cm

Lateral: $10 por cm2

Tapa: $7 por cm2

Base: $4 por cm2

5 Octavio tiene 3 varillas de metal, de 8, 15 y 16 cm, con las que está trabajando en su taller de robótica. Para hacer uno de los ensamblajes necesita construir un triángulo rectángulo cortando un cierto trozo en cada varilla, de modo queconlostrozossobrantespuedaarmaruntriánguloequilátero.¿Cuántodebecortardecadavarillaparaquepuedaconstruirambostriángulos?

6 Matilde le pidió a su hermano que le ayudara a construir una caja muy especial para sus juguetes. Debe ser de base cuadrada, sin tapa, de alto 30 cm y que su volumen sea 588 L. Además, debe ocupar un cartón cuadrado. El hermano de Matilde pensó por un buen rato y después de hacer algunos cálculos, le dio las medidas precisas para que consiguiera el cartón. ¿Cuáleseranestasmedidas?

7 Don Alfonso, dueño de una fábrica de muebles, les encarga a dos operarios un trabajo que, juntos, debieran terminar en 6 semanas. Sin embargo, deciden hacerlo por separado. Sabiendo que siempre uno de ellos se demora 5semanasmásqueelotroenterminarlostrabajos,¿cuántosedemorarácadaunotrabajandoporseparado?¿Quélesdiríasparaqueseconvencierandequeeltrabajoenequipoesunabuenaalternativa?

8 Nekulrequieredibujarenunacartulinadoscircunferenciasconcéntricas,queson la vista superior de dos cilindros de altura 30 cm, donde uno está dentro del otro, tal como se muestra en la figura. Su profesor de taller le indica que el espacio que queda entre ambos se puede llenar con 1 440 3cm de agua. Además, le señala que considere π aproximado a 3 y que uno de los radios eralastrescuartaspartesdelotro.Nekulhizoloscálculosdecadaradioypudo dibujar tranquilamente lo que se le solicitaba.

Con estas indicaciones, encuentra el valor de ambos radios.

9 “¿Asíqueustedesnolevenningunautilidada 20,25 4 x= + ?”,nospreguntaunmatemático.Nosmiramos unos a otros, un poco avergonzados por nuestra falta de imaginación. Entonces nos propone resolver la ecuación y pensar en lo que ella nos dice: “remplacen y verán. Un matemático no deja de mirar de muchas formas una simple ecuación”. Ahora tú determina: a. el valor de x.b. el valor de 20,25 usando el valor obtenido en (a).

99

UN

IDA

D 2

U2 MAT 3M (074-145).indd 99 2/11/11 15:28:44

Page 100: 003000.000 grou

100

Marca el casillero correspondiente según la evaluación hecha de tu proceso de aprendizaje.

MB: Muy bien (7,0 - 6,0)B: Bien (5,9 - 5,0)S: Suficiente (4,9 - 4,0)I: Insuficiente (3,9 - 1,0)

Indicador MB B S I

Soy capaz de reconocer una ecuación cuadrática.Entendí los ejemplos resueltos y los diferentes tipos de ecuaciones cuadráticas.Sé cómo resolver una ecuación cuadrática.Entendí en qué tipo de problemas cotidianos se utilizan las ecuaciones cuadráticas.Entendí cómo se plantearon los ejercicios resueltos en la resolución de problemas.Fui capaz de resolver correctamente los ejercicios propuestos en esta sección.Fui capaz de resolver correctamente los problemas de planteo propuestos en esta sección.Colaboré con el trabajo de mi grupo cuando fue preciso.

Si marcaste 4 o más indicadores en las columnas (S) o (I), debes volver a repasar los contenidos y pedir ayuda si es necesario.

Recuerda que debes tener claro los conceptos para poder resolver los ejercicios. Para esto es de mucha ayuda recordar la información de los recuadros de síntesis.

Revisemos lo aprendido

Sintetizando

•Unaecuacióncuadráticaesdelaforma 2 0ax bx c+ + = , donde a, b y c son reales y a ≠ 0.

•Alresolverlasebuscanlosvaloresdex que hacen que la igualdad se satisfaga.

•Lafórmulageneralpararesolverlaes2 4

2b b ac

xa

− ± −= . Sin embargo, hay ocasiones en que se

pueden resolver por factorización o extrayendo raíces.

•Lasecuacionescuadráticaspuedenteneruna,dosoningunasolución(dependiendodelvalor de 2 4b ac− ).

•Lasecuacionesirracionalesyfraccionariasquesereducenaecuacionescuadráticasdebensersiempre comprobadas.

U2 MAT 3M (074-145).indd 100 2/11/11 15:28:44

Page 101: 003000.000 grou

UN

IDA

D 2

101

Trabaja más...Trabaja en forma individual

1 Resuelve las siguientes ecuaciones:

a. 5 49 02x + =

b. 2 11 20 5 2 4 5 92x x x−( ) = −( )+ −( )+

c. 2 1 0 75 312− =, x

2 ¿Cuáleselnúmeronaturalqueelevadoalcuadrado da 676?

3 La tercera parte del área de un cuadrado vale 2120 cmcm2.¿Cuántomidesulado?

4 Determina el valor de la incógnita en cada uno de los siguientes casos:

Z

Z

L1

L1 // L2 // L3

L2

L3

a.

36 cm

39 cmX

b.

R

c. El área de la circunferencia es 15,7 75 1, mm2 ( 3,14π = ).

y

32 mm

°60

y

18 mm°60

d. Los triángulos de la figura son semejantes.

125 u

5 u

5 “Cayó la noche y aún no puedo encontrar el número pedido. Sé que a partir de él debo formar otros 2 de la siguiente manera: sumando tres y quitando 3, de tal modo que el producto de los números formados sea 2695.¿Puedesdecirmecuáleselnúmeroqueandobuscando?”

6 “Así es, inspector, me di cuenta cuando el ladronzuelo iba corriendo y atravesando en diagonal la parcela vecina. Vi que se llevaba mis joyas y otras pertenencias más, y se perdió en el otro extremo”. Si todas las parcelas de acá son de 5000 m2 y rectangulares, con un frente de 40 m,¿cuántosmetrosdebióatravesarendiagonalesteladronzuelo?Usacalculadorasies necesario. Expresa tu respuesta aproximando a la centésima.

7 Juan Carlos encontró que algunos utensilios arqueológicos cilíndricos tenían la particularidad de que el radio era la raíz cuadrada de la altura. “Este instrumento –dijo– tiene un volumen aproximado de 1200 cm3. Si aproximo π a 3, tendría que la altura y su diámetro debieran ser...”. Entonces interrumpieron su trabajo. De acuerdo a lainformacióndada,¿quévaloresaproximadostienenelradioylaaltura?

8 “Aló, hija, hablé con el maestro Lucho y me contestó que cobra $2250 por metro cuadrado de pintura. Le conté que tenías que pintar tres conos iguales de 1 m de diámetro por una altura que no me acordé en ese momento, y que los necesitas lo antes posible para tu exposición de arte. Él parece que se acordaba de la altura de los conos, pues me dijo que según sus cálculos (con 3π = ), en total, por los tres cobraría $56700. Luego de un rato de calcular, yo también pude saber la altura”. ¿Puedestútambiéncalcularlamedidadelaalturadelosconos?Expresalarespuestaconaproximación a la centésima (puedes usar calculadora).

9 Resuelve los siguientes ejercicios en tu cuaderno, incluyendo todo el desarrollo:

a. 5 72x x=

b. 4 1 3 52x x+( ) = −( ) −

U2 MAT 3M (074-145).indd 101 2/11/11 15:28:47

Page 102: 003000.000 grou

102

c. 2 3 3 7 8 1 2 1 5 4x x x x x x+( ) −( ) − +( ) −( ) = −( ) +( )2 3 3 7 8 1 2 1 5 4x x x x x x+( ) −( ) − +( ) −( ) = −( ) +( )

d. 3 1 2 5 5 3 2 1 4 3x x x x x+( ) −( ) − +( ) −( ) = −( )

e. 95

3 23

2x x x+

−( ) +( )= −

f. 2 2a 3 a a a 181

2 5 50 10 2 50 − + = + +

g. 3 5

111 4

1 19

1

2

2 2

xx

xx x x

−−

+ −−( ) +( ) = −

h. 4 21 3 6 1x x x+ + +( ) = ( )i. 3

29

3

2 51

2

2x

x

x+

+−=

j. 2 3 8 1 22+ + + + =x x

k. x x x x+ ⋅ + = − +1 2 4 4 3 42

l. Con los datos de la figura adjunta, calcula la medida de los lados del rectángulo si se sabe que su área es igual a 8 cm2.

3x – 8 cm

4x – 1 cm

10 Resuelve los siguientes ejercicios en tu cuaderno. Revisa luego tus respuestas.

a. 6 3 112x x+ = −

b. 3 2 4 6 77x x x x+( )− +( ) =

c. 4 1 12 15 3 3292 2x x x x−( ) + = +( )−

d. 3 1 2 3 02 2x x+( ) − −( ) =

e. x x x x+( )−

+( )= −

12

2 33

76

2

f. x x x x x x+( )

++( ) +( )

= + +24

3 1 28

12

2

g. 2 1 2

13 5

2

xx x

xx x

+ ++

= ++

h. 2 4 83 53

72

x x xx

+ + −⋅( ) =

i. 125 25 15

3 2 551 5 2

x x xx

− −+

( ) =

:

j. 14 8x x− + =

k. 1 2 5 3 2+ + = −x x

l. 3 35 25 5x x+ ⋅ + =

11 Resuelve las siguientes ecuaciones:

a. 27 14 30y y+ = −

b. 3 7

22

3 70x

x

xx

−+

− −−

=

c. 13 0 25 12 02z z+( )− =,

12 ¿Cuáleselmenordelosnúmerosquesatisfacela ecuación 3 1 121 02

x −( ) − = ?

13 Resuelve los siguientes ejercicios y responde las preguntas planteadas.

a. Al multiplicar un número natural par por su sucesor par, se obtiene 168.¿Cuálessonestosnúmeros?

b. La fracción 1582m

equivale a tomar el número

cuatro, también dividirlo por 2m, y luego

aumentarlo en 2 3m− unidades.

¿Cuántovalem?Escribelafracciónaludida.

14 Aumentar en 27 el séxtuplo de un número es lo mismo que sumar su cuadrado cinco veces. ¿Cuálesesenúmero?

15 En cm, los lados de un rectángulo miden 11 1y −( ) y y +( )1 , respectivamente. Si su área

es de 20 cm2.¿Cuántovalesudiagonal?

16 El área de un triángulo es 638

dm2. La altura

está dada por 3a y la base por 2 5 5a+( ), .

Determina el valor de a y las medidas de la

altura y la base.

U2 MAT 3M (074-145).indd 102 2/11/11 15:28:57

Page 103: 003000.000 grou

UN

IDA

D 2

103

17 Determina el valor de x en cada caso:

a.

b.

x cm

6 cm

8 cm

5 cm

c.

L L // M // N

M

N

d. 16 cm

2x cm

( )1 cmx −

7 x u 30 u

2 1x +( )u 13−( )x u

5 u

6 6, u

x −( )1 ux −( )9 u

18 Para la ecuación 2 7 0ax bx+ − = se tiene que a k= +1 y b k=2 , donde k es un número por determinar. Se sabe además que

b a2 4 7 10− −( ) = .

Determina:

a. los valores de k y los de a y b.b. las dos ecuaciones resultantes de la forma

2 7 0ax bx+ − = .c. la solución de la ecuación formada con los

menores valores de a y b.

Trabaja en grupo

1 En el acto de inicio de temporada a la recién remozada piscina municipal, el alcalde en su discurso destacó las ventajas de la colocación de un grifo adicional al que había. Para llenarla con ambos a la vez, tan solo transcurren siete horas y media. La ventaja frente al anterior es que este la podría llenar completamente y por sí solo, en ocho horas menos que el grifo más viejo. En el nuevo recambio de agua, el proceso de llenado de la piscina comenzó a la una de la madrugada, pero no se pudo utilizar el grifo antiguopuessufrióundesperfecto.¿Aquéhora debiera estar completamente llena si solo seutilizóelgrifonuevo?

2 “Nosencontramosenlapartefinaldenuestroprograma Alcanzando una gira de estudio para mi curso, transmitido por RACH-TV. Atención, estudiantes, se viene el desafío matemático:

Cada uno de los cinco participantes tiene un paquete con un kilo de harina y dos bolsitas más pequeñas completamente desocupadas. El desafío consiste en llenarlas, usando la harina del paquete, de tal modo que la razón entre las cantidades de la bolsita que quede más pesada (x) y la otra sea igual a la razón entre el kilo original aumentado en 50 g y la bolsita más pesada, a la cual se le ha extraído uncuartodekilodeharina.¿Cuántosgramosdebehaberencadabolsa?”

3 Anacleto y Gumersindo, oriundos de Colchagua y amigos desde la infancia, se rencuentran después de muchos años en el campo de Anacleto y sostienen la siguiente conversación:–¡Bienvenidos, compadres, a mis 253 m² de terrenito!ComadreLola,compadritoGumersindo,¿cómohanllegado?–Anacleto Espinoso, ¡quién pudiera imaginar que del terrenito de antes ahora tenga este tremendopotrero...!–Lo único que hice fue comprar 3 m a lo largo y 1 m a lo ancho, y agregárselo al terreno anterior.–Según recuerdo, compadrito, el largo del terrenito anterior era el doble de su ancho. ¿Estoyenlocierto?–¡Asíes!¿PuedesencontrarlasmedidasdelterrenoantiguodeAnacleto?

U2 MAT 3M (074-145).indd 103 2/11/11 15:29:01

Page 104: 003000.000 grou

104

4 María Gracia y Raymundo estudian química y hoy han aprendido de algunas leyes sobre gases. La ley de Boyle – Mariotte relaciona la presión con el volumen de un gas cuando la temperatura es constante, y dice que la presión inicial multiplicada por el volumen inicial es igual al producto de la presión final por el volumen final. Ellos están preparando su próximo experimento, pero deben hacer algunos cálculos teóricos que después probarán experimentalmente. Para ello, supondrán que toman x litros de un gas y lo someten a una presión igual a 150x mm Hg. Luego, el gas disminuirá en 1 litro, entonces la presión debería llegar a 800 mm Hg. Ahora deben calcular el valor de x para realizar el experimento.¿Cuálesestevalor?¿Quédebiera ocurrir con el volumen si la presióndisminuye?

5 “Cuando llegó el tío Jacob con cinco galones de barniz de barco, nos explicó que los aplicaría en el frontón de nuestra casa, en el remate triangular de la fachada que reposa sobre la cornisa. Agregó: que como la altura mide 1 metro menos que la base, no le fue difícil hacer el cálculo con respecto al número de galones que usaría en el frontón, ya que para el desucasa,usódosgalonesmenos.¿Yporquémenos?,lepregunté.Entoncesseñalóqueaunque el frontón de su casa tiene 1 metro más de base, la altura es 2 metros menos que el frontón de la nuestra. Te entiendo, le dije, comparaste ambas superficies y después estableciste una proporción con el número de galonesqueusarías!”

¿Puedestúcalcularcuáleseláreadeambosfrontones?¿Cuántorindecadagalóndepintura?

6 Hola, Karen:

Te escribo este email porque me siento muy mal por lo ocurrido con la tía Gertrudis en la última reunión en su casa. Estábamos entre mujeres, y en el clima de confianza que había, le pregunté su edad. Se incomodó y se fue a la cocina, con la excusa de traer bebidas. Al volver, y fingiendo reír, me dijo: “Mira, preciosa, a mi edad réstale 50 y guárdatela”. Me enrojecí de vergüenza y todas se echaron a reír.

Después, al repartir la torta, añadió: “Al triple de mi edad le restas 131, lo multiplicas con lo que te guardaste y obtendrás 50.¿Entiendes,linda? CINCUENTA,SINCUENTA”.Todasexplotaron en carcajadas... Me levanté y me fui. ¿Nosédóndeestuvomierror?Ellaparecede42 años, pero sé que tiene más...

¿PuedescalculartúlaedaddelatíaGertrudis?

7 Clemente revisó en Internet maneras de construir cohetes de juguete. En una de ellas encontró, además, una ecuación para calcular el tiempo (en segundos) en que ese tipo de cohete tardaría en alcanzar 30 m:

22 4 15 30t t− + = , pero al resolverla, no coincidió con el tiempo que allí mostraban. ¿Cuálfueelvalordeltiempoquedabaestaecuación?Finalmente,comprobóquesuvalorpara el tiempo era el correcto. ¡A jugar se hadicho!

8 El distraído Hipólito revisó los apuntes sobre la proporcionalidad inversa que están presentes en un viejo libro. En voz alta, repetía: “Si para realizar un determinado trabajo, 24 trabajadores se demoran dos días, 12 trabajadores lo efectuarían en el doble de tiempo, siempre y cuando se guarden las mismas condiciones. Por otro lado, 3y + 5 trabajadores tardarían 3y + 3 días”. Sin darse cuenta, se había adentrado en el mundo de las ecuacionescuadráticas.¿Aquévalordey se refería?¿Cuántoseranlostrabajadoresycuántosdíastardaríanenrealizareltrabajo?

9 “–Afortunadamente, sé matemática –le contaba Raúl a su polola–, ya que gracias a eso pude contestar correctamente la última pregunta del test que me hicieron para ingresar a este nuevo trabajo”.

–¿Quépreguntaera?–preguntóella.–Decíaasí:Dado el cuadro siguiente, encuentra el valor de x y algunas probabilidades.

Número 1 2 3 4 5 6Probabilidad 1 x 2 2x 3 x 4 2x 5 x 6 2x

Tú también puedes hacerlo. Para ello, determina:

U2 MAT 3M (074-145).indd 104 2/11/11 15:29:04

Page 105: 003000.000 grou

UN

IDA

D 2

105

a. la ecuación cuadrática usando la propiedad de la suma de las probabilidades (teorema de la Probabilidad Total).

b. ¿laprobabilidaddeobtenerunseisallanzarun dado cargado. Da tu resultado aproximado a la centésima, puedes usar calculadora.

10 “Otra vez me pasa lo mismo. Cae la noche y aún no puedo resolver la siguiente ecuación, en la cual cada factor representa la medida de una arista en un paralelepípedo: 2 2 3 5 9 224x x−( ) −( ) = ”. ¿Quérepresentaestafórmula?¿Cuálseráelvalor de x?,¿Cuálessonlasmedidasde lasaristas?

Mis apuntes

U2 MAT 3M (074-145).indd 105 2/11/11 15:29:05

Page 106: 003000.000 grou

106

Función cuadrática: ¿qué es y en qué se utiliza?

Cuáles son las funciones cuadráticas y qué tipo de problemas puedes resolver con ellas.Desarrollarás las siguientes habilidades:• Identificar•Calcular•Comprender•Resolver•Relacionar•Aplicar• Interpretar y generar ideasHabilidades por actividad:• Identificarycalcular:1, 6, 1, 2, 3, 4, 6, 7, 8•Comprender y resolver: 2, 5a, 7, 5, 6, 10

Trabaja más...

Habilidades por actividad:•Comprender y resolver: 2, 3, 4, 5, 4, 5, 6,

7, 8, 17, 19•Relacionar y aplicar: 6, 9, 11, 12, 13, 14,

15, 20, 21, 22, 23, 24, 25 • Identificarycalcular:1, 1, 2, 3, 16

En esta sección aprenderás Braulio, Macarena y sus amigos planearon una tarde de viernes jugando paintball. “Te puedes sentir en un verdadero combate y las balas, por ser de pintura, no hieren cuando te topan”, fueron los argumentos de Braulio para convencer a sus amigos. Braulio lanzó su balacomoseindicaeneldibujo.Conestosdatos,¿quépasó?

¿Quétrayectoriadescribe,gráficamente,labala? ¿Esposibledeterminardeantemanoquépasaráconella?

La ecuación de la trayectoria es: h m m m( ) = − + +19

23

12 .

La bala que lanzó Braulio describe una curva llamada parábola y el movimiento asociado a esta curva se llama movimiento parabólico. Para poder responder qué pasó con la bala, necesitamos estudiar estacurva,pero¿quétienequeverestoconlasecuacionescuadráticasqueestábamosestudiando? Pues,mucho,yaverás.¡Manosalaobra!

La parábola

Ya sabías que existen distintos tipos de funciones, dependiendo de la expresión algebraica que la defina. Llamaremos función cuadrática a toda función del tipo f x ax bx c( ) = + +2 , donde a, b y c son números reales y a ≠ 0. Al gráfico de esta función se le llama parábola.

A a y b se les llama coeficientes numéricos de x2 y x, respectivamente. A c se le llama término libre.

Comencemos analizando la función f x x( ) = 2. Hacemos una tabla de valores para calcular algunas imágenes y preimágenes (recuerda que las preimágenes son los valores de x y las imágenes, los valores de y o f x( )).

El paintball es un juego en el que se desarrolla el trabajo en equipo, el compañerismo, la imaginación; estimula la inteligencia, la velocidad de reacción, la coordinación y la comunicación.

3,5 m

techo

Altura de la bala en función de los metros

que recorre

1,6 m

h m m m( ) = − + +19

23

12

U2 MAT 3M (074-145).indd 106 2/11/11 15:29:09

Page 107: 003000.000 grou

UN

IDA

D 2

107

x y f x= ( )1 1

–1 10 02 4

–2 4

21 1y = =

y = −( ) =1 12

20 0y = =22 4y = =

y = −( ) =2 42

Ahora bien, podemos ubicar estos puntos en el plano cartesiano para graficar nuestra función. También podemos utilizar un programaparagraficar.¿RecuerdasqueenlaunidadanteriorusamoselprogramaGraphmatica?Sinosayudamosconél,tendremos el siguiente gráfico para esta función:

y

x

4

1

2

3

0,50 1 1,5 2 2,5 3–1–1,5–2–2,5–3 3,5–0,5

¿Ysigraficamos f x x( ) = − 2 ?

x

y

–1

0

–2

–3

–4

0,5 1 1,5 2 2,5 3 3,5–0,5–1–1,5–2–2,5–3

La circunferencia, la elipse, la hipérbola y la parábola son las curvas cónicas que pueden obtenerse seccionando un cono. Apolonio estudió en detalle las cónicas y les dio su nombre actual. Fue él quien mencionó que un espejo parabólico refleja de forma paralela los rayos emitidos desde su foco, propiedad usada en la óptica, y hoy, en las antenas satelitales. Los términos elipse, hipérbola y parábola los usaron por primera vez los discípulos de Pitágoras. Elipse significaba deficiencia, hipérbola significaba exceso y parábola, equiparación. En 1638 Galileo demostró que los proyectiles, en su movimiento, recorren parábolas. En el siglo XVI el filósofo y matemático René Descartes (1596-1650) desarrolló un método para relacionar las curvas con ecuaciones. Este método es la llamada geometría analítica. Con ella, las curvas cónicas se pueden representar por ecuaciones en las variables x e y. Así, la parábola quedó relacionada con su ecuación.

Para saber más

7+¡$

><

2? = %

U2 MAT 3M (074-145).indd 107 2/11/11 15:29:10

Page 108: 003000.000 grou

108

¿Cómo determinar si un punto del plano pertenece o no a una parábola?

Si pensamos en la tabla de valores que hicimos anteriormente, podemos decir que para determinar si un punto pertenece a una parábola, debemos tener la función que la determina y así podremos evaluar y verificar que la igualdad se cumpla. Por ejemplo, tomemos la función 2 3 5y x x= + − y decidamos si los puntos 1 1,−( ) y 2 1,( ) pertenecen a la parábola.

Para el punto 1 1,−( ) tenemos que: 21 1 3 1 5− = + ⋅ − 1 1 3 5− = + − 1 4 5− = − 1 1− = − . Como se cumple la igualdad, entonces el punto pertenece a la parábola.Para el punto 2 1,( ) tenemos que: 21 2 3 2 5= + ⋅ − 1 4 6 5= + − 1 10 5= − , pero 1 5≠ ; por lo tanto, el punto no pertenece a la parábola.

Volvamos a trabajar con gráficos para ver esta situación.

6

4

2

–2

–4

–6

–5 –4 –3 –2 –1 1 2

y

x

0

Estudiemos en profundidad las parábolas y su función asociada. Las parábolas tienen características comunes y puntos muy importantes en ellas. Mira y analiza con detención:

Hay varias maneras de construir

una parábola. Te damos aquí los

links de los sitios donde las

encontrarás. Son muy

entretenidos. Prueba tú también.

http://almez.pntic.mec.es/~aberho

/conicas/parabolas_2.htm

http://www.isftic.mepsyd.es/

w3/eos/MaterialesEducativos/

mem2006/curva_conicas/

index.html

Links de interés

U2 MAT 3M (074-145).indd 108 2/11/11 15:29:12

Page 109: 003000.000 grou

UN

IDA

D 2

109

Eje de simetría

Eje de simetría

Vértice

Vértice

Cóncava hacia abajo o concavidad negativa

Punto de corte con eje y

Punto de corte con eje y

Punto de corte con eje x

Punto de corte con eje x

y

x

2

–2

0 4 62

2

y

x

–2

0 2 4 6

Cóncava hacia arriba o concavidad positiva

¿De qué depende que la parábola se abra hacia arriba o hacia abajo?

Mira y compara.

La parábola negra representa la función f x x( ) = − 2.

La parábola verde representa la función f x x x( ) = −2 5 .

La parábola azul representa la función f x x( ) = 2 .

La parábola roja representa la función f x x x( ) = − −2 5 .

8

y

6

4

2

–2

–4

–6

–8

–1 0 1 2 3 4 5–2–3–4–5x

f xf x x( )f x( )f x == 2

f xf xf xf xf x x xx xx x( )( )( )f x( )f xf x( )f x = −= −= −x x= −x x22x x2x x555x x5x x

f xf xf xf xf x x( )( )( )f x( )f xf x( )f xf x( )f x = −= − 2

f xf x x x( )( )f x( )f xf x( )f x = −= −x x−x x2x x2x x5555x x5x xx x5x x

¿Quéeslocomúnentrelasparábolasverdeyroja?¿Quéeslocomúnentrelasparábolasazulycafé?

¿Quéesloquecambiaenlasfórmulasdelasfuncionescaféyverde?¿Quéesloquecambiaenlasfórmulasdelasfuncionesazulyroja?

Recuerda que cuando usas

programas computacionales y

algunas calculadoras científicas,

la notación de potencias se

escribe diferente. Así, por

ejemplo, para escribir

f x x x( ) = −2 5 , debemos anotar,

f x x x( ) = −∧2 5 .

Recordar y archivar

El vértice de una parábola es el

punto más bajo (cuando la

parábola es cóncava hacia arriba)

o el punto más alto (cuando la

parábola es cóncava hacia abajo).

En el primer caso, decimos que

la parábola tiene un mínimo y en

el segundo caso, que la parábola

tiene un máximo.

Recordar y archivar

U2 MAT 3M (074-145).indd 109 2/11/11 15:29:15

Page 110: 003000.000 grou

110

Por lo tanto, que la parábola sea cóncava hacia arriba (se abra hacia arriba) o cóncava hacia abajo (se abra hacia abajo) depende del valor de a (coeficiente numérico de x2).

Si 0a > , entonces la parábola será cóncava hacia arriba. Si 0a< , entonces la parábola será cóncava hacia abajo. ¿Estásdeacuerdo?

Analicemos un poco más el coeficiente a. Observa:

–6 –5 –4 –3 –2 –1 1 2 3 4 5 6 7

6

5

4

3

2

1

0

f xf x x( )( )f x( )f xf x( )f x = 2

f xf xf xf xf x x( )( )( )( )f x( )f xf x( )f xf x( )f xf x( )f xf x( )f x =22 22

f xf xf xf x xx( )( )( )( )f x( )f xf x( )f x =3 22

f xf xf xf x x( )f x( )f x =0 50 5 2,0 5,0 5

f xf xf xf xf xf xf xf x xx( )( )f x( )f xf x( )f x ==0 20 20 20 20 255 22,0 2,0 2

Entonces,¿quécambiaenlosgráficosdelasparábolasamedidaque disminuye el valor de a?

Concluimos que del coeficiente a depende la apertura de las ramas de la parábola. Mientras mayor sea el valor absoluto de a, la apertura de las ramas será menor, y mientras menor sea el valor absoluto de a, la apertura de las ramas será mayor. Indiscutible¿no?

Ejemplos:

1. Determina la concavidad de la siguiente parábola: y x= −2 42 .En esta función, 2, 0, 4a b c= = = − . Como 2 0a = > , entonces la parábola será cóncava hacia arriba.

2. El papá de Millaray está leyendo un informe que encargó para la empresa en la que trabaja. En él se dice que las utilidades de las cañas de pescar que vende se calculan en función del precio de venta por unidad bajo la siguiente función: U p p p( ) = − +2 3 2.

Donde U representa las utilidades, en decenas de miles de pesos, y p el precio de venta en miles de pesos. Cuando el papá de Millaray trata de calcular el precio de venta que hará que la utilidad sea máxima, nota que en el informe hay un error. ¿Cuáles?

Sigue los pasos que a continuación se explican y verás qué fácil es dibujar una parábola.

Utilizamos una hoja rectangular de papel mantequilla o diamante. Marcamos en ella un punto F, cerca de un lado.

Doblamos el papel, de manera que un punto del lado inferior caiga sobre el punto F.

Marcamos el doblez y desdoblamos. Seguimos haciendo dobleces de manera que algún punto del lado inferior caiga sobre F. Si haces suficientes dobleces, verás que aparece una parábola.

Para entretenerse

F F

F

U2 MAT 3M (074-145).indd 110 2/11/11 15:29:18

Page 111: 003000.000 grou

Como la función U p p p( ) = − +2 3 2 es una función cuadrática, tendrá un mínimo o un máximo que dependerá de si esta es cóncava hacia arriba o hacia abajo. En este caso, a = 1, por lo que la parábola es cóncava hacia arriba, lo que quiere decir que ella tiene un mínimo. Por lo tanto, el papá de Millaray no podrá calcular un máximo; entonces, el error está en la función.

Trabaja

Resuelve los siguientes problemas:

1 Lupercio tuvo que clasificar muchas parábolas según su concavidad. Conforme a los datos dados escribe cóncava hacia arriba o hacia abajo, según corresponda. Haz un bosquejo de cada situación para ayudarte.

a. Parábola cuyo vértice está en −( )2 3, y que intersecta al eje y en 0 5,−( ).b. Parábola que intersecta al eje x en −( )3 0, y 0 5 0, ;( ), con mínimo.

c. Parábola que intersecta al eje y en 0 7,( ), pero su vértice no representa un mínimo.

d. Parábola que pasa por 0 0,( ), 1 3,( ) y −( )1 3, .

e. Parábola que pasa por 0 0,( ) y todos los otros puntos de ella tienen ordenadas negativas.

f. Parábola con eje de simetría coincidente con el eje y, cuyo punto más alto es 0 1,( ).g. Parábola de ecuación 2 3 7y x x= − − + .

h. Parábola cuyo término cuadrático está multiplicado por un número no negativo.

2 SaquiyQuidelseinstalaronavertelevisión.SeestabainiciandoundocumentaltituladoEl 2013 que nos espera. El programa trataba de la calidad de la atmósfera y la advertencia de peligro si no se toma conciencia y se adopta una conducta más ecológica en el diario vivir. Los científicos entrevistados se valían de fórmulas que explicaban muy bien sus opiniones.

Trabaja

UN

IDA

D 2

111

Resuelvan en pareja los siguientes ejercicios. Escriban todo el desarrollo en el cuaderno y no olviden revisar sus respuestas en el solucionario.

1 Grafiquen, usando algún programa computacional, las siguientes funciones cuadráticas. Impriman y peguen los gráficos en su cuaderno.

a. f x x x( ) = −6 32b. y x x= + +2 6 9 c. y x x= − + +2 32

2 Determinen si los siguientes puntos pertenecen a las parábolas dadas:

a. A y x x2 1 2 6 1762, ;( ) = − − b. C c f x x12

258

14

32, ;

( ) = + c. E yx x− −( ) = + +1 1 9 6

2

2

, ;

3 Determinen la concavidad de las siguientes parábolas, es decir, si son cóncavas hacia arriba o hacia abajo.

a. y x x= + −6 2 12 b. f x x x( ) = − +3 13 202 c. 215 7 14y x x= − +

U2 MAT 3M (074-145).indd 111 2/11/11 15:29:24

Page 112: 003000.000 grou

112

SaquiyQuidelestabanmuyinteresadosensabercómoladensidaddelaatmósferaserelacionaba

con la altura, pues ellos viven en un sector cordillerano. Pues bien, seguían explicando en la televisión

que para altitudes h hasta de 10000 m, la densidad de la atmósfera terrestre D, en kgm3

, está dada

aproximadamente por:

2 7 4 0 1 225 1 12 10 3 24 102 4 9 2x x D h h+ − = = − ⋅ + ⋅− −, , ,

Desafortunadamente, la pantalla indica “...este programa continuará la próxima semana, gracias por su sintonía”.

¿Seránciertoslosdatosencontradosporellos,quedecíanqueparaunaalturade5200 m la densidad

será aproximadamente de 0 74, kg m3?Puedenusarcalculadora.

¿Cómo determinar los puntos de corte o intersección de la parábola con los ejes coordenados?

a. Con el eje y Todos los puntos sobre el eje y son de la forma 0, y( ); esto

implica que la condición que se debe cumplir es que la coordenada x sea igual a 0. Si la función cuadrática es y f x ax bx c= ( ) = + +2 , podemos remplazar x = 0.

Entonces 20 0y a b c y c= ⋅ + ⋅ + → = .

Por lo tanto, si x = 0, entonces y = c. Así, el punto de intersección de la parábola con el eje y será siempre (0, c).

Por ejemplo, la parábola que representa la función 22 5 6y x x= − + corta al eje y en el punto 0 6,( ) .b. Con el eje x

Todos los puntos sobre el eje x son de la forma x ,0( ); esto implica que para que se cumpla la condición, la coordenada y debe ser igual a 0. Si la función cuadrática es y f x ax bx c= ( ) = + +2 , podemos remplazar y = 0.

Entonces 20 ax bx c= + + . Es decir, debemos resolver esta ecuación para encontrar los valores de x.

¿Yatedistecuenta?¡Québien!Exactamentecomoloestáspensando, esta es una ecuación cuadrática de esas que acabas de estudiar.

Entonces, por ejemplo, si f x x x( ) = + +2 3 2 , tendremos que para calcular los puntos de corte de la parábola con el eje x debemos resolver la siguiente ecuación:

U2 MAT 3M (074-145).indd 112 2/11/11 15:29:27

Page 113: 003000.000 grou

UN

IDA

D 2

113

(Factorizamos)x x2 3 2 0+ + =x x+( ) +( ) =2 1 0

2 0x + = o 1 0x + = 2x = − o 1x = −

Por lo tanto, la parábola corta al eje x en los puntos −( )2 0, y −( )1 0, .

Comorecordarás,archivamosunconceptomuyimportante.¿Cuándounaecuacióncuadráticatieneonosolución?¿Quésignificaestoparanuestrasparábolas?Recordemosypensemosjuntos.Habíamosdichoque las soluciones de una ecuación cuadrática (podían ser 2, 1 o ninguna) dependían de su discriminante ∆ = −( )b ac2 423 4 1 2 9 8 1∆ = − ⋅ ⋅ = − =, entonces quiere decir que las parábolas pueden cortar en dos puntos o un punto o ningún punto al eje x. Veamos cada caso:

1. En la función anterior, f x x x( ) = + +2 3 2 , tenemos que: 1, 3, 2a b c= = = ,

entonces 23 4 1 2 9 8 1∆ = − ⋅ ⋅ = − = .

Ahora bien, como 1 0> , quiere decir que la parábola tiene dos puntos distintos de corte con el eje x (como ya lo habíamos calculado). Miremos su gráfico.

y

x

–5 –4,5 –4 –3,5 –3 –2,5 –2 –1,5 –1 –0,5 0,5 1 1,5

4

3

2

1

0,5

0

1,5

2,5

3,5

2. En la función y x x= + +4 4 12 se tienen: a b c= = =4 4 1, , , entonces 24 4 4 1 16 16 0∆ = − ⋅ ⋅ = − = . Si 0∆ = , habrá solo un punto de corte con el eje x.¿Cómopuedesereso?Mirasugráfico.

Se llama lugar geométrico al conjunto de puntos que cumplen con una condición dada. Generalmente, los lugares geométricos forman figuras; algunas ya las conoces. Por ejemplo, el lugar geométrico (L.G.) de todos los puntos del plano que están a la misma distancia de un punto fijo del plano es la circunferencia. Observa: todos los puntos de la circunferencia están a la misma distancia (r) del punto fijo O.

r

O

De esta manera, la parábola también es un lugar geométrico. Se dice, entonces, que la parábola es el L.G. de todos los puntos del plano cuya distancia a un punto fijo llamado foco y a una recta llamada directriz es la misma. Lo puedes ver más fácil en los siguientes sitios.

http://www.educacionplastica.net/zirkel/parabola.html http://www.educacionplastica.net/zirkel/parabola1_sol.html

y

0 x

P (x, y)

F (a, 0)–a

L

V

Para saber más

7+¡$

><

2? = %

U2 MAT 3M (074-145).indd 113 2/11/11 15:29:30

Page 114: 003000.000 grou

114

–2 –1,8 –1,6 –1,4 –1,2 –1 –0,8 –0,6 –0,4 –0,2 0,2 0,4 0,6

4

3

2

1

y

x

Calculemos este punto. Para ello, debemos resolver la ecuación: 4 4 1 02x x+ + =

⇒ =− ± −

xb b ac

a

2 42

(Recuerda, la cantidad subradical o discriminante es 0 –lo acabamos de calcular– y cuando se realiza la operación 4 ± 0, ambos resultados

serán lo mismo)4 0 4 0 4 12 4 8 8 2

x− ± − ± − −⇒ = = = =

Por lo tanto, el único punto de corte con el eje x que, en este caso,

siempre coincide con el vértice de la parábola es 1 ,0

2−

.

3. En la función y x x= − +2 32 , sabemos que 2, 1, 3a b c= = − = , entonces podemos calcular que 21 4 2 3 1 24 23∆ = − − ⋅ ⋅ = − = − . En este caso, < 0; por lo tanto, la parábola no cortará al eje de las x. Miremos su gráfico (recuerda que en este caso la ecuación cuadrática no tiene soluciones reales porque la cantidad subradical de la raíz implicada en la fórmula es negativa).

y

x

–6 –4 –2 2 4 6

6

8

4

2

0

A los puntos de corte de la

parábola con el eje x se les llama

también ceros de la función.

En síntesis, una función

f x ax bx c( ) = + +2 intersecta al

eje x en:

•2puntossilaecuación 2 0ax bx c+ + = tiene dos

soluciones reales o 0∆ > .

•1puntosilaecuación 2 0ax bx c+ + = tiene una

solución real o 0∆ = .

•Ningúnpuntosilaecuación 2 0ax bx c+ + = no tiene

solución en R o 0∆ < .

Toma nota

0

U2 MAT 3M (074-145).indd 114 2/11/11 15:29:32

Page 115: 003000.000 grou

UN

IDA

D 2

115

Ejemplos:

1. Dada la función f x x x( ) = − + +3 11 42 , calcula los puntos de corte de su gráfico con los ejes coordenados.En la función dada, 3, 11, 4a b c= − = = .Resolvamos la ecuación − + + =3 11 4 02x x para obtener los puntos de corte con el eje x. Por fórmula tenemos que:

2 24 11 11 4 3 42 2 3

b b acx x

a− ± − − ± − ⋅ ⋅⇒ = ⇒ =

⋅− x

b b ac

ax=

− ± −⇒ = − ± − ⋅− ⋅

⋅−

2 242

11 11 4 3 42 3

11 121 48 11 169 11 136 6 6

x− ± + − ± − ±= = =

− − −11 13 2 1

6 6 3x

− + −= = =− −

o 11 13 24 4

6 6x

− − −= = =− −

Por lo tanto, los puntos de corte con el eje x son 1 ,0

3−

y 4 0,( ).

Por otro lado, para determinar el punto de corte con el eje y basta el valor de c; por lo tanto, el punto de corte con el eje y es 0 4,( )

2. Mauricio es un fanático del fútbol y de la matemática. Siempre investiga y hace cálculos para tener datos exactos de la fuerza y potencia que tiene su ídolo como atacante y goleador. Los últimos cálculos que hizo lo llevaron a concluir que el lanzamiento desde el centro de la cancha de una pelota detenida estaba determinado por la función h m m m( ) = − +0 0064 0 322, , , donde h es la altura en metros que alcanza la pelota a lo largo de su trayectoria, y m, los metros que ella recorre. Si la distancia entre el centro de la cancha y el arquero es de 50 m,¿llegaráaconvertirelgol?

Supongamos que el centro de la cancha es el origen del plano cartesiano. Resolver este problema equivale a encontrar a cuántos metros del centro llegará la pelota, es decir, encontrar los puntos de corte con el eje x (en este caso la cancha).

h m m m( ) = − +0 0064 0 322, ,( )

50 metros

Entonces, resolvamos la ecuación:

− + =− +( ) =

0 0064 0 32 00 0064 0 32 0

2, ,, ,

m m

m m

(Factorizamos)

0m= o − + =0 0064 0 32 0, ,m / 0,32−− = −0 0064 0 32, ,m / : 0,0064−

50m=

U2 MAT 3M (074-145).indd 115 2/11/11 15:29:37

Page 116: 003000.000 grou

116

TrabajaDesarrollen la siguiente actividad. Recuerden escribir todo en su cuaderno y revisar sus respuestas.

4 Determinen la intersección de las siguientes parábolas con los ejes coordenados (eje x y eje y). Grafiquen las funciones; ayúdense con el programa Graphmatica e identifiquen allí sus respuestas.

a. f x x x( ) = − −2 6 1762

b. f x x x( ) = − + −2 10 25

c. 2 2 2y x x= − + +

d. f x x x( ) = − +2 17 16

e. y x x= + +3 18 272

f. f x x( ) = − +2 196

5 Max ese día estaba muy triste. Las penas de amor a veces nublan la razón y nuestros pensamientos pintan

de oscuro nuestro entorno. Simplemente, ella se había alejado. Él se había quedado largo rato mirando los

problemas que había que copiar de la pizarra. En esa soledad, después de la última clase, solo escribió:

... y el niño salta de derecha a izquierda de acuerdo a la ecuación 222

y x x= − .

Suponiendo que el suelo se puede considerar el eje de las abscisas, determina el punto de partida y el punto de llegada del salto.

La solución m = 0 indicará el lugar desde donde el futbolista lanzó la pelota (pues allí estaba el origen del sistema de coordenadas) y m = 50 indicará la distancia recorrida tras la que la pelota volvió a topar el suelo de la cancha, esto es, justo a los pies del arquero (recuerda que la distancia desde el centro de la cancha al portero era de 50 metros). Por lo tanto, no llegó a convertir el gol.

¿Cómo determinar el vértice de una parábola?

Observa nuevamente el gráfico de una parábola:

y

x

A B

–2

0–6 –4 –2

Eje de simetría

Vértice

Puntos de corte con eje x

2 4 6

–4

Como la parábola es simétrica con respecto al eje de simetría, la coordenada x del vértice de la parábola será la misma que la coordenada x del punto medio entre los puntos de intersección con el eje x.

Sea f x ax bx c( ) = + +2 . Si A X B XA B, ,0 0( ) ( )y son los puntos de corte con el eje x y V x yV V,( ) es el vértice, entonces:

U2 MAT 3M (074-145).indd 116 2/11/11 15:29:40

Page 117: 003000.000 grou

UN

IDA

D 2

117

2A B

V

x xx

+= , y así, evaluando la función en Vx , se obtiene que:

2v v vy ax bx c= + +

Por ejemplo, en la función y x x= + +2 3 2 (ejemplo 1, página 113), los puntos de corte con el eje x que calculamos eran −( )2 0, y −( )1 0, ; entonces, si queremos calcular su vértice, tendremos que:

2 1 32 2Vx

− + − −= =

23 3 9 9 9 18 8 13 2 22 2 4 2 4 4vy− − − + − = + ⋅ + = − + = =

Por lo tanto, el vértice es el punto 3 1,

2 4− −

. Vuelve a mirar el gráfico

y ubícalo.

Ahora bien, si la parábola corta en un solo punto al eje x, entonces el vérticeserádichopunto.Pero¿quéhacemoscuandonohaypuntosde corte con el eje x?¡Estemétodoyanoresultaría!

Entonces, tenemos la necesidad de encontrar alguna generalización que sirva en todos los casos. Pues bien, volvamos a la fórmula de las soluciones de una ecuación cuadrática. Esta era:

xb b ac

a=− ± −2 4

2, y así las soluciones estaban dadas por,

xb b ac

a=− + −2 4

2 o x

b b ac

a=− − −2 4

2

Si razonamos como anteriormente lo hicimos, tendríamos que sumarlas y luego dividir por 2. Hagámoslo,

xb b ac b b ac

a

xb

ab

ab

v

v

=− + − + − − −

⇒ = − = − ⋅ = −

2 24 42

2

22

2 22

12 2

:

:aa

y aba

bba

cab

ab

ac

ba

ba

c

b

v⇒ = ⋅ −

+ ⋅ − + = − + = − +

= −

2 2 4 2 4 2

2 2

2

2 2 2

2 22 44

44

2 2b aca

ac ba

+ = −

(Recuerda que son fracciones de igual

denominador)

(Nota que las raíces siempre se anularán)

Muy bien, hemos llegado a la fórmula que nos ayudará a calcular el vértice de cualquier parábola. Esta es:

Vba

ac ba

= − −

2

44

2

,

U2 MAT 3M (074-145).indd 117 2/11/11 15:29:43

Page 118: 003000.000 grou

118

Entra a esta página, prueba

mover los puntos a, b y c y

verás, gráficamente, cómo

cambia la parábola al variar los

coeficientes (debes contar en tu

PC con el complemento Java.

Pueden bajarlo en http://www.

java.com/es/download).

http://www.cidse.itcr.ac.cr/

revistamate/AportesPe/

Externos/fcuadraticas/

paginas/grafica.htm

Este otro link te llevará a las

aplicaciones de la parábola en

la física... míralo.

http://centros5.pntic.mec.es/

ies.victoria.kent/Rincon-C/

Curiosid/rc-79/rc-79.html

Links de interés

Calculemos el vértice de la parábola del ejercicio 3, hecho antes (en la página 114), donde y x x= − +2 32 . Aquí 2, 1, 3a b c= = − = . Así, remplazando en la fórmula recién encontrada, tenemos que:

Vba

ac ba

= − −

2

44

2

,

V =− −( )

⋅⋅ ⋅ − −( )

12 2

4 2 3 14 2

2

,

1 24 1 1 23, ,4 8 4 8

V− = =

Puedes volver a mirar tu gráfico y ubicar el vértice, chequeando sus coordenadas.

Ejemplos:

1. Determina el vértice de las siguientes parábolas; indica si son puntos máximos o mínimos.

a. y x x= − +2 4 52 En esta función, 2, 4, 5a b c= = − = . Usando la fórmula para el vértice, se tiene que:

V

ba

ac ba

= − −

2

44

2

,

V =− −( )

⋅⋅ ⋅ − −( )

42 2

4 2 5 44 2

2

,

V = −

=

= ( )4

440 16

81 24

81 3, , ,

Es un mínimo, pues la parábola es cóncava hacia arriba a<( )0a< () 0 .

b. y x x= − − −3 12 72

En esta función, 3, 12, 7a b c= − = − = − , entonces:

V

ba

ac ba

= − −

2

44

2

,

V =− −( )⋅−

⋅− ⋅− − −( )⋅−

122 3

4 3 7 124 3

2

,

V =−

−−

= − −

= −( )12

684 144

122 60

122 5, , ,

Es un máximo, pues la parábola es cóncava hacia abajo a<( )0 .

U2 MAT 3M (074-145).indd 118 2/11/11 15:29:47

Page 119: 003000.000 grou

UN

IDA

D 2

119

Toma nota

2. Volvamos al problema inicial de Braulio (página 106). Braulio, Macarena y sus amigos planearon una tarde de viernes jugando paintball. “Te puedes sentir en un verdadero combate y las balas, por ser de pintura, no hieren cuando te topan”, fueron los argumentos de Braulio para convencer a sus amigos. Braulio lanzó subalacomoseindicaeneldibujo.Conestosdatos,¿quépasó?

Calculemos el punto más alto de la trayectoria de la bala, es decir, el vértice de la parábola:

1 2, , 19 3

a b c= − = =

V

ba

ac ba

= − −

2

44

2

,

V =−

⋅ −

⋅ − ⋅ −

⋅ −

23

2 19

4 19

1 23

4 19

2

,

=

= ( )

232

9

894

9

3 2, , (Verifícalo con tu calculadora)

Esto significa que la altura máxima que alcanzó la bala fue de 2 m desde donde fue disparada. Como Braulio la disparó desde 1,60 m, entonces la altura máxima a la que debía llegar era de 3,6 m, o sea, que se topó con el techo del galpón antes de concluir su trayectoria.

3. La señora Silvia ha entrado a estudiar un curso de finanzas, requisito para obtener un ascenso en su trabajo. En clases, le plantearon el siguiente problema que no supo resolver: “Los gastos de una empresa son modelados, según los costos de producción, por la siguiente función: g c c c( ) = − +5 3 212 , donde c está en miles de pesos y gencientosdemilesdepesos.¿Cuáleselcostodeproducciónquehacequelosgastosseanlosmenoresposibles?”

Sus hijos, que ya habían estudiado la función cuadrática, le explicaron a su mamá lo siguiente:

3,5 m

Techo

Altura de la bala en función de los metros

que recorre

1,6 m

h m m m( ) = − + +19

23

12

En una función cuadrática, el

dominio serán siempre todos los

reales, ya que la expresión

y = ax2 + bx + c, con

a b c a, , ∈ ∧R π0 nunca se

indefine, no importa cuál sea el

valor de x.

El recorrido, en cambio, está

determinado por el vértice de la

parábola. Como este es su punto

más bajo o más alto, entonces el

recorrido será

Rec f x y y yV( ) = ∈ ≥{ }R / si

tiene un mínimo (a > 0), y será

Rec f x y y yV( ) = ∈{ }R / £ si

tiene un máximo (a < 0).

Por ejemplo: Para la función

f x x x( ) = − +2 32, hemos

calculado su vértice y era

1 23,4 8

V = , entonces,

podemos decir que como a > 0,

entonces el vértice es su mínimo.

Por lo tanto: Dom f x( ) =R y

Rec f x y y yv( ) = ∈ ≤{ }R /y y∈ ≥

R /238

“Para que lo veas más claro,

observa el gráfico de esta

función”.

0

8

6

4

2

–2 –1 1 2 3 4

x

U2 MAT 3M (074-145).indd 119 2/11/11 15:29:52

Page 120: 003000.000 grou

120

La función cuadrática dada representa una parábola que se abre hacia arriba (ya que 0a > ); por lo tanto, el valor mínimo que se pregunta está dado por el vértice de esta.

Calculémoslo: a b c= = − =( )5 3 21, ,

Vba

ac ba

V= − −

⇒ =

− −( )⋅

⋅ ⋅ − −( )⋅

=

24

43

2 54 5 21 3

4 532 2

, ,110

41120

,

Como c representa los costos y la función g c( ) depende de estos,

quiere decir que c es el valor de la primera coordenada y g c( ) es

el valor de la segunda coordenada del vértice (compáralo con

f x( ) ); por lo tanto, el costo que hará los gastos mínimos es 3

10,

o sea, 0,3 miles de pesos, es decir, 0,3 · 1000 = $300.

Trabaja

6 Los pares de puntos que se dan a continuación son los puntos de corte de una parábola con el eje x. Si se sabe que el vértice de dicha parábola es un punto de la forma (x, 4x), determinen dicho vértice en cada caso.

a. 2 0,( ) y −( )3 0,

b. 7 0,( ) y 9 0,( )

c. 1 5,0 ,02 4

y −

7 Dadas las siguientes funciones y un punto, determinen en cada caso si el punto dado es el vértice de la parábola asociada a la función dada.

a. f x x x( ) = + − − −

2 3 5 34

498

2 , ,

b. y x x= − + − ( )2 2 3 1 8, ,

c. y x x= + + − −( )14

3 1 6 82 , ,

8 Dados los siguientes puntos, que representan vértices de algunas parábolas, asocien cada uno de ellos con las funciones listadas según correspondan.

a. 1 33,2 4

b. 2 4,3 3 −

c. 1 6,5 5 i. ____ y x x= −3 42 ii. ____ y x x= − +2 5 12

iii. ____ 28y x x= + −

U2 MAT 3M (074-145).indd 120 2/11/11 15:29:57

Page 121: 003000.000 grou

UN

IDA

D 2

121

9 Dados los siguientes gráficos de parábolas, determinen a cuál de las funciones listadas corresponde cada uno de los vértices de los gráficos.

i. ____ 2 1y x= + ii. ____ y x x= − + +2 3 2 iii. ____ y x x= + −2 5 32

–6 –5 –4 –3 –2 –1 1 2 3 4 5 6

4

2

–2

–4

–6

0

y

x

10 Determinen a cuál de los cuadrantes del plano cartesiano pertenecen los vértices de las siguientes parábolas:

a. y x x= +3 72 b. f x x x( ) = − − −2 4 1 c. f x x( ) = −2 9

¿Cómo determinar el eje de simetría?

El eje de simetría es una recta paralela al eje y que pasa por el vértice de la parábola. Como recordarás del estudio de rectas del año pasado, toda ecuación paralela al eje y tiene ecuación x = m, donde m es el valor en que la recta corta al eje x. En nuestro caso, el valor de m es el valor de la coordenada x del vértice. Así, el eje de simetría queda determinado por la recta de ecuación vx x= .

“Pensemos en el siguiente ejemplo”...

Renato estaba jugando básquetbol en el patio con sus compañeros. La oficina del director queda a 6 m de este lugar. Su ventana, ubicada desde su parte más baja, a 2 m del suelo, está cerrada y da al patio. Tratando de encestar, Renato lanza la pelota con más fuerza de lo habitual y se va directo hacia esa ventana. El profesor de Física, que estaba en el patio, estima que la pelota alcanzó su altura máxima de 4 m cuando iba en la mitad de la distancia entre Renato y el edificio. SiRenatolanzalapelotadesdeunmetrodealtura,¿romperálaventanadeldirector?

U2 MAT 3M (074-145).indd 121 2/11/11 15:29:59

Page 122: 003000.000 grou

122

Vértice(3,4)

Punto(0,1)

Eje de simetría x = 3

Punto simétrico del punto de lanzamiento (6,1)

Como el vértice está en el punto 3 4,( ), quiere decir que allí está el eje de simetría de la parábola descrita por la pelota; entonces, debe haber un punto por el que pasará la pelota que esté a la misma altura de lanzamiento 1 m( ) y a la misma distancia desde Renato a la mitad del patio, esto es, en el punto 6 1,( ), como muestra la figura. Como la parte más baja de la ventana está ubicada a 2 m del suelo, tendremos que cualquier punto que pertenezca a la ventana estará por sobre el punto 6 2,( ); por lo tanto, la pelota no llega a la ventana. ¡QuébuenasuerteladeRenato!

Este es el dibujo de la situación, suponiendo que el origen de coordenadas está en el punto donde está parado Renato:

3 Determina el eje de simetría de cada una de la siguientes parábolas:

a. 2 7 12y x x= − +

b. y x x= +2 32

c. 2 15y x= − +

d. y x x= − +14

12

13

2

e. y x x= − +3 4 22

4 Resuelve los siguientes problemas:

a. Luisa lanza un balín desde la ventana del edificio donde jugaba softball con sus amigos. Max calcula aproximadamente que el balín alcanzó 3 m de altura máxima a los 2 sdelanzada.¿Encuánto tiempo, aproximadamente, a partir del lanzamiento, Luisa volverá a ver pasar el balín por laventana?

b. Pedro está respondiendo su prueba de Matemática. El problema 5 dice que los puntos 5 7,( ) y 12 7,( )sonsimétricosenunaparábolayquesedebehallarelejedesimetría.¿Cuálseráeste?¿PuedesencontrarlarespuestaaligualquePedro?

Trabaja

U2 MAT 3M (074-145).indd 122 2/11/11 15:30:03

Page 123: 003000.000 grou

UN

IDA

D 2

123

¿Quésucedeconelgráficodelaparábolaconrespectoalasvariaciones del valor de c?Si observas bien, verás que con respecto a la función 2y x= , las otras se han desplazado verticalmente.

Luego, del valor de c depende que la parábola se traslade verticalmente.

Si c > 0, la parábola se traslada hacia arriba.

Si c < 0,laparábolasetrasladahaciaabajo.Interesante¿no?

2. Grafiquemos ahora funciones de la forma y x m= ±( )2. Mira,

compara y responde.

¿Quésucedecuandosesumaorestaunnúmerodentrodelcuadrado,esdecir,cuandoformamosuncuadradodebinomio?Como ya lo observaste, al comparar las funciones con y = x2, de m depende que las funciones se desplacen horizontalmente.

Otras consideraciones

Ya hemos analizado una función cuadrática en forma general y has visto sus aplicaciones. Solo nos quedan dos casos interesantes por analizar.

1. Tomemos las funciones de la forma 2y ax c= ± . Grafiquemos algunas de ellas para poder compararlas.

y

6

4

2

–2

–4

–3 –2 –1 0 1 2 3x

f x x( ) = 2

f x x( ) = +2 2f x x( ) = +2 5f x x( ) = −2 3f x x( ) = −2 4

–6 –5 –4 –3 –2 –1 1 2 3 4 5 6 7

4

3

2

1

0

y

x

f x x( ) = +( )3 2

f x x( ) = +( )1 2

f x x( ) = ( )2

f x x( ) = −( )1 2

f x x( ) = −( )4 2

U2 MAT 3M (074-145).indd 123 2/11/11 15:30:08

Page 124: 003000.000 grou

124

Luego, del valor de m, al hacer y x m= ±( )2, depende que la

parábola se desplace horizontalmente. Así, si 0m> , entonces, la parábola se trasladará hacia la izquierda y si 0m< , entonces la parábola se desplazará hacia la derecha.

¿Lohabríasimaginado?

Trabaja

Aplica lo aprendido.

5 Jaime está navegando por Internet y le llama la atención un video de optimización de funciones. En más de una oportunidad había escuchado: “Optimicemos la función estudio y ahorremos tiempo”. ¿Quéseráestodeoptimizarfunciones?,sepreguntaJaime.Elprofesordice:“Hoy aprenderás a optimizar funciones; resolvamos el siguiente problema. Descomponer el número 44 en dos sumandos tales que el quíntuplo del cuadrado del primero más el séxtuplo del cuadrado del segundo tenga un mínimo valor” .

Jaime lo vio y se dio cuenta de que tenía mucha relación con la clase de funciones cuadráticas que habíavistorecientemente.Anotóeldesarrolloyloguardó.¿Cuálfueeldesarrolloqueescribió?

6 Los grupos de Amaro y Mauro se unieron para hacer la tarea de parábolas. A cada grupo le tocaba analizar 8 parábolas para encontrar todos sus elementos característicos. Se quedaron en el liceo y juntos resolvieron las seis primeras asignadas. Acto seguido, intercambiaron los desarrollos para revisarlos mutuamente a fin de advertir las fallas. Decidieron terminar la tarea en la casa de aquel integrante que tuviera la parábola con sus ramas más abiertas y menos puntos de intersección con el eje x.

Por el grupo de Amaro competían las siguientes parábolas: y x y x x= = + −0 5 4 2 12 2, ;

Por el grupo de Mauro iban: y x x y x= − + = +0 5 1 5 1 3 12 2, , ; . ¿Dequégrupoeraelintegrantequefacilitósucasa?Justificaturespuestamatemáticamente.

7 El grupo de Rafael disertó acerca de la temperatura a la que hierve el agua y su relación con la altura. Explicaron que en su investigación aprendieron que: “La temperatura en ºC o C T( ) a la que hierve el agua está en función de la altura, h, en metros sobre el nivel del mar mediante la fórmula:

h T T= −( )+ −( )1000 100 580 100 2 y que esta fórmula se usa solamente a partir de los 95ºC, hasta los

100ºC, inclusive”.

Rafael usó correctamente la fórmula para encontrar la temperatura a la cual hierve el agua en la cima del monte Everest, cuya elevación aproximada es de 8840 m.

a. ¿CuáldebieraserlarespuestaqueobtuvoRafael?b. ¿Aquétemperaturahierveelaguaaniveldelmar?c. Averigua a qué altitud sobre el nivel del mar está el sector donde tú vives. Con esa información, aplica

la fórmula para hallar la temperatura a la que hierve el agua en esa zona. Deben usar calculadora.

U2 MAT 3M (074-145).indd 124 2/11/11 15:30:09

Page 125: 003000.000 grou

UN

IDA

D 2

125

Responde las siguientes preguntas y luego comparte las respuestas con tu compañero o compañera de banco. Complementa lo que te faltó y aporta tus conocimientos. Recuerda preguntar si tienes dudas.

•¿Puedodefinirlosconceptosdeparábola,funcióncuadrática,dominio,recorrido,imagen ypreimagen?

•¿Entendíloscontenidosdeestasección?Cuandonofueasí,¿volvíaleerlos?¿Preguntémisdudasacompañerosocompañerasqueentendieron,oamiprofesoroprofesora?

•¿Puderesolvercorrectamentelasactividadespropuestasenestasección?

•¿Ayudéamigrupopararealizarunbuentrabajo?

•¿Hiceunresumendelosconceptosquemefueronmásdifícilesdeentender,demodoquenolosolvide?

Revisemos lo aprendido

Sintetizando•Unaparábolaeslacurvaquerepresenta,gráficamente,alafuncióncuadráticadelaforma

2y ax bx c= + + , con a, b, c pertenecientes a los reales y a ≠ 0.•Lasparábolastienenelementoscaracterísticosqueson:

Concavidad (sentido hacia donde se abren sus ramas). Puede ser cóncava hacia arriba (si 0a > ) o cóncava hacia abajo (si 0a< ).

Vértice (punto máximo o mínimo de la parábola). Se calcula usando la fórmula:

Vba

ac ba

= − −

2

44

2

,

Punto de corte con el eje y (punto donde la parábola intersecta al eje y). Está dado siempre por 0,c( ).

Punto de corte con eje x (punto donde la parábola intersecta al eje x). Se resuelve la ecuación 2ax bx c+ + = 0 (se iguala la función a 0). La parábola puede tener dos, uno o ningún punto de

corte con el eje x, dependiendo de las soluciones de la ecuación. Si las soluciones son x1 y x2, entonces los puntos de corte son x1 0,( ) y x2 0,( ).

Eje se simetría (recta paralela al eje y que pasa por el vértice de la parábola y la divide en dos partes

iguales). Su ecuación es xba

= −2

.

•Lafunción 2y x c= ± se traslada verticalmente con respecto a la función 2y x= si cambia el valor de c.

•Lafunción y x m= ±( )2 se traslada horizontalmente con respecto a la función 2y x= si cambia el

valor de m.

U2 MAT 3M (074-145).indd 125 2/11/11 15:30:11

Page 126: 003000.000 grou

126

Trabaja más...Trabaja en forma individual

1 Dada la parábola y x x= − +3 22 , señala:

a. ¿Escóncavahaciaabajo?¿Porqué?

b. ¿Cuálessonlospuntosdeellacuyas

abscisas son −53

y 1?

c. ¿Quéobservasenlospuntosdeterminadosanteriormente?

2 Hay dos puntos de coordenadas a,4( ) que se encuentran en la gráfica de y x x= + +1 3 6 2. ¿Cuálesson?

3 La gráfica muestra una parábola y una recta que se intersectan.

6

5

4

3

2

1

0

y

–6 –5 –4 –3 –2 –1 1 2 3 4 5 6–1

–2

–3

–4

–5

f x x x( ) = + −2 2 3f x( ) =5

a. Gráficamente, determina los puntos de intersección.

b. Haciendo los cálculos correspondientes y usando la fórmula de la parábola, verifica que los puntos que anteriormente hallaste pertenecen a ella.

4 Hay parábolas cuyas fórmulas son del tipo y x K Kx= −( ) −( )5 , donde K es cualquier número real distinto de cero. Encuentra dos valores para K, de tal modo que la parábola resultante sea:

a. cóncava hacia abajo. b. cóncava hacia arriba.c. contenga al punto 1 0,( ):

5 María Ignacia, gerente comercial de una tienda de electrónica, encargó a su equipo de trabajo un estudio de ventas de LCD durante 2009 y hasta mayo del 2010, mes previo al mundial de fútbol en las distintas salas de ventas a través del país.

110

100

90

80

70

60

50

40

30

20

10

–10–1 1 2 3 4 5 6 7 8 9 10 11

T: Número de mes a partir de enero del 2009

N: N

úmer

o de

ven

tas

por u

nida

des

0

N T T T( ) = − +2 12 302

En la reunión de octubre del 2009, y viendo la gráfica, hizo a su equipo varias preguntas, tanto de las ventas ya realizadas como de las proyecciones que se tenían hasta mayo del año siguiente. Algunas que tú también puedes responder fueron:

a. ¿Esverdadquelasventasdefebrerodel2009 fueron de 18unidades?¿Porqué?

b. ¿Enquémessevendieron62unidades?Chequea efectuando los cálculos necesarios.

c. ¿Cuántasunidadesseesperavenderendiciembre?

d. Específicamente, en el próximo mayo, ¿superaránlasventasdeLCDlas370 unidades?¿Porqué?

e. Entotal,¿habrámásde600 unidades vendidas durante los dos meses previos ajuniodel2010?

U2 MAT 3M (074-145).indd 126 2/11/11 15:30:15

Page 127: 003000.000 grou

UN

IDA

D 2

127

6 –Mayor, venga rápidamente al monitor de observación. Mire cómo se desplaza velozmente ese objeto en trayectoria parabólica.–Indíqueme por dónde apareció en pantalla.–Por aquí, a 5 km enfrente de nosotros. Seguro pasará por el punto de coordenadas (0; 8, 4). Pero hay aún algo más. Este segundo objeto máspequeño,alparecer,vaasuencuentro.¿Veusted?Apareciómoviéndoseverticalmentehacia arriba, 1 km a nuestra derecha.–Capitán, encárguese de saber a qué distancia de aquí debieran encontrarse o cruzarse, y ver si realmente por ese punto debiera pasar la nave mayor. Estas dos informaciones las requiero porque voy a llamar a alerta preventiva.Con ayuda de esta gráfica, y sabiendo que la trayectoria de la nave mayor es de la forma y ax= +2 5, responde:

x

–0,4 –0,2 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2

6

5

4

3

2

1

0

a. ¿Cuálessonlascoordenadasdelpuesto deobservación?

b. Responde las dos preguntas del mayor.

Trabaja en grupo

1 Mafalda estuvo enferma y no fue al liceo. Para ponerse al día, fotocopió algunos cuadernos de sus compañeras. En uno de los ejercicios estaba escrito: no puedo encontrar la solución. Mafalda leyó: “Encuentra las coordenadas de las intersecciones con los ejes de 2 3y x x= + − ”. Lo desarrolló correctamente. Llamó por teléfono a sucompañeraylediolarespuesta.¿Cuálfue?

2 Determinen el número de puntos en el que cada parábola intersecta al eje x. Justifiquen su respuesta.

a. y x x= − + −3 2 7 2

b. y x x= + −13 11 22

c. 2169 52 4y x x= − +

d. 219 2y x x= − +

e. 20,3 5y x= +

f. y x= −0 3 1 32, ,

3 Con respecto a las intersecciones con el eje x, ¿tienenalgoencomúnlassiguientesparábolas?

y x x y x x= + − = + −4 2 12 3 1 5 92 2; ,

Encuentren los puntos de intersección con dicho eje y ya verán.

4 Dada la parábola y x x c= − + −3 112 , donde c es un real, escriban su ecuación si se sabe que intersecta al eje y 11 unidades por debajo del eje x.

5 El punto de abscisa 11 15

− + es la

intersección de y x x= − −5 2 22 con el eje x.

a. Determinen el otro punto de intersección. b. ¿Cuáleselpuntodeinterseccióndeestaparábolaconelotroeje?

6 La ecuación y x bx= + +0 5 32, representa parábolas que intersectan al eje x en un solo punto.

a. ¿Cuálessonlosvaloresdeb?b. Escriban las ecuaciones de las parábolas

aludidas en el enunciado de este ejercicio.

7 Encuentren las coordenadas del punto medio entre:

a. los puntos de intersección de y x x= − − +2 5 252 con el eje x.

b. el punto de intersección de y x x= + −21 92 con el eje y y el origen.

8 Encuentren el área del triángulo cuyos vértices son los puntos de intersección de la parábola

2 12y x x= − + + con los ejes coordenados.

9 “Alamiro, como amiga y compañera tuya, te digo que no te asustes frente a la siguiente tarea: encuentra la intersección de la parábola f x x( ) = − +2 6, con la recta paralela 2y = , y luego con el eje x. Dibuja el trapecio al unir consecutivamente los puntos de intersección, y después encuentra el área de esta última figura”.

U2 MAT 3M (074-145).indd 127 2/11/11 15:30:19

Page 128: 003000.000 grou

128

10 Marcela está ubicando tres puntos de la parábola 22 1y x x= − − , cuyas abscisas están entre los puntos de intersección con el eje horizontal. Para esto, eligió los siguientes valores: –0,25 ; 0 y 0,5:

a. Verifiquen si esta elección cumple la condición dada en el enunciado. Justifica claramente tu respuesta.

b. Indiquen la distancia del punto de menor abscisa a la paralela al eje x, que pasa por el punto de intersección de la parábola con el eje y.

11 “Estoy pensando en un arco parabólico que represente un puente para incluirlo en mi maqueta y participar con ella en el remozamiento de la plaza municipal. Voy a representar mi puente a través de la función

20,25 3 5y x x= − + − , donde x e y están en m. Uno de los extremos debe quedar a 2 m de la base del monolito central, que estará en el origen de mi sistema coordenado”.

a. ¿Acuántosmetrosdelabasedelmonolito,quedaelotroextremodelpuente?

b. ¿Ladistanciaentreambosextremoses9 m?Justifiquen.

12 –Profesor, no vaya a hacer preguntas tan difíciles en la próxima prueba, por favor, –insistíamosunayotravez.–Noesdifícilencontrar similitudes y diferencias, con respecto a los puntos de intersecciones en ambos ejes de las siguientes parábolas:

22 11 12y x x= − + ; 23 16,5 18y x x= − + –dijo–. Esta es una muy interesante pregunta y para empezar a estudiar, vamos a trabajar juntos. Encuentren las similitudes y diferencias mencionadas en el párrafo anterior. Justifiquen su respuesta.

13 “¿Asíqueustedeslapersonaqueponeendudamisconocimientosdefísica?Estábien.Ustedme dice que tiene una partícula situada en un sistema de coordenadas que, siguiendo la trayectoria 2 9y x= − , empieza su movimiento en el punto más bajo de esta curva y sigue siempre por su derecha, hasta llegar al cruce con el eje x. Después de esto –me ha dicho usted– continúa la trayectoria dada por 2 10 21y x x= − + , hasta el próximo cruce con el eje x, y allí se detiene.

Le aseguro que puedo darle las coordenadas desde donde partió, la del primer cruce y el punto dondesedetuvo.¿Nomelocree?” ¿Puedenustedesdaraquellospuntos?

14 “En realidad, me tiene bastante preocupado que se proponga en esta reunión que la relación entre nuestras ganancias g (en decenas de miles de pesos) con respecto a nuestras ventas de jugos v (en miles) esté dada por esa dudosa curva, 2225g v= − , que el señor Faustino Dundoso está mostrando en su presentación de PowerPoint. Señores, no me miren así; si vendemosmás,ganamosmás,¿ono?”

¿Cuáleselproblema?Indicacuántasunidadestendrían que vender para llegar nuevamente a $0 deganancia.¿Sucedeesoalgunavez?

15 Rosalía y Javier han recibido su guía de trabajo en el taller de Física. En ella aparece la siguiente pregunta: “La ecuación de la curva adjunta es 2 6 5d t t= − + , donde d representa la posición de un móvil, medida en km, en función del tiempo t, expresado en h. Obtengan los puntos de intersección con los ejes coordenados y hagan una interpretación física de ellos”.

d km( )

t h( )

16 Determinen el vértice de las siguientes parábolas e indiquen si corresponde a un máximo o a un mínimo. Grafiquen las funciones, ayúdense con el programa Graphmatica e identifiquen allí sus respuestas:

a. y x x= − +2 14 15

b. 2 1y x= +c. y x x= − + −4 9 112

d. f x x( ) = −2 12

U2 MAT 3M (074-145).indd 128 2/11/11 15:30:21

Page 129: 003000.000 grou

UN

IDA

D 2

129

e. f x x x( ) = − +2 3 20f. y x x= − +3 8 52

17 Disponen de una cuerda de 100 cm y les piden que la doblen para formar un paralelogramo recto (cuadrado o rectángulo), pero haciendo que su área sea la más grande que puedan tener.¿Cuálessonlasmedidasdedichoparalelogramorecto?

18 Débora,Naim,RaquelySaúlhandecididotomarcursosparamicroempresarios.Quierenasociarse para instalar una empresa. En la tarea final del curso de costos deben presentar su proyecto para producir bolitas de queso relleno con nueces y almendras. Discuten el precio de costo estimado por unidad y no llegan a un acuerdo. Junto al encargado del curso y mediante el uso de un software, encuentran que el costo promedio C (en pesos) y su relación por cierto número de unidades producidas, x, viene dado por: C x x x( ) = − +15 0 05 0 0002 2, , .

Estudian muy bien esta fórmula y se preguntan:

a. ¿Serámásbaratoproducir90 unidades que 100?

b. ¿Cuántasunidadesdeberíamosproducirparahacerelcostopromediolomásbajoposible?

c. ¿Cuáleselcorrespondientecostomínimoporunidad?

19 Las niñas del 2º básico del colegio están jugando a saltar la cuerda; mientras, Paola le pregunta a su profesor algunos temas de funciones cuadráticas que no había entendido en clases. “–Mira a esas niñas –le dijo su profesor–. Ellas forman con su cuerda una parábola cuya altura máxima es de aproximadamente 1,5 m. Además, la distancia que hay entre ambas niñas es de alrededor de 2 m”.¿Puedestúdarlascoordenadasdelvérticedelaparábola?

y

x

1,5 m

2 m

20 A Marta, gerente general de una empresa de telecomunicaciones, le parecía extraña la rapidez con que la empresa financiera que habían contratado para hacer un estudio les había entregado el mismo. Éste decía que los costos de la empresa en un período de cierta cantidad de años estarían modelados, en función de los productos vendidos, por la siguiente función: C v v v( ) = − +2 13 40 , donde v es el número de artículos vendidos (en unidades) y C, los costos asociados a esa venta (en miles de pesos). A Marta le interesó, por supuesto,analizarloscostosmínimos.¿Quéestabaerradoenelinforme?

21 Una empresa se capitaliza bajo la siguiente función: C t t t( ) = − + +2 6 5 , donde C es el capital (en decenas de millones) y t es el tiempo (en décadas). Determinen el capital máximo de la empresa y en qué año de funcionamiento lo logra.

22 Un banco decide lanzar un nuevo tipo de seguro automotriz. Después de un año, un estudio del banco ha arrojado que el número de clientes captados para este producto se puede modelar bajo la siguiente función: C t t t( ) = −10 2 2 , donde C es el número de clientes y t los años transcurridos. Determinen en qué momento el banco comienza a tener pérdida de clientes para este producto.

23 En el laboratorio Biolab se está realizando un

experimento para encontrar la cura contra una

nueva bacteria. Los científicos han detectado

que la población de bacterias disminuye con la

administración de cierto antibiótico, pero

luego de un tiempo, estas se vuelven inmunes

y crecen nuevamente. Ellos encontraron que la

función que modela la población de bacterias

es: P m m m( ) = − +364

34

42 , donde P es la

población de bacterias (en miles de individuos)

y m los miligramos de antibiótico suministrado

diariamente.¿Cuáleslapoblaciónqueexiste

antesdequelabacteriasevuelvainmune?

U2 MAT 3M (074-145).indd 129 2/11/11 15:30:25

Page 130: 003000.000 grou

130

24 Juan Pablo está haciendo un trabajo para su ramo de diseño de la universidad. Él tiene un triángulo de 8 cm de base y 5 cm de altura, pero debe disminuir su base y aumentar su altura en un mismo valor, de modo que el triángulo que resulte cubra la mayor superficie posible.¿QuérespuestaledaríanaJuanPablo?¿Cuáleselmayorvalorenelquesepuedeaumentar la altura y disminuir la base y cuál es eláreamáximaquepodrácubrir?

25 La compañía disquera donde trabaja Esteban

ha determinado que el número de copias que

se venden de un artista consagrado cuando

lanza al mercado un nuevo trabajo

(considerando las preventas) se rige, en

función de los días, por:

V d d d( ) = − + +4009

4 0003

50002 . El jefe de

Esteban le ha pedido que calcule cuál será la

cantidad máxima de copias que se venderán y

en qué día se logrará esta venta.

¿Puedentambiénresponderustedes?

Mis apuntes

U2 MAT 3M (074-145).indd 130 2/11/11 15:30:26

Page 131: 003000.000 grou

“El huevo de gallina es un ejemplo exacto de los arcos parabólicos, y fue considerado como la placenta del mundo por el pueblo dogón del oeste africano, y en los mitos conocidos en China, India, Grecia y Japón, entre otros. En la mitología egipcia, al principio solo existía el océano, pero la creación del mundo se produce con la aparición de Ra, el Sol, surgiendo de un huevo.

A su vez, la raíz del Imperio romano fueron los etruscos, que simbolizaban a la creación con un huevo de gallina y emplearon arcos para edificar no solo templos, sino puentes, puertas de ciudades, etc. Pero fueron los romanos los que desarrollaron toda la sintaxis moderna del arco. Usaron principalmente el arco de medio punto en anfiteatros y palacios, pero en la construcción de templos siguieron la tradición griega de sistema adintelado, salvo en un solo caso, como el templo abovedado del panteón de Agripa en la misma Roma”.

Fuente: Extraído de http://webs.adam.es/rllorens/05/fparabola.htm

Materiales por grupo:

•Unhuevoduro

•Unahojadepapelmilimetrado

•Lápicesdecolores

Instrucciones:

En grupos de cuatro integrantes, realicen la siguiente actividad:

•Comoyalohabránnotado,elcontornodelamitaddelhuevotieneformadeparábola.Observenbiensuhuevo.

•Debenencontrarlafuncióndelaparábolaquedescribeelcontornodelhuevo.Paraello,sesugiereusarel papel milimetrado de manera que puedan hacer allí las mediciones correspondientes.

•Enelpapelmilimetrado,dibujenlosejescoordenadosparaqueseanmásfácileslasmediciones.

•Recuerdenqueparadeterminarunaparábola(sufunción),necesitantrespuntoscualesquieraporlosque pasa. Reemplacen las coordenadas de estos tres puntos en los valores de x e y de una función de la forma y ax bx c= + +2 . Obtendrán un sistema de ecuaciones para a, b y c. Resuélvanlo y escriban la función pedida.

•Cuandohayandeterminadolafunción,respondan:a. ¿Quéconcavidadtienelaparábola?b.¿Cuálessuvértice?c. ¿Tienepuntodecorteconlosejes?Silostiene,¿cuálesson?d.¿Cuálessuejedesimetría?e.¿Dequédependelaecuaciónqueobtuvieron?¿Podríanhaberobtenidootra?

•Compartanlosresultadosdesugrupoconelcurso.

UN

IDA

D 2

131

TallerTrabaja

El huevo, la gallina, la parábola y tú

U2 MAT 3M (074-145).indd 131 2/11/11 15:30:28

Page 132: 003000.000 grou

132

Evaluación Unidad 2

Síntesis conceptual de la unidad

Completa los siguientes mapas conceptuales de la unidad. A medida que lo hagas, verbaliza los conceptos con tus palabras (eso te ayudará a entender mejor todo lo relacionado con la unidad)

Ecuaciones cuadráticas (es de la forma)

Fórmula general

Tipos Número de soluciones

Función cuadrática (es de la forma)

corte con eje y

corte con eje x

concavidad

dos soluciones

ninguna solución

máximo o minimo

vértice eje de simetría

una solución

U2 MAT 3M (074-145).indd 132 2/11/11 15:30:28

Page 133: 003000.000 grou

UN

IDA

D 2

133

I. Completa el siguiente crucigrama con los conceptos de la unidad.

12

3

45

6 78

9

10

HORIZONTALES

5. Númerodesolucionesdeunaecuacióncuadrática si el discriminante es igual a cero.

9. Númerodesolucionesdeunaecuacióncuadrática si el discriminante es menor que cero.

10. Ecuación donde al menos una de las incógnitas está elevada a dos como mayor exponente de ella.

VERTICALES

1. Recta que pasa por el vértice de una parábola y la divide en dos partes iguales.

2. Cantidad subradical de la raíz de la fórmula general para resolver ecuaciones cuadráticas. Determina el número de soluciones.

3. Sentido en el que se abren las ramas de una parábola.

4. Curva que representa una función cuadrática.

6. Punto máximo o mínimo de una parábola.

7. Númerodesolucionesdeunaecuacióncuadrática si el discriminante es mayor que cero.

8. Soluciones de una ecuación cuadrática.

Resuelve los ejercicios junto con tu grupo. Escribe todo el desarrollo en tu cuaderno y revisa tus respuestas.

II. Resuelve las siguientes ecuaciones cuadráticas:

1 x x2 7 12 0− − =

2 4 5 6 02x x+ − =

3 x x x+( ) + −( ) = +( )4 3 52 2 2

4 2 3 1 1 1 4 1 1x x x x x x−( ) −( ) − −( ) +( ) = − +( ) −( ) 2 3 1 1 1 4 1 1x x x x x x−( ) −( ) − −( ) +( ) = − +( ) −( )

5 x x x x x x x x+( ) −( ) + +( ) −( ) +( ) = +( ) −( ) −( )1 2 2 1 1 2 13 1 22

x x x x x x x x+( ) −( ) + +( ) −( ) +( ) = +( ) −( ) −( )1 2 2 1 1 2 13 1 22

6 21 3 08 4

x x+ + =

7 2 31

1 4 41

xx

xx

x−−

− = +−

+

8 2 3 11 1

x xx x− −− =+ −

9 2 4 3 3x x+ − =

10 2 5 2 6 5 152x x− + − =

11 3 4 1

21

+ +−

=z

z

12 2 3 35 12y y− − =

III. Determina, sin resolver las ecuaciones, si ellas tienen o no solución en los números reales.

1 5 10 02x x− =

2 3 6 12 02x x+ + =

3 18 24 8 02x x+ + =

4 7 14 7 02x x+ − =

5 5 5 5 5 02 2−( ) +( ) =x x

6 x x x x+ +( ) − +( ) =6 3 6 3 0

U2 MAT 3M (074-145).indd 133 2/11/11 15:30:34

Page 134: 003000.000 grou

134

IV. Resuelve los siguientes problemas de planteo.

1 Hoy es el primer día de trabajo del señor Moreno como encargado de la mantención de la piscina olímpica del CAR (Centro de Alto Rendimiento para deportistas) y le ha tocado colocar un revestimiento especial en los bordes. El problema es que debe poner de un tipo para los lados más largos y de otro distinto para los lados más cortos, y no ha encontrado con qué medirlos, pues aun no conoce bien el lugar. En uno de los bordes está especificado que el perímetro de la piscina es 142 m y su área es de 1050 m2. Ayúdale y encuentra las medidas de la piscina.

2 Muriel tiene que hacer un trabajo de arte en el que debe construir un triángulo rectángulo, cuya área sea igual a 96 cm2 y sus catetos estén en la razón 3 : 4.¿Cuálesdebenserlasmedidasdelosladosdeltriángulo?

3 Agustín ha llegado a la casa de sus padres en el campo luego de una muy buena semana en el internado donde estudia. Conversando con su papá sobre las cosechas y las tierras, él le dice a su hijo que necesita agrandar el terreno rectangular de cultivos, que en este momento mide 10 x 4 m, de manera que pueda tener 272 m m2 más para sus nuevas cosechas, pero que debe hacerlo ampliando largoyanchoenunamismamedida.¿Cuálesseránlasnuevasdimensionesdelterreno?

4 Pensaba Aurora, sin cesar, que 1 2 2⋅ = , 2 3 6⋅ = , 3 4 12⋅ = , 4 5 20⋅ = y muy rápido llegó a la conclusión que por ser 1200 múltiplo de 2, 6, 12 y 20, se podía escribir como el producto de un número por su sucesor.¿Esciertoaquello?Justificamatemáticamente.

V. Grafica las siguientes funciones cuadráticas:

1 y x x= −2 32

2 y x x= − − −2 5 2

3 y x=6 2

4 y x x= − + +2 3 62

5 y x x= − +7 212

VI. Determina la concavidad, el vértice, los puntos de corte con los ejes coordenados y el eje de simetría en las siguientes parábolas:

1 y x x= − −3 22

2 y x= +5 22

3 y x=2 2

4 y x x= − − +3 2 72

5 2 2y x x= + +

6 y x x= − + −3 4 12

7 2 9y x= +

8 y x x= − + −9 42 492

VII. Resuelve los siguientes problemas de planteo.

1 Perla había estado muy atenta a la clase de física de hoy. Su profesor les había enseñado que si se lanzaba una pelotita con una rapidez de 4 m/s, entonces la altura a la que llegaba la pelotita estaba determinada por el tiempo en segundos que transcurría en alcanzar dicha altura según la función h t t t( ) = + −1 2 4 2 2, . Perla, que siempre se tomaba un tiempo para pensarenloestudiado,sepreguntó:¿cuántotiempo, después de ser lanzada, se demorará envolveralpuntodelanzamiento?

Responde tú esta pregunta.

2 Rolando está estudiando dibujo técnico y le han dado dos funciones: f x x( ) = −5 3 y g x x x( ) = + −2 3 32 , que representan parte del plano que está bosquejando. Él necesita saber si los gráficos de estas funciones se intersectan en algún punto y, de ser así, cuáles son esos puntos.

¿Realmenteseintersectan?¿Dónde? (Ayuda: si se intersectan, entonces en esos

puntos ambas imágenes tendrán el mismo valor).

3 Jazmín estaba muy preocupada por su promedio. Ella se había propuesto estudiar Medicina y necesitaba muy buenas notas. El profesor le había dado hoy una tarea con nota que decía así: “Encuentre dos puntos por los que pasa la función

2 2 1y ax x= − + , cuyo eje de simetría es 1x = ”.

Resuelve el problema.

4 Christopher y Jessica son compañeros de curso y están haciendo una tarea con nota sobre las parábolas. En un momento

U2 MAT 3M (074-145).indd 134 2/11/11 15:30:40

Page 135: 003000.000 grou

UN

IDA

D 2

135

comienzan a discutir lo siguiente: uno de ellos dice que y x= −( ) +5 82

tiene el mismo máximo que y x= − −( ) +5 82

. ¿Quéopinastú?Justificamatemáticamente

tu respuesta.

5 “¡Ah,québien!–exclamalaseñoritaMarcela en la sala de clases–. Este es el mejor curso que tengo en Matemática. Estoy segura de que podrán encontrar los puntos de intersección de las siguientes parábolas: y x x= − + +2 2 2, y x x= − +3 12 , indicando en qué cuadrantes están”.

VIII. Desarrolla los siguientes ejercicios y marca la alternativa correcta. Revisa tus respuestas al final del libro y calcula tu porcentaje de logro.

1 ¿Cuáldelossiguientesgráficosrepresentamejor a la función f x x( ) = −2 1 ?

y

x

y

x

y

x

y

x

y

x

a.

b.

c.

d.

e.

DEMRE

y

x

y

x

y

x

y

x

y

x

a.

b.

c.

d.

e.

DEMRE

2 La trayectoria de un proyectil está dada por la ecuación y t t t( ) = −100 5 2, donde t se mide en segundos y la altura y t( ) se mide enmetros.Entonces,¿encuál(es)delossiguientes valores de t estará el proyectil a 420 mdealturasobreelniveldelsuelo?I. 6s II. 10s III. 14sa. Solo en Ib. Solo en IIc. Solo en III

d. Solo en I y en IIe. Solo en I y en III

DEMRE

3 ¿Cuáldelossiguientesgráficosrepresentamejor a la función real f x x( ) = − +( ) +1 12

?

DEMRE

a.

b.

c.

d.

e.

y

y

y

y

y

1

1

1

1

1

1

–1 x

x

x

x

x

–1

U2 MAT 3M (074-145).indd 135 2/11/11 15:30:43

Page 136: 003000.000 grou

136

4 Considera la parábola y x= −( )12

1 2.

¿Cuál(es)delassiguientesafirmacioneses(son)verdadera(s)?

I. La parábola se abre hacia arriba.II. Su vértice se encuentra en 1 0,( ).III. Su eje de simetría es 1x = .

a. Solo Ib. Solo I y IIc. Solo I y IIId. Solo II y IIIe. I, II y III DEMRE

5 ¿Cuáleselmenor valor para la expresión

2 2x

x+ cuando x satisface la igualdad

xx

+ =15 16?

a. 4b. 3c. 1

d. 0e. – 1 DEMRE

6 Las raíces (o soluciones) de la ecuación x x −( ) =1 20 son:

a. 1 y 20b. 2 y 20c. 4 y 5

d. 4 y – 5e. – 4 y 5 DEMRE

7 Si la base de un triángulo mide z y su altura

mide 2z,entonces¿cuántomideelladode

un cuadrado que tiene igual área que

eltriángulo?

a. 4z

b. 22z

c. z

d. 2z

e. 2

4z

DEMRE

8 Sea la función de números reales f x x( ) = −2 3.¿Cuáleselconjuntodelosnúmeros reales t que satisfacen f t( ) =1?

a. { }2−b. { }2, 2−c. { }2d. { }4

e. Notienesoluciónen el conjunto de los números reales.

DEMRE

9 El conjunto solución (o raíces) de la ecuación 2 1 1x x+ = + es:

a. { }0b. { }1c. { }0,1

d. { }0, 1−e. Ningunode

los anteriores. DEMRE

10 Si f x x x( ) = + −2 3 4, entonces f x +( )1 es igual a:

a. x x2 3 2+ −b. x x2 5 3+ −c. x x2 5 2+ −

d. x x2 5+e. x x2 3+ DEMRE

11 Dada la parábola de ecuación y x x a= − +2 2 , ¿cuál(es)delassiguientesafirmacioneses(son)correcta(s)?

I. Si 1a > , la parábola intersecta en dos puntos al eje x.

II. Si 1a = , la parábola intersecta en un solo punto al eje x.

III. Si 1a< , la parábola no intersecta al eje x.

a. Solo Ib. Solo IIc. Solo I y IId. Solo I y IIIe. Solo II y III DEMRE

12 ¿Cuáldelassiguientesecuacionesesequivalente a la ecuación x x2 2 2 5 0− − = ?

a. x −( ) =2 32

b. x −( ) =2 52

c. x −( ) =2 72

d. x −( ) =2 2 52

e. x −( ) =2 2 12

U2 MAT 3M (074-145).indd 136 2/11/11 15:30:50

Page 137: 003000.000 grou

UN

IDA

D 2

137

13 El producto de dos números pares consecutivos positivos es 624.¿Cuáleslasumadeestos?

a. 24b. 26c. 28

d. 50e. 54

14 Las soluciones de la ecuación x x x x+( ) −( ) − −( ) +( ) =5 5 5 5 0, son

números que pertenecen al conjunto:

a. x x∈ ≤ −{ }R / 5 xx ∈≥− {} R/5

b. x x∈ − < ≤ −{ }R / 5 3 xx ∈≥− {} R/5

c. x x∈ − ≤ ≤{ }R / 6 5 xx ∈≥− {} R/5 xx ∈≥− {} R/5

d. x x∈ ≥ −{ }R / 5

e. x x∈ ≤ −{ }R / 6 xx ∈≥− {} R/5

15 Las soluciones de la ecuación 6 9 92

t −( ) = son:

a. 2 y 1b. 2 y 3c. –2 y –1

d. 0 y 2e. 0 y 1

16 Sea g x( ) →:R R+ , definida por g x x x( ) = − −2 6, entonces el conjunto de todos los valores de x para los cuales g x( ) =0 es:

a. { }3, 2−

b. { }2−

c. { }3, 2−

d. { }3

e. { }3, 2− −

17 ¿Cuál(es)delossiguientespuntospertenece(n) a la función y x x= − − +2 3 2?I. 0 2,( )II. 1 2,−( )III. −( )1 4,

a. Solo Ib. Solo IIc. Solo I y II

d. Solo II y IIIe. I, II y III

18 El gráfico que representa correctamente a las funciones f x x( ) = +4 3 y g x x( ) = +2 3 , es:

a.

b.

c.

d.

e.

y

x

y

x

y

x

y

x

y

x

19 Se puede determinar la suma de las raíces de la ecuación: 2 0x px q+ + = si:

(1) el valor de p es el triple de q.

(2) el valor de q es 2.

a. (1) por sí sola.b. (2) por sí sola.c. Ambas juntas, (1) y (2).d. Cada una por sí sola, (1) o (2).e. Se requiere información adicional.

U2 MAT 3M (074-145).indd 137 2/11/11 15:30:56

Page 138: 003000.000 grou

138

20 La distancia que recorre un móvil viene

dada por la función x tt= −22

2

con x

expresado en metros y el tiempo t en

segundos. Entonces, la distancia máxima

que recorre el cuerpo es:

a. 0 mb. 1 mc. 2 m

d. 4 me. 6 m

21 La(s) solución(es) de la siguiente ecuación 3

52

35

xx

x−+

−= es(son):

a. 7b. 4c. 7 y 4

d. –7 y 4e. 7 y –4

22 Dado el polinomio p x x x( ) = − +6 5 12 , entonces el valor de p 0 5,( ) es equivalente a:

a. p −( )1

b. p 0( )

c. 13

p

d. p 1( )e. p 2( )

23 Sea g x( ) = + →R R, definida por

g x x x( ) = − −3 62 , determine el valor

de g g

g

−( )+ ⋅ ( )( )

3 2 31

:

a. – 15b. – 1,5c. 1,5

d. 10,5e. 15

24 La altura de un cono mide 12 cm. Para que su volumen sea de 3100 cmπ , su radio basal debe medir:

a. 35

cm cm

b. 5 cm

c. 53

cm cm

d. 3 cm

e. 3,5 cm

25 Una caja abierta se construye a partir de una plancha metálica rectangular, cortando cuadrados de lados x en cada una de sus esquinas y doblando los lados hacia arriba. Si la plancha es de 15 cm de ancho por 25 cm de largo, entonces el volumen de la caja es:

a. x x x15 25−( ) −( )b. x x x13 23−( ) −( )c. x x x7 5 12 5, ,−( ) −( )d. x x x15 2 25 2−( ) −( )e. x x x15 2 25−( ) −( )

26 La suma de las soluciones de la ecuación 2 5 3 02x x+ − = es:

a. –2,5b. 0,5c. 1

d. 2,5e. 3

27 Con respecto a las soluciones de una ecuación cuadrática del tipo 2ax bx= , siempre se puede afirmar que:

a. tiene 2 soluciones, donde una de ellas es el opuesto de la otra.

b. tiene 2 soluciones iguales.c. tiene 2 soluciones, donde una de ellas es

siempre 0.d. tiene solo una solución.e. nunca tiene solución en R.

28 ¿Cuál(es)delossiguientesnúmeroses(son)solucion(es) de la ecuación 2 3 5 1 5 1x x x x+( )− +( ) = + ?

I. 3II. – 4III. – 1a. Solo Ib. Solo IIc. Solo III

d. I y IIe. I y III

29 ¿CuáldelassiguientesecuacionesNOtienesoluciónenlosnúmerosreales?

a. 22 5 5 0x x− − =b. 22 7 10 0x x− − =c. 23 8 1 0x x− + =d. 23 2 1 0x x+ + =e. 24 7 3 0x x+ + =

U2 MAT 3M (074-145).indd 138 2/11/11 15:31:03

Page 139: 003000.000 grou

UN

IDA

D 2

139

30 En la figura adjunta, / /BC DE/// /BC DE .¿Cuáleselvalor del segmento BD?

9 u

2 6x +( )u

A

B

D E

Cx +( )3 u

3 16x −( )u

a. 253

b. 9

c. 343

d. 493

e. 683

31 El cociente entre el triple de un número natural disminuido en 11 y el sucesor del número es igual al doble del número disminuido en 24.¿Cuáleselnúmero?

a. 13

b. 4

c. 2

d. 12

e. 12

32 ¿Cuáleselvalordea en la ecuación

a x a x a xa+( )− +( ) = − +3 3 42

, cuando x = 5?

a. 12,5b. 2c. –2

d. –12,5e. (a) y (c)

33 Dada la función cuadrática f x x x( ) = + +4 3 12 , se puede afirmar que:

a. la parábola es cóncava hacia abajo.

b. la parábola corta al eje y en el punto 0 1,−( ).

c. el vértice de la parábola es el punto − −( )4 3, .

d. el eje se simetría de la parábola es la

recta de ecuación 38

x = .

e. la parábola no corta al eje x.

34 ¿Encuál(es)delossiguientespuntosseintersectan las parábolas asociadas a las funciones f x x x( ) = + +2 5 7 y g x x x( ) = − + +2 3 82

I. 1 79,3 9

II. −( )1 3,

III. 1 79,3 9

− a. Solo Ib. Solo IIIc. Solo I y II

d. Solo II y IIIe. Solo I y III

35 La función cuadrática que representa la parábola del gráfico adjunto es:

y

x2

–4

4

–210 2–1–3 –2–4–5

a. f x x x( ) = + +2 5 4

b. f x x x( ) = − − −2 5 4c. f x x x( ) = + −2 5 4

d. f x x x( ) = − + −2 5 4

e. f x x x( ) = − + +2 5 4

36 ¿Cuál(es)delossiguientespuntospertenece(n) a la parábola de función

f x x x( ) = − +14

3 62 ?

I. ( )4, 2−

II. ( )2,13−

III. 371,4

− a. Solo IIb. Solo I y IIc. Solo I y III

d. Solo II y IIIe. I, II y III

U2 MAT 3M (074-145).indd 139 2/11/11 15:31:10

Page 140: 003000.000 grou

140

37 ¿Cuál(es)delassiguientesfuncionescuadráticastiene(n)elmismomínimo?

I. f x x x( ) = + +2 2 1

II. f x x x( ) = − − −2 2 1

III. f x x x( ) = + +14

12

14

2

a. I y IIb. I y IIIc. II y III

d. I, II y IIIe. Ningunadeellas

38 La parábola asociada a la función f x x x( ) = − +2 10 25 corta al eje x en el(los) punto(s):

a. −( )5 0,b. 5 0,( )c. 10 0,( )

d. −( )10 0,e. (a) y (b)

39 La imagen de – 3 bajo la función

f x x x( ) = − +25

3 42 es:

a. 435

b. 475

c. 535

d. 775

e. 835

40 La preimagen de 6 bajo la función f x x x( ) = − +3 112 es:

a. 23

b. 23

c. 3

d. (a) y (b)

e. (a) y (c)

Mis apuntes

U2 MAT 3M (074-145).indd 140 2/11/11 15:31:14

Page 141: 003000.000 grou

UN

IDA

D 2

141

Criterios para autoevaluar tu aprendizaje

Marca con una 8 según la evaluación de tu trabajo en esta unidad. Recuerda que hacer esta evaluación responsablemente te entregará información sobre tu proceso de aprendizaje.

Indicadores +++ ++– +––

Pude completar el mapa conceptual de la síntesis sin necesidad de mirar mi libro.

Hice el crucigrama de la síntesis conceptual sin dificultad.

Colaboré con mis compañeros en la realización de las actividades propuestas.

Anoté lo que más me cuesta para luego repasar y volver a revisar estos contenidos.

Soy capaz de explicar a otros los contenidos y los procedimientos para resolver los ejercicios de esta unidad.

Entiendo el tipo de problemas cotidianos que se pueden resolver con estos contenidos.

Me siento seguro de mis conocimientos sobre lo tratado en esta unidad y creo que podría resolver cualquier ejercicio que se me planteara.

Calcula el porcentaje de logro que obtuviste en el ítem VI.

Porcentaje de logro

PL = . 100Nº de respuestas correctas

2040100

Porcentaje de logro

Nota obtenida

Nivel de mi aprendizaje

Cómo mejorar

29% a 0% 1,0 a 2,5 AlertaLos contenidos no han sido comprendidos. Debes repasarlos nuevamente y rehacer los ejercicios. Fíjate muy bien en los ejercicios resueltos. Debes pedir ayuda. ¡Ánimo! con trabajo y estudio se puede.

49% a 30% 2,6 a 3,5 Muy bajoLa mayoría de los contenidos no han sido comprendidos. Debes volver a repasarlos y rehacer los ejercicios incorrectos. Pídeles ayuda a tus compañeros o compañeras. Vuelve a estudiar; seguro que lo lograrás.

59% a 50% 3,6 a 3,9 BajoUna gran parte de los contenidos no han sido comprendidos en su totalidad. Rehaz aquellos ejercicios incorrectos, pero antes, vuelve a estudiar los contenidos. Trata nuevamente.

69% a 60% 4,0 a 4,7 Medio bajoAdquiriste una parte de los contenidos, pero aún faltan. Debes corregir aquellos ejercicios incorrectos y revisar los contenidos de los temas en que fallaste. Bien, has avanzado, aunque aún queda camino por andar.

79% a 70% 4,8 a 5,4 MedioHas logrado entender una buena parte de los contenidos; sin embargo, aún faltan otros y afianzar los primeros. Corrige las respuestas erróneas; puedes pedir ayuda si lo deseas. Revisa los contenidos. ¡Puedes hacerlo mucho mejor!

89% a 80% 5,5 a 6,2 Medio altoHas logrado adquirir gran parte de los contenidos. Revisa los ejercicios en los que fallaste y repasa aquellos contenidos. ¡Lo has hecho bien!

100% a 90% 6,3 a 7,0 AltoHas logrado aprender todos o casi todos los contenidos tratados. ¡Muy bien! has logrado los objetivos propuestos. Sigue así.

U2 MAT 3M (074-145).indd 141 2/11/11 15:31:15

Page 142: 003000.000 grou

142

I. Revisión conceptual: Responde las siguientes preguntas:

1 “¡Quéirónicaeslavida!Tantoqueestudié,pero mis nervios... ¡Y qué vergüenza pública!Laúnicanotarojaquehuboenelcurso, en la penúltima prueba de Matemática,¡fuelamía!Semeolvidócómomultiplicar raíces de igual índice. Ojalá que a ti no te pase”. Escribe la regla correcta que has aprendido.

2 El profesor de Martina le propuso el siguiente desafío: calcular el valor de x en

729 3x = . Martina lo pensó por algunos minutos y recordó que usando sus conocimientos de las raíces, y sus propiedades, y utilizando la raíz cuadrada de 2 y/o 3, podría resolver el desafío. Hizo algunoscálculosydiosurespuesta.¿CuálfuelarespuestadeMartinaycómolohizo?

3 Rupertorepiteunayotravez:“¿Seráverdadque si una parábola es cóncava hacia arriba y además su vértice está en el segundo cuadrante, entonces el valor del discriminante de su ecuación es menor que 0?” ¿Quéopinastú?

4 A Malaquías le preguntan si es verdadero que en una función cuadrática de la forma f x ax c( ) = +2 , con a y c menores que cero, se tendrá que su máximo es c. Él dice que sí, pero nosabejustificar.¿Cuáleslaexplicación?

5 Considera 2 0ax bx c+ + = , a distinto de cero, una ecuación de segundo grado, con soluciones:

2 24 4;2 2

b b ac b b acx x

a a− + − − − −= =

a. ¿Quéobtienesalsumarlas?b. ¿Quéobtienesalmultiplicarlas?

II. Resuelve los siguientes ejercicios. Verifica tus respuestas:

1 Aplicando las propiedades de las raíces, calcula lo pedido y expresa tu resultado en su mínima expresión:

a. 320 2 245 5 720+ −

b. x x+ + −( )5 52

c. 48 9 27 2 75 33 5 7x x x x+ −( ) :

d. 3 52 15+

2 Resuelvelassiguientesecuaciones.Noolvides comprobar tus soluciones:

a. 4 1 5x x+ + =

b. 3 15 9

57

x

x

++

=

3 Resuelve las siguientes ecuaciones:

a. 2 3 1 3 2 9x x x x−( )− = +( )

b. 2 3 9 15 4

x x+ +− =

c. xx

xx

++

+ = −−

33 5

78

2 81

d. 5 7x x+ = +

e. 5 6 4 2x x− = + −

4 Resuelve los siguientes ejercicios; coloca todo el desarrollo en tu cuaderno:

a. Encuentra el valor mínimo de todos los productos posibles entre dos números si ellos se diferencian en 20 unidades.

Evaluación de síntesis 1 (Unidades 1 y 2)

U2 MAT 3M (074-145).indd 142 2/11/11 15:31:19

Page 143: 003000.000 grou

EV

AL

UA

CIÓ

N

DE

SÍN

TE

SIS

143

b. Escribe dos puntos del plano cartesiano que pertenezcan a la parábola de ecuación y x x= − + −2 8 152 y que sean simétricos con respecto a la recta de ecuación x = 2.

c. Determina el máximo de la función y la

preimagen de 0 bajo y x x= − + −12

4 52 .

d. Determina los puntos de intersección de la curva de ecuación y x x= + −5 2 72 con la recta de ecuación y = 9.

III. Resuelve los siguientes problemas y coloca todo el desarrollo en tu cuaderno. Recuerda revisar tus respuestas en el libro.

1 En el cuaderno de Matemática de Juan hay dibujado un triángulo rectángulo en que los catetos están marcados con x + 2 y 2x – 2. Más abajo dice “la hipotenusa es 15; ¿cuántomidenloscatetos?”

Al parecer Juan dejó su cuaderno en la mesa, porque no pudo hacer este ejercicio. ¿Puedestúdarlarespuesta?

2 Melisa resolvió la ecuación

1 1 2x x x x⋅ + = − ⋅ − , planteada por su profesora, y dijo que la solución es 1. Sin embargo, Mauricio discrepa de ella y le insiste en que su respuesta es incorrecta. ¿Puedesdecircuáldeellosestáenlocierto?

3 Una empresa modela el precio de venta de

sus desodorantes en función del costo de

producción bajo la función

P c c c( ) = + +5 3 10002 , con P y c en pesos.

¿Cuáleslagananciaporartículosielcosto

de producción es $530?(Aproximalosresultados al entero según el contexto

del problema).

4 Los juegos de computador están en oferta en la tienda “Bac@n” y esta semana se puede comprar un cierto número de juegos, todos al mismo precio por $30000. Como tú no puedes ir hoy, tu mejor amigo va a la tienda. Al llegar allá, el vendedor le hace una nueva oferta con la que podría comprar tres juegos

más, ya que le hará una rebaja de $500 por cada juego. Muy contento después de esta compra, te llama por teléfono y te dice que te regalará el juego que más te guste de los quecomprósiledices¿cuántosjuegoscompróycuántolecostócadauno?

5 Uno de los focos que están en el frontis del colegio al que asiste Antonio está quemado. Ese día por la mañana ve a don Ernesto, el auxiliar, quien lleva la escalera para hacer el cambio. Antonio le ofrece ayuda, pero él gentilmente le indica que no es necesario, pues la apoyará en el pie de la palmera que está en el antejardín. Con gran habilidad, don Ernesto extiende la escalera y sube con seguridad a la tarea requerida, mientras deja en el suelo el siguiente bosquejo:

10 md +4

d

Identifica qué son d y d + 4. Acto seguido, encuentra los respectivos valores.

6 Nairaacudealtrabajodesumamá,queesestilista, y le comenta que debe subir el precio de corte de cabello con tratamiento, pues en los otros salones contiguos lo tienen mucho más alto. Su madre le indica que con el precio actual tiene clientes fijos por semana y esto significa $200000 en total. “¡Peromamá!,sisubesporlomenosunpocomás, el gasto del arriendo del local te será más fácil”. Su madre le indica que subiendo en $1000 pesos, este aumento le hará perder 4 clientes fijos. Y agrega: “Tú sabes lo difícilesquesonestascuatroclientas”.Nairainterrumpe: “Está bien, mamá, pero por lo

U2 MAT 3M (074-145).indd 143 2/11/11 15:31:21

Page 144: 003000.000 grou

144

menos sube el precio en $1000 para que, semanalmente, dispongamos de $30000 más”. Finalmente, subió el precio de corte con lassugerenciasdesuhija.¿Cuáleselprecioactualdecortedecabellocontratamiento?

7 Agustina y Estela trabajan en una editorial y están haciendo un estudio de ventas debido a la publicación de un libro en el exterior. Los datos que se manejan en el departamento de finanzas son los siguientes: cada libro se venderá a U$50 y los costos totales (en dólares) por la producción de x libros están dados por la función C x x x( ) = − +2 100 25. Ellas necesitan establecer el número de libros que deben venderse para lograr la máxima utilidad y el monto de ésta.

a. ¿Quépreciosedeberíafijaracadalibroparaqueelingresoseamáximo?

b. ¿Cuálesesteingresomáximo?

8 Durante la hora de recreo, Tobías va en búsquedadeNicasio,suhermanomayor,para saber cómo le había ido en la prueba de Física. Lo buscó pero no lo halló. Decidió ir a su sala, pero solo encontró lo siguiente escritoenlapizarra:“ControldeFísicaNº3: En el patio, tú lanzas una pelota hacia arriba, con velocidad de salida de 10 m/s, que alcanza una altura de 5 m. Calcula el tiempo de ida y vuelta a tus manos”. Considera g =10 m s2. En eso estaba, cuando llegó la profesora, quien le explicó que la fórmula que relacionaba la altura con el tiempo y la velocidad era la siguiente:

h v ta t

alcanzada salida de idagravedad de ida= ⋅ −

⋅( )2

2

¿Puedescontestartúlapreguntadelcontrol?¿Esimagenopreimagenloquecalculas?

IV. Marca la alternativa correcta:

1 Al desarrollar

21 11 1

a aa a

− ++ + − , se obtiene:

a. 41

2

2

aa −

b. 4 1

1

2

2

aa

−−

c. 4 4 11

2

2

a aa+ −−

d. 4 4 4

1

2

2

a aa+ +−

e. 5

2 Al resolver la ecuación x x+ + = +3 4 5 19, se obtiene como solución:

a. –2b. 6c. –2 y 6

d. 4e. 6 y 4

3 El punto del plano donde la función f x x( ) = − +4 5 2 alcanza su mínimo es:

a. 5 ,24

b. 5 , 24

c. 5 , 24

− −

d. 52,4

e. 52,4

4 El punto de intersección de las funciones f x x( ) = + −3 5 y g x x( ) = −6 9 es:

a. 1 3,−( )

b. 1336

416

, −

c. − −( )1 3,

d. (a) y (b)

e. ∅

5 El producto de las soluciones de la ecuación 2 61

2 30x x

x x+ + =

+ es:

a. 120b. 20c. 2

d. –2e. –120

U2 MAT 3M (074-145).indd 144 2/11/11 15:31:26

Page 145: 003000.000 grou

EV

AL

UA

CIÓ

N

DE

SÍN

TE

SIS

145

6 ¿Cuálesdelassiguientesecuacionestienenelmismoconjuntosolución?

I. 2 7 12 0x x− + =

II. 1 10 4

2 2x

x+ + =

+

III. x x x−( ) −( ) = −( )1 2 2 2 5

a. Solo I y IIb. Solo I y IIIc. Solo II y III

d. I, II y IIIe. Ningunadeellas

7 El área de un terreno rectangular mide 180 m2. Si el largo mide el doble del ancho disminuido en 9 m,¿cuántosmetrosdealambresenecesitanparacercarlo?

a. 12 mb. 15 mc. 27 m

d. 54 me. 81 m

8 El vértice de la parábola asociada a la

función f x x x( ) = − −12

34

18

2 es el punto:

a. 3 5,4 32

− −

b. 3 5,4 32

c. 3 13,4 32

− −

d. 3 13,4 32

e. 3 13,4 32

9 Con respecto a la función f x x x( ) = − − +3 13 102 , se puede afirmar que:

I. su gráfico posee concavidad hacia abajo.II. su gráfico corta al eje x en los puntos

2 ,03

y −( )5 0, .

III. El eje de simetría de su gráfico es la recta 136

y = −

a. Solo Ib. Solo IIc. Solo I y II

d. Solo II y IIIe. I, II y III

10 La producción de una empresa de cristalería está dada en función de los años de existencia de la empresa por la siguiente función cuadrática P a a a( ) = − +3 482 , donde a está en unidades y P en docenas de productos. ¿Cuántosartículossehanproducidoalos12 añosdecomenzadalaempresa?

a. 2448b. 1728c. 504d. 204e. 144

Mis apuntes

U2 MAT 3M (074-145).indd 145 2/11/11 15:31:29

Page 146: 003000.000 grou

U N I D A D 3

Desigualdades e inecuaciones

DeSiGUaLDaDeS e iNecUaciONeS

Problemas de aplicación a la vida diaria

concepto de desigualdad

Propiedades intervalos Resolución de inecuaciones

concepto de inecuación

Resolución de sistemas de

inecuaciones

Sistemas de inecuaciones

146

U3 MAT 3M (146-215).indd 146 2/11/11 15:32:31

Page 147: 003000.000 grou

O B J E T I V O S F U N D A M E N T A L E SY T R A N S V E R S A L E S

En esta unidad:

Conocerás y utilizarás conceptos matemáticos asociados al estudio de los sistemas de inecuaciones, mejorando en rigor y precisión la capacidad de análisis, de formulación, verificación o refutación de conjeturas.

Aplicarás y ajustarás modelos matemáticos para la resolución de problemas y el análisis de situaciones concretas.

Resolverás desafíos con grado de dificultad creciente, valorando tus propias capacidades.

Percibirás la matemática como una disciplina que recoge y busca respuestas a desafíos propios o que provienen de otros ámbitos.

Razonarás lógica y deductivamente para ir en búsqueda de nuevos métodos de solución a los problemas que se plantean.

147

U3 MAT 3M (146-215).indd 147 2/11/11 15:32:32

Page 148: 003000.000 grou

A P R E N D I Z A J E S E S P E R A D O S

C O N T E N I D O S

En esta unidad se espera que:

1 Distingas entre inecuaciones y desigualdades.

2 Conozcas y apliques procedimientos para resolver inecuaciones lineales y sistemas de inecuaciones lineales con una incógnita.

3 Plantees y resuelvas problemas que involucren inecuaciones y sistemas de inecuaciones lineales con una incógnita.

4 Analices la existencia y pertinencia de las soluciones encontradas.

5 Utilices la notación matemática apropiada en desigualdades e inecuaciones.

6 Distingas ecuaciones e inecuaciones en términos del tipo de fenómeno que cada una puede modelar.

Concepto de desigualdad.

Propiedades de las desigualdades.

Intervalos.

Aplicación de las desigualdades a la interpretación de información.

Inecuaciones lineales con coeficientes enteros y fraccionarios.

Inecuaciones lineales con valor absoluto.

Inecuaciones cuadráticas y fraccionarias.

Sistemas de inecuaciones lineales sencillas con una incógnita.

Planteo y resolución de sistemas de inecuaciones con una incógnita; análisis de la existencia y pertinencia de las soluciones.

Relación entre las ecuaciones y las inecuaciones lineales.

148

U3 MAT 3M (146-215).indd 148 2/11/11 15:32:33

Page 149: 003000.000 grou

UN

IDA

D 3

149

Igualdad-desigualdad son patrimonio de todo ser humano, expresadas tanto en su intimidad como en su relación con los otros y el medio ambiente en general. Seguramente estarás siempre escuchando, leyendo o reflexionando que debiera haber igualdad de género, de acceso a la salud, a la educación, a un trabajo digno, a una vejez digna. Todas estas y, sin duda, otras tantas preocupaciones forman parte de un país que quiera el pleno desarrollo de sus habitantes y de manera armónica.

Por otro lado, la delincuencia, la drogadicción, la violencia y el narcotráfico se encuentran muy asociados a la desigualdad de oportunidades, y los conocemos como los males sociales actuales que golpean directamente a nuestra comunidad, sociedad, nación. De manera incuestionable, la igualdad de género ha sido una de las preocupaciones que se han evidenciado más fuertemente en el presente siglo. Cabe recordar la participación de mujeres notables en los siglos XIX y XX, como Javiera Carrera, quien se desenvolvió en forma anónima dentro de la esfera del poder durante los inicios independentistas de Chile; Eloísa Díaz y Ernestina Pérez, quienes se recibieron de médico en 1887; Gabriela Mistral, Premio Nobel de Literatura, y, por supuesto, Michelle Bachelet Jeria, la primera mujer que asume como Presidenta de Chile.

Pero hay mucho más que hacer en estos y otros niveles para lograr vivir en una nación cada vez más libre, auténtica, democrática, comprometida y abierta a todos los cambios que se requieran para alcanzar la plenitud de todos. Nuestra contribución es desde la matemática.

El estudio y las aplicaciones de las desigualdades matemáticas en varios aspectos de la vida cotidiana y del saber en general pueden ser un buen inicio para colaborar de manera constructiva a disminuir las desigualdades sociales que hemos mencionado anteriormente.

Para Miguel de Guzmán, matemático español (1936-2004), el impacto de la matemática en nuestro entorno cultural es evidente. Nuestros sistemas de organización manifiestan esquemas matemáticos que les sirven de soporte. Nuestra arquitectura revela estructuras matemáticas subyacentes. Nuestros medios de información y de comunicación son cada vez más potentes gracias a los avances recientes de la informática, que aúna de forma espectacular los progresos matemáticos y tecnológicos.

Te invitamos en esta unidad a trabajar con la Matemática, observar, descubrir y aprender sobre desigualdades, inecuaciones matemáticas y sistemas de inecuaciones.

Fuente: http://www.fundacionempresaspolar.org/matematica2/fasciculo13.pdf

miguel de Guzmán fue presidente del comité mundial para la enseñanza de la matemática y uno de los matemáticos más relevantes de habla hispana.

La igualdad de género y el avance de las mujeres son dimensiones intrínsecas del desarrollo humano equitativo y sustentable (PNUD)

U3 MAT 3M (146-215).indd 149 2/11/11 15:32:34

Page 150: 003000.000 grou

150

Conocimientos previosEn matemática es siempre necesario definir los conceptos con los que se trabajará. Sin embargo, hay algunos que no pueden ser definidos matemáticamente y que, aún así, se aceptan y se entienden de manera intuitiva. Algunos de ellos son: el de punto, recta, plano, espacio y, por supuesto, el de conjunto.

Entenderemos la idea de conjunto como una colección de elementos

1. Representaciones:

Por extensión Por comprensión En diagrama (de Venn)Se nombran sus elementos uno a uno, separados por una coma. ellos se encierran entre llaves. Por ejemplo:{ }, , , ,A a e i o u= ,{ }2,4,6B =

Se indica el conjunto de referencia al que pertenecen los elementos y la condición que ellos cumplen. también se escribe entre llaves.A x x= ∈{ }abecedario es vocal/ ,

B X x= ∈{ } / es par y menor que 8

Se llaman diagramas de Venn.

Aa

ei

ou

24

6

B

2. Pertenencia ( ):Diremos que un elemento pertenece ∈( ) a un conjunto si está en él. En los ejemplos anteriores, podemos escribir que: a A∈ , 2 B∈ , m A∉ , 5 B∉ .

3. Subconjunto ( ):Diremos que un conjunto es subconjunto de otro si todos los elementos del primer conjunto son elementos también del segundo conjunto. Con los conjuntos A y B de los ejemplos anteriores: { }, ,a i u A⊂ , { }2 B⊂ , { }, ,a b c A⊄ , { }1,3,5 B⊄ .

4. Conjunto universo ( ) y conjunto vacío ( o { }):Se llama conjunto vacío al conjunto que no tiene elementos. Se llama conjunto universo al conjunto referencia de otros conjuntos. En los ejemplos anteriores, un conjunto universo para A sería el abecedario y el conjunto universo para B, los números naturales (N).

5. Unión ( ), intersección ( ) y diferencia ( – ):Son operaciones entre conjuntos. Recordemos cada una:a. Unión: Se llama conjunto unión de A y B A B∪( ) al conjunto

formado por los elementos de A o de B (es análogo a la suma). Los elementos repetidos se anotan solo una vez.

b. Intersección: Se llama intersección de A y B A B∩( ) al conjunto formado por los elementos que están en A y en B (elementos que se repiten).

c. Diferencia de conjuntos: Se llama diferencia de A y B A B−( ) al conjunto que tiene por elementos todos los elementos del conjunto A que no están en B.

U3 MAT 3M (146-215).indd 150 2/11/11 15:32:36

Page 151: 003000.000 grou

Trabaja

Ejemplo:

1 Si { }2,4,6,8,10F = y { }6,8,10,12,14G = , entonces,

a. { }2,4,6,8,10,12,14F G∪ = b. { }6,8,10F G∩ =

F

2 68

104

12

14

G

2

4

68

10

12

14

F G

2 Si { }, , , ,A a e i o u= y { }, ,B b e o= , entonces { }, ,A B a i u− = .

Cuando la diferencia de dos conjuntos es con respecto al conjunto universo, es decir, U – A, se le llama complemento de A y se anota AC (son todos los elementos del universo que no están en A).

EvaluaciónResponde las siguientes preguntas:

•¿Entendílosconceptosplanteadosylosejerciciosresueltos?•¿Soycapazdedefinirlosconceptosdeconjunto,subconjunto,pertenencia?•¿Soycapazdedefinirlosconceptosdeunión,intersección,diferenciaycomplemento deconjuntos?•¿Pudehacerlaactividadplanteada?•¿Trabajébienenmigrupo,demaneraquenuestrotrabajofueraproductivoyquetodospudiéramosaprender?

Recuerda que si no has logrado entender algún concepto o ejercicio, debes preguntar a tu profesor o profesora.

Resuelve los siguientes ejercicios. Escribe todo el desarrollo en tu cuaderno. No olvides revisar tus respuestas en el solucionario.

1 Dados los conjuntos { }1,2,3,4,5A = , { }/2 9B x x= ∈ < < N { }/2 9B x x= ∈ < < y { }2,4,6,8,10C = , determina:

a. A B− b. A B∪ c. B C∩ d. B C A−( )∪ e. A B C∪ ∪ f. A B C∩ ∩

2 Dados los siguientes conjuntos, determina los conjuntos pedidos y escríbelos por extensión y comprensión:

a. A B∩

b. C A B− ∪( )c. B A−

d. A B C∩ ∩e. A B A C∩( )∪ ∩( )f. C A B− ∩( )

134

35

27

9

7

A B

C

A B

a

i

u

e

o

b

UN

IDA

D 3

151

U3 MAT 3M (146-215).indd 151 2/11/11 15:32:37

Page 152: 003000.000 grou

152

Desigualdades, ¿parecidas a la igualdad?

Qué son las desigualdades, en qué se diferencian de las igualdades. Aprenderás también cuáles son sus propiedades y para qué se usan.Desarrollarás las siguientes habilidades:• Identificar•calcular•comprender•Resolver•Relacionar•aplicar• interpretar y generar ideasHabilidades por actividad:• Identificarycalcular:1, 5, 12, 13, 14, 22,

23, 24a, 24d, 24c•comprender y resolver: 2d, 4, 7, 15, 16•Relacionar y aplicar: 2, 6,• interpretar y generar ideas: 24d

Trabaja más...

Habilidades por actividad:• Identificarycalcular:1, 2, 3•comprender y resolver: 4, 5, 6, 11, 12, 15, •Relacionar y aplicar: 7, 8, 9, 10, 13, 14

En esta sección aprenderás

¿Qué es una desigualdad matemática?

Margarita está creciendo muy rápido y hoy ha recibido la primera mesada que tanto quería tener. Sus padres han calculado el dinero que gasta en locomoción más el que sería prudente que gastara al mes en otros asuntos, y le han dado $12000. Ella, cuando recibió el dinero, sacó sus propias cuentas y dijo así: “En locomoción gasto $260 todos los días que voy al colegio y $100 todos los días en colación. Esto da un total de $7200 al mes, si considero que voy 20 días al colegio. Entonces, a lo más, podré gastar $4800 en otras cosas”. Su papá, atento a los cálculos de su hija, le preguntó: –¿Puedesescribirloscálculosqueacabasdehacer?

Margarita escribió: Locomoción: 130 + 130 (ida y vuelta por día). Colación: 100 por día.

130 + 130 + 100 = 360 por día. Como son 20 días, entonces, 360 20 7 200⋅ = y como me dieron 12000, entonces, 12000 – 7200 = 4800 para mí.

–Muy bien –dijo el papá–, has hecho muchas igualdades que son ciertas, pero acabas de decir que “A lo más, podrás gastar $4800”. ¿Sepodráescribiresoconsímbolosmatemáticos?

Después de pensar, Margarita en un abrir y cerrar de ojos, le dijo a su papá:

–Lo escribiré así:

Mis gastos $4.800< $4800 o Mis gastos $4800.

–Muy bien, hija, –dijo su papá, y acotó–: lo que acabas de plantear es una desigualdad y ambas cosas se pueden resumir de la siguiente manera: Mis gastos $4 800≤$4800.

Al igual que Margarita, en esta unidad nosotros aprenderemos más acerca de las desigualdades y su aplicación. Comencemos.

Un concepto que ya manejas bien es el de igualdad. Cuando tienes en una mano 5 monedas de $100 y en la otra una moneda de $500, dices que la cantidad de dinero que tienes en ambas manos es igual (o es la misma) y lo anotas con el signo =.

Una desigualdad es la manera matemática que tenemos para decir que algo no es igual.

Así, cuando dos cantidades no son iguales, es porque una es mayor que la otra, necesariamente.

U3 MAT 3M (146-215).indd 152 2/11/11 15:32:37

Page 153: 003000.000 grou

UN

IDA

D 3

153

Pensemos en los números 3 y 7; entonces se puede anotar que:

3 7< o 7 3> o 7 3≠ .

Ahora bien, hay ocasiones en que, como Margarita, necesitamos escribir, por ejemplo, que una cantidad x es más grande o igual que 9, entonces utilizamos 9x ≥ .

Y, por el contrario, si queremos escribir que la cantidad x es más pequeña o igual que 9, escribimos, 9x ≤ .

Con las desigualdades podemos expresar algunas de las situaciones reales que constatamos a diario. De esta manera, por ejemplo, podemos traducir los siguientes enunciados:

1. Los mm de lluvia caída hasta el momento están por debajo de los de un año normal. Si llamamos cL a los mm de lluvia caída hasta el momento y nL a los mm de lluvia en un año normal c nL L⇒ < .

2. Pilar cree que su puntaje de la PSU estará entre 600 y 650 puntos. Si llamamos p al puntaje 600 650p⇒ < < .

3. Clemente dice que el mp3 que quiere debería costar a lo más $25000. Si p es el precio del mp3 25.000p⇒ ≤25000.

4. Augusta tiene como mínimo 3 días más de trabajo para terminar su tesis. Si d son los días de trabajo 3d⇒ ≥ .

5. Consuelo dice que su sueldo es distinto de $300000. Si s es el sueldo 300.000s⇒ > 300000 o 300.000s <300000.

Estrictamente, en matemática

entenderemos que a b< , si y solo

si 0b a− >Si decimos que a es distinto de

b, a b≠ , entonces

entenderemos que a > b o a < b

Toma nota

Resuelve los problemas de esta

página. Te desafiamos.

http://www.iesdionisioaguado.

org/mates/index.php?option

=com_content&task=blogcate

gory&id=27&Itemid=48

Para entretenerse

Existe una ley que te parecerá

muy obvia, pero que no debes

olvidar; se llama ley de

tricotomía y dice que:

Para cada par de números reales,

a y b es verdadera una, y

solamente una, de las siguientes

proposiciones:

o o< = >a b a b a b o o o< = >a b a b a b o o o< = >a b a b a b

Recordar y archivar

Por lo tanto, una desigualdad es una expresión matemática que indica que dos cantidades no son iguales. Los símbolos utilizados son:

≠ : distinto

> : mayor

< : menor

También se ocupan (y permiten la igualdad) los símbolos:

≥ : mayor o igual

≤ : menor o igual

U3 MAT 3M (146-215).indd 153 2/11/11 15:32:38

Page 154: 003000.000 grou

154

¿Tendrán propiedades las desigualdades?

Por supuesto que sí; veamos algunas de ellas:

1. En un cumpleaños, Marcial y Pascuala han recogido dulces cuando se rompió la piñata. Marcial recogió 12 y Pascuala, 10. Si luego abrieron sus sorpresas y cada una traía 3dulces,¿seguiráteniendomásdulcesMarcialquePascuala?

10 12 / 310 3 12 313 15

< ++ < +<

Sí,¿verdad?Estoesloquenosdicelaprimerapropiedad,queenlenguaje algebraico se escribe:

Si a, b y c son números reales con a < b, entonces a + c < b + c.

¿Funcionaráestotambiénsicesnegativo?Veamos:

(Y la desigualdad se mantiene)

3 12< / 5−3 5 12 5− < −

2 7− <

Por lo tanto, podemos resumir que:

2. Loreto y Lucía están concursando en un programa de televisión. Harán girar una ruleta y sabrán qué pasará con el dinero que cada una ha ganado hasta el momento. Loreto ha ganado $100000 y Lucía $250000. Cuando la ruleta se detuvo marcaba “ambastriplicansupremio”,¿seguiráteniendomásdineroLucíaqueLoreto?

¿Verdadquesí?;estoesloquenosdicelasegundapropiedad,que en lenguaje algebraico se escribe así:

Si a, b y c son números reales, con a < b y c > 0, entonces ac < bc.

¿Funcionarási 0c < ?;veamos:

100000 < 250000 / 3⋅−

–300000 ? – 750000 (Observa, ¿qué sucedió?)

Para que la desigualdad que planteamos sea correcta, debemos escribir que:

–300000 > – 750000; por lo tanto, la desigualdad ya no se mantiene, sino que cambia de sentido. Por lo tanto:

Si a, b y c son números reales, con a < b y c < 0, entonces ac > bc.

Al sumar o restar un número real a ambos lados de una desigualdad, esta se mantiene, es decir, no cambia el sentido de ella.

U3 MAT 3M (146-215).indd 154 2/11/11 15:32:38

Page 155: 003000.000 grou

UN

IDA

D 3

155

3. Razonaba Hugo de la siguiente forma: “Tengo dos cuadrados de lados 6 cm y 9 cm, respectivamente; por lo tanto, el área del cuadrado de lado menor será más pequeña que el área del otro cuadrado. Por otra parte, si tengo dos cuadrados de áreas distintas, entonces la medida del lado del cuadrado de área mayor será más grande que la medida del lado del otro cuadrado”.

¿Estásdeacuerdo?

Parece lógico.

Podemos escribir que si 2 26 9 6 9< ⇒ < 36 81< , se cumple.

Y que si 81 36 81 36> ⇒ > 9 6> , se cumple.

¿Pasaráestosiempreparacualquierpardenúmerosa y b?Observemos el siguiente cuadro comparativo, atendiendo al sentido de la desigualdad:

a b a y b Cuadrados a2 y b2

Cubos a3 y b3

Raíces cuadradas

a y b

Raíces cúbicas 3 a y 3 b

–1 27 –1 < 27 1 < 729 –1 < 19683 –11− no es real

–1 < 3

8 –15 8 > –15 64 < 225 512 > –3375 –151− 1− no es real

2 > –1532 15> −

–2 –3 –2 > –3 4 < 9 –8 > –27 –21− y –31− no son reales

–3–2 > 32 15> −32 15> −

Hugo se dijo: “Al parecer, estas relaciones no se cumplen siempre, solo con reales positivos”. Por lo tanto, solo podemos generalizar que:

6 cm 9 cm

Al multiplicar una desigualdad por un número real positivo, la desigualdad se mantiene. Si se multiplica por un número real negativo, la desigualdad cambia de sentido.

Nota que lo mismo se cumple para la división. Recuerda que dividir es multiplicar por el inverso multiplicativo del divisor.

Si a, b son números reales positivos y a < b, entonces an < bn y n na b< , con n∈N, 2n≥ . En otras palabras, al elevar a un número positivo o extraer raíz (de cualquier índice) a una desigualdad formada por términos positivos, la desigualdad se mantiene.

U3 MAT 3M (146-215).indd 155 2/11/11 15:32:38

Page 156: 003000.000 grou

156

4. No todos los alumnos del curso llevaron el aserrín y la tierra de hoja pedidas para la clase de Tecnología. Jacinta y Boris miraron sus materiales y notaron que Jacinta tiene menos aserrín que tierradehojayBoris,también.Sijuntansusmateriales,¿seguiráhabiendomástierradehojaqueaserrín?Estambiénmuylógico.Supongamos que Jacinta tiene 1 kilo de aserrín y 2 kilos de tierra de hoja y que Boris tiene 1,5 kilos de aserrín y 1,7 kilos de tierra de hoja, entonces:

(Se suman los términos de la desigualdad, juntando

ambas cantidades de aserrín y ambas de tierra de hoja)

1 2< y 1,5 1,7< ,

2,5 < 3,7, se mantiene la desigualdad.

Concluyendo, se tiene que:

5. Emilio y Hugo, compañeros de curso, discutían sobre el siguiente tema.

–Mira, Hugo –decía Emilio– si tienes que a < b y b < c, entonces a < c, siempre.–No entiendo, no entiendo, no logro entender.–Mmmm... piénsalo de la siguiente manera: Si tú tienes 20 pesos menos que yo, y yo tengo 30 pesos menos que mi hermano, entonces tú también tienes menos dinero que mi hermano.–Ah, verdad, es fácil; por supuesto, es muy lógico.

Si a ≠ 0, entonces a2 > 0.

Esto dice que el cuadrado de

todo número real distinto de cero

es siempre positivo.

Toma nota

La propiedad de transitividad

nos dice que, por ejemplo, si

a b< y b c a c< ⇒ < . Pero esto

también puede ser escrito

como a b c< <

Recordar y archivar

Si a, b, c y d son números reales, a < b y c < d, entonces a + c < b + d.

Al tener dos desigualdades del mismo sentido, se pueden sumar sus miembros y mantener la desigualdad.

Entonces, si a, b y c son números reales, se cumple siempre que:

Si a b≤ y b c a c≤ ⇒ ≤ Si a b≥ y b c a c≥ ⇒ ≥Esta propiedad se llama transitividad.

U3 MAT 3M (146-215).indd 156 2/11/11 15:32:39

Page 157: 003000.000 grou

UN

IDA

D 3

157

¿Para qué se usan las propiedades de las desigualdades?

Existen dos grandes aplicaciones de ellas que queremos compartir contigo. La primera y más usual en un contexto cotidiano es la aplicación a la resolución de inecuaciones, que trataremos en la próxima sección. La segunda, menos usada en contextos cotidianos, pero igualmente importante, es la aplicación a la demostración de algunas reglas matemáticas, la que veremos a continuación.

Antes de comenzar, es bueno que aclaremos dos conceptos que suelen confundirse: no es lo mismo mostrar que algo sucede, que demostrar que aquello sucede.

Cuando mostramos que algo sucede, damos un ejemplo, puede ser numérico, de que determinada regla se cumple.

Cuando demostramos que algo sucede, debemos hacerlo de forma general, de modo que usando una serie de pasos lógicamente ordenados y correctos, ya sean algebraicos o geométricos, se pueda concluir que la afirmación señalada es verdadera.

Veamosalgunosejemplosdedemostracionesymostremostambiénotras proposiciones.

1. Al hermano de Jorge, que estaba en 1º medio, le dieron una tarea de Matemática. Debía demostrar geométricamente que a b a ab b−( ) = − +2 2 22 . El profesor había hecho en clases la

demostración geométrica para el cuadrado de la suma, así que para él no fue tan difícil construir la figura adecuada con rectángulos y cuadrados de colores.

a

b

a

2b

b

b

b

a b− a b−

a b−

a b−Observa que:

b a b−( )

a b−( )2b a b a b−( ) −

a b a b a b b

a ab b b

a ab b b

a

−( ) = − ⋅ −( )( ) −= − ⋅ −( ) −= − + −= −

2 2 2

2 2 2

2 2 2

2

2

2

2 22aab b+ 2

U3 MAT 3M (146-215).indd 157 2/11/11 15:32:40

Page 158: 003000.000 grou

158

Después que su hermano había logrado demostrar lo que quería, Jorge observó un momento... ¡Claro!, pensó, y los ordenó de esta manera.

Él había mostrado, sin querer, que a b ab2 2 2+ ≥

2. Jorge estaba tan contento que le llevó su descubrimiento al profesor. Él se alegró mucho; siempre lo hacía al ver lo que sus estudiantes podían deducir y ser capaces de razonar. Entonces, le dijo: “Mira el siguiente cuadro, donde a siempre es positivo”:

a1a

+ 1a

a

0,2 5 5,20,5 2 2,50,8 1,25 2,051 1 22 0,5 2,54 0,25 4,258 0,125 8,125

Jorge pensó y pensó, miró por un buen rato tratando de encontrar una regularidad, calculó lo mismo para otros valores y luego le dijo a su profesor:

–Profesor, creo que 1 2aa

+ ≥ , pero no se me ocurre cómo lo puedo demostrar.

El profesor le dijo que un muy buen punto de partida era tener claro qué es lo que se quería demostrar, y lo invitó a aprender una estrategia para ello.

Una forma de demostrar una proposición es:1º suponer que esta es cierta; 2º trabajarla haciendo una serie de pasos lógicos permitidos (en

esto nos ayudarán las propiedades de las desigualdades); 3º concluir algo que sabemos que es cierto de antemano.

2b

2b

2 2a b+

2b

2b

2ab

b a b−( )

b a b−( )

b a b−( )

b a b−( )a b−( )2

U3 MAT 3M (146-215).indd 158 2/11/11 15:32:41

Page 159: 003000.000 grou

UN

IDA

D 3

159

De este modo, y para luego presentar la demostración formalmente ordenada, podemos escribir los pasos desde el último al primero y tendremos que a partir de algo que es cierto, obtenemos lo que se quería.Veamosestaformadedemostraciónenacción:

Ahora anotamos ordenadamente los pasos desde el último al primero:

a−( )1 02≥

a a a2 2 1 0 2− + +≥ /a a a2 1 2+ ≥ / :

aa

+ 1 2≥

/ resolviendo el cuadrado de binomio

3. A Jorge esto le pareció bien, pero pensó que sería mejor partir de algo que se sabía cierto y llegar a lo que se quería demostrar. Aunque entendía el método de su profesor y funcionaba bien después de todo,¿porquéseibaasuponerciertoalgoquenosesabía? Se lo comentó a su profesor y él lo desafió.

–Demuestra, como tú dices, lo siguiente:

Si 0a > , 0b > y 1ab = , entonces 1 1 4+( ) +( ) ≥a b

Jorge lo pensó un poco y anotó lo que sabía: a > 0, b > 0 y ab = 1, lo

que significa que 1

ba

= .

Sin saber muy bien a lo que iba a llegar, decidió escribir lo que recién habían demostrado; él conocía a su profesor y generalmente usaba lo que ya había hecho para hacer nuevas cosas.

Dijo así, 1 2aa

+ ≥ / pero 1

ba

=

(Pensó que debía llegar a 4)2a b+ ≥ / 2+

2 4a b+ + ≥Y ahí quedó pensativo; por un momento casi se dio por vencido, pero el profesor lo animó y le aconsejó separar el 2 en 1 + 1 y mirar a lo que quiere llegar:

b a a+( )+ +( ) ≥1 1 4a b+( ) +( ) ≥1 1 4

1 1 4a b+ + + ≥ / Pero ab = 1/ Factoricemos

/ Factoricemos1 4a b ab+ + + ≥

–¡Ufff! –suspiró agotado–. ¡Lo logré!–Este fue un buen desafío Jorge, –dijo el profesor.

(Como a es positivo, la desigualdad se mantiene)

(Si restamos en ambos lados, la desigualdad se mantiene)

(Se resta y se ordena)

(El lado izquierdo es un cuadrado de binomio)

(Esto es cierto siempre (recuerda que el cuadrado de todo número es siempre mayor o igual a cero)

a a

a a a

a a a a

a a

a

+ ⋅

+ −+ − − +− +

−( )

12

2

1 2 21 2 2 22 1 0

1 0

2

2

2

2 2

/

/

U3 MAT 3M (146-215).indd 159 2/11/11 15:32:45

Page 160: 003000.000 grou

160

Trabaja

Responde en el cuaderno y no olvides revisar tus respuestas.

1 Escribe en el cuaderno cada oración y luego tradúcela a lenguaje matemático usando <, ≤, > y ≥a. Menos siete es menor que siete.b. Eduvigis dice que en la prueba de Matemática le fue bien, por lo que espera tener una nota (n) de

seis hacia arriba.c. Pancracio comenta que la estatura de Jerónimo (E), a lo sumo, es un metro setenta y cinco”.d. Ludovico es más viejo que Anacleto.e. Agustina dice que no pesa 65 kg.f. En la tienda electrónica El huidizo electrón, el precio de un pendrive de 1 GB fluctúa entre los

$7500 y los $14590.g. La suma de las longitudes de dos lados de un triángulo siempre supera a la longitud del tercero.h. Para preparar un exquisito tazón de café no se alcanzan a ocupar tres cuartos litros de agua.i. El valor de la casa nunca ha sido ni a lo menos de 2000UF,perotampocoparadecir3000 UF.j. El total obtenido de sumar el cuadrado de un número con el cuadrado de otro, a lo menos supera

el doble producto de ellos.

2 Usando las propiedades de las desigualdades y las demostraciones que hemos estudiado, en su cuaderno demuestren que:

a. La suma de dos reales positivos es positiva.

b. La suma de dos reales negativos es negativa.

c. Si a es mayor o igual a 1, entonces 1 1a

≤ 1.

d. Si a y b son positivos, tal que a < b, 1 1b a< .

e. Si a b< , entonces 2

a ba b

+< < .

f. Si c es positivo, se tiene que 1 2cc

+ ≥ .

g. Para el cumpleaños de Moira, sus padres acuerdan comprar la oferta “una torta de 1 kg” en Sabores irresistibles.Moirapensó:“Esastortassoninmensas,pero¿alcanzaráconunaparatodos?”Son siete amigos, su curso de 30, más la familia. Se inquietó, porque al repartirla en trozos iguales, lasporcionesseríanpequeñas.¿Quéhacer?

Si invitaba a más personas, los trozos serían cada vez más y más pequeños. Probablemente sería imposible trozar la torta para tal cantidad de gente.

¿Cómodemostraríasque,apesardedividirlaentremuchaspersonas,siemprerecibiríanalgo?¿opiensaslocontrario?Justificaturespuestamatemáticamente.

h. Porfirio Cantaclaro, siempre porfiado y buscando explicaciones para todo, no podía quedarse haciendo la actividad de la clase, que era crear una tabla de valores para verificar que a a≤ . Molesto,exclamó:“Amímegustanlascosasporloclaro.Quieroquemeexpliquenhastacuándotengo que seguir dando valores a a para verificar que a a≤ . Lo encuentro aburrido, cansador y me hace perder mi tiempo”.

Escribe un análisis del porqué siempre a a≤ . Considera los tres casos: a < 0, 0a = y 0a > .

U3 MAT 3M (146-215).indd 160 2/11/11 15:32:45

Page 161: 003000.000 grou

UN

IDA

D 3

161

i. Sandra y tú tienen su tesis y deben demostrar ante su curso que 0 11

nn

< <+

, siendo n natural

mayor o igual a 1.

Tienen derecho a preguntar a algún compañero o compañera, pero por cada pregunta se bajará

0,5 décimas. A ustedes les bastó hacer solo una pregunta, y la respuesta fue: “Todo número natural

es menor que su sucesor”.

Con solo esta información, escribe el desarrollo de la demostración solicitada en tu tesis.

j. Malaquías se preocupó al notar que no se sabía la regla para la multiplicación de desigualdades cuando estas son del mismo sentido. Se acercó al profesor Paoa y se lo preguntó. Él le indicó que, para comenzar, trabajara con números positivos.

Por ejemplo, 3 7< y 0,5 0,75< . Entonces, lo que debes probar es que 3 0,5 7 0,5⋅ < ⋅ . Le sugirió que efectuara 3 7 / 0,5< ⋅ y por otro lado 0,5 0,75/ 7< ⋅ . Malaquías hizo las operaciones y estableció que como 3 0,5 7 0,5⋅ < ⋅ y además 0,5 7 0,75 7⋅ < ⋅ , entonces 3 0,5 0,75 7⋅ < ⋅ .

i. ¿EstásdeacuerdoconlaexpresiónqueestablecióMalaquías?ii. Basándote en lo que le sugirió el Señor Paoa, demuestra que:

si a, b, c, d son positivos, tal que a < b y c < d, entonces a c b d⋅ < ⋅

3 En la fábrica de tapas redondas A la medida, los diámetros de ellas van de, a lo menos, 20 mm hasta un poco menos de los 50 mm.¿Entrequévaloresfluctúanlasáreasdedichastapas?

4 Macarena es estudiante y en tiempo de vacaciones trabaja digitando los datos de varias empresas. Sabe que se demora aproximadamente 50 segundos, en promedio, en digitar un informe estándar. Un día restaban solo cinco minutos para terminar su tarea y ocupó 35 segundos en contestar una urgente llamada. Escribe una desigualdad que indique el número de informes que alcanza a digitar dentro del tiempo que le queda.

5 Usando las desigualdades vistas en la unidad, demuestra lo escrito en el rectángulo de la figura.

1b

b+Mi perímetro es a lo menos

8 cm y mi área es a lo menos 4 cm2

1a

a+

U3 MAT 3M (146-215).indd 161 2/11/11 15:32:46

Page 162: 003000.000 grou

162

Números reales: ¿qué número es el que está justo antes que otro?

A Tobías le encantaba poner a prueba a su hermana Martina, porque siempre resolvía todas sus preguntas. Ese día le preguntó:

“¿Quénúmeroeselqueestáubicadoantesqueel5 en la recta numérica?”

Martina pensó en lo que sabía sobre números reales. El profesor les había dicho que existen infinitos números reales entre dos de ellos y, aunque en ese momento ella no le había dado mucha importancia, ahora parecía el momento adecuado para pensarlo.

Si lo que su profesor dijo era cierto (ella no lo dudaba), entonces tenía un problema para contestar la pregunta de Tobías. Podía, por ejemplo, tomar el 4,9, pero entre este número y 5 habría infinitos números. Podía tomar el 4,9999999999, pero entre este número y el 5,tambiénhabríainfinitosnúmeros.“¡Quéproblemaestodelosnúmeros reales!, pensó”.

Fuedondesuhermanoylecomentóloquehabíapensado;entonces, para su asombro, él la felicitó y le explicó lo siguiente:

“Verás,Martina.Comoesimposibledecircuáleselnúmeroqueestáubicado justo antes que otro en la recta numérica, en Matemática se usa

6 Aldo y Yasna, amigos y compañeros de curso, están observando algunas curiosidades numéricas que se han producido al desarrollar ciertos problemas sobre volúmenes.

–Observa, Aldo, que si la arista a de un cubo es mayor que uno, la superficie de una cara, a2,numéricamente será mayor que este número, y el volumen a3, será numéricamente mayor que los dosnúmeros anteriores. –Lo que dices se escribe 2 31 a a a< < < . Pero si la arista es menor a 1, supongamos que para facilitar las

ideas, ella vale una fracción irreductible pq.¿Ocurrirálomismo?

–Intuyo que es al revés, es decir, 3 2

1p p pq q q

< < <

. Investiguemos a partir de 1pq< y veamos si

podemos demostrarlo. Ahora, demuéstralo tú.

7 –Necesitamos comprar por lo menos 12 pantallas LCD iguales, de 42 pulgadas cada una, para colocar en las salas de espera y algunos pasillos del hospital, Sr. Ramírez.–¿Yacuántoasciendeesegasto,Tomás?–preguntaesterascandosubarbilla.–$5544000 si son exactamente 12 –responde Tomás, el encargado de la compra–. Pero nos pidieroncolocar más si era posible.–Como encargado de finanzas, recuerdo que de la última compra que usted hizo sobraron $2700000. Ahora bien, puedo darle en forma extraordinaria, a lo más, $4200000, que es de lo que disponemos, por ahora, para este tipo de gastos.De acuerdo a este diálogo:

a. escribe las desigualdades que debe satisfacer la cantidad de dinero para efectuar esta compra.b. estima la cantidad máxima de pantallas LCD que se pueden comprar con el dinero reunido.

U3 MAT 3M (146-215).indd 162 2/11/11 15:32:46

Page 163: 003000.000 grou

UN

IDA

D 3

163

una notación especial que llamamos intervalos. Estos permiten anotar un conjunto de números reales, que es subconjunto de R, y especificar, exactamente, los números que están en ellos”.

Observa la siguiente recta numérica,

0 2 ∞

Este gráfico representa el conjunto de todos los números reales que son mayores que 2 o iguales que 2 (nota que sobre el 2 hay un círculo de color negro).

Lo anotaremos 2,∞ o 2,•) . Diremos que el intervalo es cerrado en 2 (2 pertenece al intervalo) y abierto en ∞ (no podemos cerrarlo en infinito porque nunca acaba).

Esto es, 2x ≥ . En notación conjuntista se escribe { }/ 2x x∈ ≥R .

Ahora mira,

0 2 ∞

Este gráfico representa el conjunto de todos los números reales que son mayores que 2 (nota que sobre el 2 aparece un círculo de color blanco). Lo anotaremos 2,∞ o 2,•( ). Diremos que el intervalo es abierto en 2 (2 no pertenece al intervalo, este comienza justo en el número que viene después de 2) y en infinito.

Esto es, x > 2. En notación conjuntista, x x∈ >{ }R / 2 .

Como los intervalos son conjuntos, entonces podemos operar con ellos. Hagamos algunos ejercicios.

1. 4,5 3,9− ∩

–4 0 3 5 9

Como se está pidiendo la intersección de ambos intervalos, entonces el intervalo solución está formado solo por los números que pertenecen a ambos intervalos a la vez (lo pintado de dos colores).

Esto es, 3,5 . En notación conjuntista, x x∈ <{ }R £/3 5 .

2. , 2 4,5−∞ − ∪ −

–4 –2 0 5

Existen cuatro tipos de intervalos.

Estos son:

,a b cerrado: ambos extremos o

números límites, a y b,

pertenecen al intervalo.

a b o a b, ,[ [ ) abierto por la derecha o a b o a b, ,[ [ ) :

el límite de la izquierda (límite

inferior) pertenece al intervalo,

pero el límite de la derecha

(límite superior) no.

a b o a b, ,] ] ]( abierto por la izquierda o a b o a b, ,] ] ]( :

el límite de la izquierda (límite

inferior) no pertenece al

intervalo, pero el límite de la

derecha (límite superior) sí.

a b o a b, ,] [ ( ) abierto o a b o a b, ,] [ ( ): ninguno de

sus límites, ni a ni b, pertenecen

al intervalo.

Recordar y archivar

U3 MAT 3M (146-215).indd 163 2/11/11 15:32:48

Page 164: 003000.000 grou

164

Como se está pidiendo la unión de los intervalos, entonces el intervalo solución será el formado por los números que pertenecen a ambos conjuntos (todo lo que está achurado).

Esto es, ,5−∞ . En notación conjuntista, x x∈ <{ }R/ 5 .

3. 3,5 4, 1∩ − −

0–1–4 3 5

En este caso, la solución es ∅ (conjunto vacío). No hay intersección entre los intervalos (ningún número real pertenece a ambos intervalos a la vez).

4. −] ]∪[ [• •, ,3 5

0 3 5

En este caso, la solución se anota como −] ]∪[ [• •, ,3 5 .

En notación conjuntista, x x x∈ ∨{ }R £ ≥/ 3 5 , o bien R−( )3 5, .

5. R− −( )4 8,

0 8–4

En este caso, la solución son los intervalos que contienen a todos los números que no están en el intervalo dado −( )4 8, .

Esto es − −] ]∪[ [• •, ,4 8 (nota que –4 no pertenece al intervalo dado; por lo tanto, pertenece al intervalo solución; igual pasa con 8). En notación conjuntista, x x x∈ − ∨{ }R £ ≥/ 4 8 .

6. 6,10 C− (teniendo en cuenta como universo al conjunto R)

0 10–6

Como el complemento de un conjunto es todo lo que está en el universo y no está en el conjunto, la solución es − −] [∪[ [• •, ,6 10

U3 MAT 3M (146-215).indd 164 2/11/11 15:32:52

Page 165: 003000.000 grou

UN

IDA

D 3

165

Trabaja

Responde en tu cuaderno; no olvides revisar tus respuestas.

8 Expresa cada intervalo usando conjuntos y haz su representación gráfica.

a. 5,5−

b. 3,7−

c. 1,5−

d. −( )8 4,

9 Escribe cada conjunto como intervalo, sin olvidar representarlos gráficamente.

a. x x∈ ≥ −{ }R / 6

b. x x∈ −{ }R £ £/ 1 1

c. x x∈ − <{ }R £/ 11 1

d. x x∈ < <{ }R/13 17

10 Escribe como intervalo y en notación conjuntista los siguientes subconjuntos de R:

0 2a.

b.

c.

d.

–4 0 1

–3 0 3

–2 0 5

11 Usando notación de intervalos, escribe en tu cuaderno cada oración dada.

a. Los números mayores que 7.

b. Los números de 7 en adelante.

c. Aquellos números que no superan a 7.

d. Aquellos números cuyo inverso aditivo es mayor o igual a 7.

e. Solo los números comprendidos entre –9 y 20.

f. Solo los números comprendidos entre –9 y 20, ambos inclusive.

g. Únicamente los números que fluctúan entre –9 y 20.

h. Todos los números que superan a , pero que no alcanzan a 13 .

i. El conjunto de números que a lo sumo superan a 20 en una unidad.

j. Esos números que a lo menos superan a 20 en una unidad.

U3 MAT 3M (146-215).indd 165 2/11/11 15:32:54

Page 166: 003000.000 grou

166

Revisemos lo aprendidoMarca el casillero correspondiente según la evaluación hecha de tu proceso de aprendizaje.

MB: Muy bien (7,0 - 6,0)B: Bien (5,9 - 5,0)S: Suficiente (4,9 - 4,0)I: Insuficiente (3,9 - 1,0)

Indicador MB B S I

entiendo el concepto de desigualdad.Sé qué propiedades tienen las desigualdades.entendí la forma propuesta para resolver los ejercicios.Fui capaz de resolver correctamente los ejercicios y actividades propuestas.entendí por qué es necesario demostrar y cómo hacerlo en el ámbito de las desigualdades.Pregunté mis dudas a quien y cuando correspondía.

Si has contestado 3 o más cruces en las columnas de Suficiente (S) o Insuficiente (I), debes repasar lo visto y volver a hacer los ejercicios que fueron más difíciles de resolver.

12 En tu cuaderno, dibuja sobre la recta real y escribe con notación de intervalo el resultado de las operaciones indicadas.

Para los ejercicios a. al f., considera los intervalos A, B, C y D definidos en R:

4,4A = − B = − −( )8 4, C = −[ [1 5, D = −] ]5 7,

a. A D∪b. A C∩c. A C B∩ ∪( )

d. CBe. D B−f. B C∪

En los ejercicios g. al j., usa los intervalos M, N, P, S definidos en R:

M = − −] ]•, 3

93,2

N = −

7 , 53

P = − S = −[ [1,•

g. M N P S∪( )∩ ∪( )h. M N P S∩ ∪ ∪( )

i. S MC C∩

j. M N P SC C∪( ) − ∪( )

U3 MAT 3M (146-215).indd 166 2/11/11 15:32:56

Page 167: 003000.000 grou

UN

IDA

D 3

167

¿Para qué sirven los intervalos?

EnelcolegiodeTobíasseunenlasasignaturasdeBiología,FísicayQuímicapararealizaruntrabajodeinvestigacióninterdisciplinariocon los estudiantes de 3º medio. A él y su grupo se les ha designado el tema del Calentamiento global. Parte de la información que han logrado reunir es la siguiente:

¡alerta!

CALENTAMIENTO PODRÍA DESENCADENAR CATÁSTROFES GLOBALESLas consecuencias del cambio climático

Según un estudio de los científicos de la Universidad de Bristol (Reino Unido), el aumento de la temperatura global provocará más incendios,

deforestación e inundaciones. Demostraron que el clima reacciona desproporcionadamente a variaciones de temperatura aparentemente pequeñas. Los

científicos británicos han realizado un cálculo a partir de varios modelos de cambio climático para los próximos 200 años.

1º Si el incremento sobrepasa los 2 °c, se notarán las consecuencias en el medio ambiente, entre ellas: más fuegos, más deforestación y

más inundaciones.

2º Si la temperatura supera los 3 °c, se esperarán catástrofes incontrolables.

Las zonas más afectadas a una subida de la temperatura del planeta de casi 2 °c serían la amazonia y las regiones árticas. La amazonia sufriría sequía,

los cambios en el clima por la pérdida de masa forestal e incendios. en cuanto a las regiones árticas, los bosques boreales y la tundra del ártico

desaparecerían.

Junto con la amazonia, las zonas que padecerían mayor pérdida forestal serían la asiática del continente europeo, el este de china, canadá y américa

central. Si la temperatura aumenta en 2 o 3 °c, el 30 % de sus bosques podrán estar en peligro, y el 60 % si supera los 3 °c.

La sequía y la falta de agua dulce constituirían los nuevos problemas relacionados con el cambio climático en otras regiones. Los períodos de sequía

serán cada vez más intensos en la zona oeste del continente africano, el este de ee.UU., américa central y países del sur de europa, como españa, pues los árboles perderían su fuerza y facilitarían el desborde de los ríos, desencadenando inundaciones en áfrica tropical y el noroeste de Sudamérica.

Los investigadores descubrieron que si el aumento de las temperaturas es mayor a 3 °c, los depósitos de carbono terrestres podrían comenzar a liberar a la atmósfera el carbono que mantienen atrapado, empezando una reacción en cadena que aumentaría aún más la cantidad de dióxido de carbono (cO2) en la atmósfera, empeorando el efecto invernadero.

El estudio de los científicos del clima es parte del Proyecto QUEST (Quantifying and Understanding the Earth System), 18 de agosto, 2006 U. Bristol - Actualites - CA

1880 1900 1920 1940 1960 1980 2000 Año

Variación de la Temperatura Global Tierra - Océanos (ºC)

0,6

0,4

0,2

0,0

–0,2

–0,4

ºC

Gráfico con datos del estudio que muestran cómo la tierra ha ido aumentando su temperatura en

aproximadamente 0,2 °c por década en los últimos 30 años.Fuente: Goddard/NaSa.

Fuente: http://www.circuloastronomico.cl/secciones/calentamiento2.html#REC

U3 MAT 3M (146-215).indd 167 2/11/11 15:33:01

Page 168: 003000.000 grou

168

Fuente: http://www.sml.cl/portal/pdfs/Compendio_2008.pdf

Algunas de las conclusiones de Tobías y su grupo fueron las siguientes:

•Entrelosaños1880y1900,esdecir,enelintervalo 1 880 1 900,[ ], el promedio de las temperaturas se encuentra en el intervalo

0,37; 0,1− − , o sea, la fluctuación era de 0,27ºC.

•Entrelosaños1990y2000,esdecir,enelintervalo 1 990 2000,[ ], el promedio de las temperaturas se encuentran en el intervalo 0,11;0,57 , o sea, la fluctuación era 0,46ºC.

•Sicomparamosestasdosinformaciones,podemosdecirquelospromedios mínimos fluctúan en el intervalo 0,37;0,11− y los promedios máximos en el intervalo 0,37;0,11− 0,1;0,57 . Esto nos lleva a estimar que los promedios más bajos han aumentado en 0,48ºC y los máximos en 0,67ºC.

Adriana trabajó con otro grupo. Les correspondió el tema: Servicio Médico Legal de Chile (SML). Parte de su investigación dice así:

“el Servicio médico Legal es una entidad pública, dependiente del ministerio de Justicia de chile, creada el 30 de agosto de 1915, con el objetivo de asesorar técnicamente a los tribunales de Justicia del país a través de estudios y análisis desde el punto de vista legal y penal de hechos violentos que han sido denunciados a las fiscalías y tribunales de Justicia. Dentro de sus labores, también está el promover el desarrollo de la investigación científica en el área y colaborar con las cátedras que imparten esta disciplina en las universidades y Fuerzas armadas del país”.el registro estadístico de Tanatología (estudio de los efectos que produce la muerte en los cuerpos. Fuente: Rae) considera la práctica de autopsias médico legales en cadáveres, restos humanos y/u orgánicos. además, incluye las ampliaciones efectuadas a petición de jueces y fiscales. Dichas ampliaciones son efectuadas a los peritajes ya realizados y debieran consistir en especificar algún punto del protocolo de autopsia sobre los cuales dichas autoridades han manifestado incomprensión.en la estadística realizada por el SmL, podemos observar la variación porcentual en las autopsias realizadas en el año 2008 con respecto a las realizadas en el 2007.

% de Variación anual 2007-2008 de las pericias tanatológicas según Servicio Médico Legal

% de Variación anual

Serv

icio M

édico

Lega

l

67,6 52,9 32,4 28,4 28,2 26,5 21,3 18,5 16,1 14,1 12,7 11,5 10,8 9,6 9,1 8,1 6,42,71,81,41,30,70,7–1,7–1,9–6,4–9,2–9,8–18,2–25,1–28,8–39,4–45,9–53,6

ConstituciónCoyhaique

TalcaSan Antonio

LinaresLa Serena

IllapelOsorno

Puerto MonttTemuco

AngolRancagua

ChillánArica

AncudIquique

Los AngelesMelipilla

ValparaísoPunta Arenas

ConcepciónSanFelipe

CopiapóOvalleValdivia

SantiagoCalama

AntofagastaParral

QuillotaCuricó

SanFernandoCauquenes

Aysén

U3 MAT 3M (146-215).indd 168 2/11/11 15:33:02

Page 169: 003000.000 grou

UN

IDA

D 3

169

Miraelsiguientevideo.¿Existealguna relación matemática entre las ventas de algún producto y elclima? Averígualo en la página dada y descúbrelo. http://www.planetamatematic o.com/index.php?option=com_seyret&Itemid=172&task=vid eodirectlink&id=132

Para entretenerse

Algunas de las conclusiones del grupo de Adriana fueron:

•Sehapresentadoenelaño 2007 2008,[ ] una variación positiva que fluctúa en el intervalo porcentual 0 7 67 6, ; ,[ ]. Esto se traduce en un aumento de autopsias en las regiones que se encuentran dentro de este intervalo.

•Sehapresentadoenelaño 2007 2008,[ ] una variación negativa que fluctúa en el intervalo porcentual − −[ ]53 6 1 7, ; , . Esto se traduce en una disminución en las autopsias realizadas en las regiones pertenecientes a este intervalo.

Podemos concluir, entonces, que los intervalos pueden ser utilizados en la entrega de información a partir de gráficos u otra fuente.

Marcela está muy preocupada por la calidad del aire de Santiago. Ella es muy buena deportista, pero hay días en que no puede hacer ejercicios porque hay alerta ambiental. Ella decidió averiguar más sobre el tema y recolectó la siguiente información:

El modelo Cassmassi pronostica el valor máximo de concentración promedio de 24 horas de material particulado respirable PM10, para el período de 00 a 24 horas del día siguiente, expresada en microgramos por metro cúbico (µg m3), en cada una de las estaciones de la red MACAM-2 clasificadas como estaciones de monitoreo con representatividad poblacional (EMRP). Estas son: Av. La Paz, La Florida,LasCondes,ParqueO’Higgins, Pudahuel, Cerrillos y El Bosque.

Es importante destacar que debido a que el modelo pronostica la calidad del aire del día siguiente, la declaración de un episodio por parte de la autoridad no implica que el aire

haya empeorado, sino que podría llegar a empeorar. Es decir, los episodios se decretan en forma preventiva para evitar alcanzar los índices pronosticados y así proteger la salud de la población.

Índices de calidad del Aire por Material Particulado Respirable (ICAP)

icaPcategoría

icaPPm10 º g m3

(24 hrs.)Nivel episodio

0 – 100 Bueno 0 0 0 -101 – 200 Regular 100 150 0 -201 – 300 Malo 200 195 1 alerta301 – 400 Crítico 300 240 2 Preemergencia401 – 500 Peligroso 400 285 2 Preemergencia≥501Excede 400 330 3 emergencia

Fuente: http://www.conama.cl/rm/568/article-1183.html

“Aquí también existen los intervalos –dijo Marcela–. Puedo escribir, por ejemplo, que habrá alerta si el índice de partículas en el aire está en el intervalo 201 300,[ ]”.

U3 MAT 3M (146-215).indd 169 2/11/11 15:33:04

Page 170: 003000.000 grou

170

Trabaja

Resuelve en tu cuaderno los siguientes ejercicios. Revisa tus respuestas.

13 LamadredeJosefalecontóqueteníaunembarazodeochosemanas.Fueronjuntasalaconsultadelmédico y allí vieron un cuadro de las categorías del recién nacido, conforme a las características físicas y neurológicas. Decía:

a. Recién nacido pretérmino (RNPT), antes de 37 semanas de gestación.b. Recién nacido a término (RNAT), de 37 a 42 semanas de gestación.c. Recién nacido postérmino (RNPT), más de 42 semanas de gestación.

Escribe esta información usando intervalos.

14 VladimirestudiaenunliceocomercialyrealizóunatareaacercadelaclasificaciónempresasCORFO.SegúnunacitaqueélencontróenInternet(http://www.asimet.cl/clasif_empresas.htm),lasempresasse clasifican por cantidad de trabajadores y ventas anuales.

La estructura empresarial de Chile de 1997, según número de trabajadores, se clasifica por: Empresa grande: más de 200 trabajadores 11 1, %( ) Pyme: 5 – 199 trabajadores 40 2, %( ) Micro: hasta cuatro trabajadores 44 4, %( ) Sin identificar: 4 3, %( ) Vladimirdecidepresentarestainformaciónusandointervalos.¿Lopuedesayudar?

15 Froilán,profesordeMatemática,estabaescuchandoundebateporlaTVacercadelanatalidadymortalidadde los chilenos. Uno de los participantes explicaba que: “En el contexto de América Latina, Chile se clasifica, junto con Costa Rica, Brasil y Argentina, entre los países en etapa de transición demográfica avanzada, la que se caracteriza por tasas de natalidad baja y de mortalidad moderada y baja”. El siguiente gráfico muestra el número de madres que dan a luz por primera vez de acuerdo a su edad.

Número de madres por primera vez, 1996 - 2000 - 2004

40000

30000

20000

10000

0

Nº madres1996 2000 2004

Edad< 20 20-24 25-29 30-34 35-39 40-44 45 o +

Fuente: Gráfico extraído de http://www.ine.cl/canales/menu/boletines/enfoques/2007/pdf/dia_de_la_madre.pdf

Froilán,rápidamente,anotóladireccióndelapáginawebyaprovechóestainformaciónparaproponerte algunas actividades. En ellas debes responder utilizando intervalos o desigualdades, cuando corresponda:

a. ¿Entrequévaloresfluctuabaelnúmerodemadresprimerizasenelaño2004,aproximadamente?b. ¿Entrequéedadessehaproducidolamayordiferenciaenelnúmerodemujeresprimerizas?c. Usando desigualdades, ordena los años en forma decreciente, según el número de madres

primerizas, en el intervalo etario 20,24 .d. ¿QuépuedesconcluirconrespectoalanatalidadymadresprimerizasenChileduranteestosaños?

Coméntalo con tu curso. También puedes preguntarle a tu profesor de Historia para analizarlo desde un punto de vista histórico y social.

U3 MAT 3M (146-215).indd 170 2/11/11 15:33:06

Page 171: 003000.000 grou

UN

IDA

D 3

171

Antes de comenzar la próxima sección de esta unidad, responde las siguientes preguntas que te ayudarán a revisar lo aprendido:

•¿Puedoexplicarporquésonnecesarioslosintervalosdenúmeroreales?

•¿Entendílanotacióndeintervalosypuedorepresentarqueunnúmeroperteneceaunintervaloonoperteneceaél?

•¿Fuicapazderesolvercorrectamentelosejerciciosdelasactividadesplanteadas?

•¿Soycapazdeinterpretarinformaciónentregadaabasedeintervalos?

•¿Soycapazdecomunicarciertainformaciónayudándomedeintervalos?¿Entiendocuáles sufinalidad?

Revisemos lo aprendido

SintetizandoRecuerda que:

•Unadesigualdadesunaexpresiónmatemáticaqueindicaquedoscantidadesnosoniguales. Los símbolos utilizados son:

≠ : distinto

> : mayor que

< : menor que

≥ : mayor o igual que

≤ : menor o igual que

•Conlasdesigualdadespodemosexpresarunsubconjuntodenúmerosreales.

•Todosubconjuntodenúmerosrealessepuedeescribirusandointervalos.

•Existenmuchasrelacionesmatemáticasquesepuedendemostrarusandodesigualdades.

•Enlavidadiariautilizamoscomúnmentelasdesigualdadesylosintervalosparaentregarinformación acerca de variados temas.

U3 MAT 3M (146-215).indd 171 2/11/11 15:33:06

Page 172: 003000.000 grou

172

Trabaja más...Trabaja en forma individual

1 Sabiendo que x y< e y z≤ , todos positivos, para cada ejercicio establece la relación entre ambas expresiones usando los símbolos de desigualdad estudiados.

a. .........z x

b. 21......... 21x y+ +

c. 2 2z y.........

d. .........z y− −

e. 2......... 2y x− −

f. − −12

12

x z.........

g. 13 8......13 8− −z y

h. 25

25

xy

zz+ +.........

i. 2 28......... 7y z− −

2 Usando desigualdades, estima y compara los perímetros y áreas del cuadrado, la circunferencia y el trapecio.

b

B

a a

r

3 La siguiente tabla muestra la probabilidad (p), expresada en porcentaje, de cada una de las pintas de un dado cargado.

Pinta 1 2 3 4 5 6Probabilidad (%) 15 14 24 14 17 16

Usando desigualdades, ordena en forma decreciente las probabilidades de cada número.

4 Sabiendo que 2 0a ≥ , demuestra que:

a. 4 0a ≥

b. 6 0a ≥

5 Si a y b son positivos y 2 2 1a b+ = ,

entonces 12

ab≤ . Demuéstralo.

Indicación: inicia tu desarrollo a partir de a b−( ) ≥2 0.

6 Escribe los intervalos de aquellos puntos que no están incluidos en:

-2 –1,4 0 0,5 1 2,2

a. el intervalo azul.

b. la intersección de los tres intervalos.

c. la unión del intervalo negro con el rojo.

7 Si y x= − −0 3 0 5, , ::

a. ¿enquéintervaloseencuentranlosvaloresde y, si x x∈ < −{ }R/ 5 ?

b. ¿enquéintervaloseencuentranlosvaloresde x, si 3 3y− < ≤ ?

8 Si y x= −1 8 :

a. ¿enquéintervaloseencuentranlosvalores

de y si 15 08

x− < ≤ ?

b. ¿enquéintervaloseencuentranlosvaloresde x si 2 5y≤ <

9 Si y x x= − −( )1 :

a. ¿enquéintervaloseencuentranlosvaloresde y si 1 6x< < ?

b. ¿enquéintervaloseencuentranlosvaloresde x si 42 20y− ≤ ≤ − ?

U3 MAT 3M (146-215).indd 172 2/11/11 15:33:09

Page 173: 003000.000 grou

UN

IDA

D 3

173

10 Observa el gráfico y responde a lo que se solicita.

9

8

7

6

5

4

3

2

1

–1

–2

–3

–4

–5

–6

–7

–8

–9

–10

–6 –5 –4 –3 –2 –1 10 2 3 4 5–7

a. TrazaenelIVcuadranteunacircunferenciade centro 4 6,−( ) y radio 2.

b. Indica entre qué valores fluctúan las abscisas de los puntos interiores del triángulo.

c. Indica entre qué valores fluctúan las ordenadas de los puntos que conforman el rectángulo.

d. Indica entre qué valores fluctúan las ordenadas de los puntos interiores del rombo.

e. Indica entre qué valores fluctúan las abscisas de los puntos que conforman la circunferencia y su interior.

11 “¡Aló,Mamá!¡VendeinmediatoaTiendas Ring, ya que están haciendo una gran liquidación de todos sus productos! ¡No me digas que no!, porque te cuento que el menor de los descuentos es de un 30% y, según lo que veo, hay hasta un 70%, que es lo máximo. Mamá, ¿teacuerdasdelalavadoraquequeríascomprar y valía $110000?Adivinaaquéprecioestá ahora con estas rebajas”.

¿Enquéintervalofluctúaelpreciode dichalavadora?

12 “Mamá y mi tía Coné han estado haciendo dieta durante un mes, para bajar de peso. Llevaban exitosamente 10 días sin pasarse de las 1000 calorías diarias, establecidas por la nutricionista, pero al undécimo día, mi mamá había consumido ya 550 calorías, y tía Coné, quien ya llevaba consumidas 700 calorías, llegó con bocaditos que le había regalado su vecina”. Ambas los miraron y se dijeron: “Si aportan 85caloríascadauno,¿quéimportasinos comemos algunos sin dejar ninguno a mediocomer?”Yasílohicieron. Haciendousodeintervalos,¿cuántospodríanaceptarcadaunaparanorompersusdietas?

13 Los hermanos Chumingo y Anselmo están discutiendo acerca de las dimensiones del terrenoqueVenancio,unprimodeellos,compró al interior de Doñihue.–¡Queeresporfiado,Anselmo!Tedigoquelocercó con cuatro corridas de 1000 m de alambre de púas cada una.–Bueno, si eso fuera así, recuerdo que en un momento le escuché decir que el ancho del terreno era de 200 m a 220 m, inclusive...–Puedeserasí,porqueVenancioagregóqueestaba pagando contento su terreno de 7 hectáreas.–Oye,Chumingo,¿ydequémedidaserámásomenosellargodelterreno?–Me asalta la duda si con estas medidas que conversamos, realmente tiene 7 hectáreas...Con la información dada en el enunciado y usando intervalos, responde.

a. ¿Cuálesseránlasposiblesmedidasparaellargodeesteterreno?

b. ¿Podráserde7 hectáreas el mencionado terreno?Justificaturespuesta.

14 Jacinto miró las siete pirámides metálicas, huecas, de base cuadrada, con 80 cm2 cada una de ellas como base. Había un gran misterio en ellas y pensó: “Es necesario medir las alturas interiores, de lo contrario, la investigación podría empantanarse”. Invirtiéndolas sobre soportes, las fue llenando con agua, usando vasos graduados de laboratorio. La de mayor volumen fue 320 cm³ y la de menor, 256 cm³.

U3 MAT 3M (146-215).indd 173 2/11/11 15:33:10

Page 174: 003000.000 grou

174

“Ya sé cuánto podrían medir las otras alturas”, se dijo. Encuentra el rango en que fluctúan las alturas de las otras cinco pirámides.

15 –La temperatura primaveral en esta ciudad es de 20ºC, que es la actual, y ahora vamos atravesando el antiguo puente de acero, de 1500 m de longitud. Pero en auto, hijita, no nos demoraremos nada en cruzarlo.–Papá,esteveranohasidomuycaluroso.¿Hacemuchocalortambiénenestaciudad?–Si, hijita. Más que en la nuestra. Aquí la temperatura puede llegar a los 35ºC. Pero en invierno no es muy frío. Lo más bajo que recuerdo es –5ºC.–Papá,y¿quéleocurrealpuentecuandohacemuchocalor?

–Se dilata, es decir, se hace más largo y cuando hace mucho frío, el puente se contrae.Conforme a la conversación anterior, tomando como temperatura inicial 20ºC y ayudado por la fórmula que aparece en el recuadro, donde el coeficiente de variación lineal del acero es 6 111 10 °C− −⋅ :

a. Indica en qué intervalo de longitud se encuentra dicho puente en verano.

b. Indica en qué intervalo de longitud se encuentra dicho puente en invierno.encuentra dicho puente en invierno.

Variaciónde longitud =

Longitud inicial •

Coeficiente de variación lineal

del acero•

Variación de temperatura

Mis apuntes

U3 MAT 3M (146-215).indd 174 2/11/11 15:33:11

Page 175: 003000.000 grou

UN

IDA

D 3

175

Inecuaciones: ¿qué son?

Qué son inecuaciones, cómo se resuelven, qué tipo de inecuaciones hay y en qué tipo de problemas se usan.Desarrollarás las siguientes habilidades:• Identificar•calcular•comprender•Resolver•Relacionar•aplicar• interpretar y generar ideasHabilidades por actividad:• Identificarycalcular:1, 5, 6, 10, 11, 12,

13, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15 •comprender y resolver: 15, 16, 17, 18, 19a •Relacionar y aplicar: 2, 3, 4, 7, 8, 9, 14, 8,

9, 14, 19b, 19c

Trabaja más...

Habilidades por actividad:• Identificarycalcular:1, 2, 10, 1•comprender y resolver: 3, 12, 13, 2, 3, 4,

5, 6, 7•Relacionar y aplicar: 4, 5, 6, 7, 8, 9, 11, 8

En esta sección aprenderás Inecuaciones lineales

Emilio le cuenta a su hermano Julián que ha hecho algunos cálculos para ver cómo emplear el dinero que ganó durante sus vacaciones trabajando como empaquetador en un supermercado. Tiene $267000 y desea comprarse pantalones, pero no quiere gastar más de un tercio de su dinero. Tampoco pagaría más de $12000 por un pantalón.

Julián sonríe. Emilio se molesta un poco y le da un pequeño codazo.–¿Mevasadeciralgoosolotevasareírdemi?Julián le guiña un ojo a su hermano mientras silabea...–I-ne-cua-cio-nes.

En la cara de Emilio se dibujó la incertidumbre.–Sí, sí, las matemáticas se usan en todo y son muy entretenidas.Ya, te escucho.–Lo que acabas de decir se puede escribir así:

–Esto quiere decir que podrás comprar, a lo más, 7 pantalones.

–¡Perfecto, ya entendí! O sea que... –se interrumpió súbitamenteEmilio– las inecuaciones se resuelven igual que las ecuaciones. –Solo hay que tener cuidado con las desigualdades.Si multiplicamos o dividimos por un número negativo, ladesigualdad cambia de sentido...–¿Tienesporahíalgunosejercicios?Quieropracticar.

Julián fingió preocupación.–¡Mamá! –gritó Julián–. Emilio está enfermo.–Ya. ¡Cállate y disfrútalo! Tenías razón.Pero Julián no había terminado.–¿Notefaltaalgo?–Sí, gracias, hermanito.

8912

x <

(Aproximadamente 7, 41)

5712

x <

12000 89000 12000x < / :

(Si x representa el número de pantalones que puedes comprar, al plantearlo de

este modo x será el número máximo de pantalones que puedes comprar)

12000 267 000 3x < :

U3 MAT 3M (146-215).indd 175 2/11/11 15:33:12

Page 176: 003000.000 grou

176

Julián escribió estos ejercicios y Emilio los resolvió así:

2 3 2 5 5 32 5 2 3

7 5 757

x x x

x x

x

x

− − + ++ +

/

/ :

1.

Por lo tanto, el conjunto solución es: 5 ,7 ∞

o 5/7

x x ∈ ≥

R

0 5 ,7 ∞

Nota que en una inecuación, la solución es, en general, un conjunto de números.

4 5 4 7 2 5 6

4 20 4 7 4 20 25 6 43

2

2 2 2

x x x

x x x x x x

x

−( )+ −( ) −( ) +

− + − − + + −− −

<

<

/

/22 20 31 20 20

3 20 31 2017 51 17

3

<

<

<

<

− + + +− + +

x x

x x

x

x

/

/ :

2.(Cuadrado

de binomio)

∴ la solución es: ,3−∞ o x x∈ <{ }R/ 3 o

0 3

2 14

3 53

12

3 2 1 36 4 56 3 36 4 20

30

xx

x

x x x

x x x

x

− − +

−( )− +( )− − +−

£

£

£

/ m.c.m.

−− + + +− − + +

− −

3 4 20 4 330 4 20 3

34 23 34

£

£

£

x x

x x

x

/

/ :

3.

(Recuerda que debes cambiar el sentido de

la desigualdad)

2334

x ≥ −

∴ la solución es: 23 ,34

− ∞ o

23/34

x x ∈ ≥ −

R o

02334

La solución de una ecuación

lineal, cuando esta tiene

solución, es un número real.

Una inecuación lineal (al igual

que las ecuaciones lineales, se

llaman así porque la máxima

potencia de la incógnita es 1)

tiene por solución un conjunto

de números reales.

En general, una inecuación

tendrá infinitas soluciones.

Toma nota

U3 MAT 3M (146-215).indd 176 2/11/11 15:33:14

Page 177: 003000.000 grou

UN

IDA

D 3

177

Trabaja

1 Resuelve las siguientes inecuaciones:

a. 0 2 4, x x> −

b. 5 2 3x − £

c. 0 5 3 1, x x− −≥

d. 3 44

52

2xx x− + +>

e. 3 54

11 52

x x− −<

f. x x x x+( ) +( ) + +( ) +( )2 1 26 4 5£

g. 2 1 3x x+ +>

h. y y y−( ) −( ) +( ) −3 3 3 132 2£

i. 3 5

41 6 11

7z z− + −

>

2 Indica los dominios de las siguientes funciones (recuerda que la cantidad subradical debe ser positiva o cero):

a. f x x( ) = −0 75 1 25, ,

b. g x x( ) = +0 75 1 25, ,

c. h xx

( ) =−

13 14

3 Las dimensiones de un paralelepípedo son 5 cm, 8 cm y 7 2x −( ) cm.¿Cuálesdebieranserlasmedidaspara x, de tal manera que el volumen no sobrepase los 600 cm3?

4 Un circuito circular mide entre 106,76 m y 144,44 mdelongitud,ambosvaloresexcluidos.¿Entrequévalorespuedevariarsudiámetro?Considera 3,14π = .

5 Encuentra todos los múltiplos de tres que al disminuirlos en 5 superan a 233.

6 Halla todos los números que cumplen con la condición que los 32

de estos sean menor que la suma entre 4 y el número.

7 Los lados de un rectángulo son x +( )1 y x −( )1 cm.¿Cuántodebieranmedirlosladosparaquesuárea estuviera entre los 5 cm2 y 9 cm2,ambosnúmerosinclusive?

8 En un dado cargado, la suma de las probabilidades de los números impares no alcanza a 42%. Sabiendo que son porcentualmente iguales, encuentra los posibles valores que toma la probabilidad de obtener un cinco en un lanzamiento de este dado.

9 El lado de un hexágono regular vale b + 3 cm. Se requiere que su perímetro no sea superior a 5 21b+ . ¿Paraquévaloresdeb puede ser esto posible, si b debe ser superior a 0,6?

10 Las edades de dos hermanos son x y x +( )6 años.Silasumadeellasnoalcanzalos36años,¿cuálesson las posibles edades del mayor si se sabe que x es superior a 5?

11 Se van a adquirir los productos A y B cuya masa total oscila entre 500 kg y 630 kg, sin incluir estos valores. Si por cada x kg de A se compran 0,25 x kg de B,¿entrequévaloreshadeestarlacantidadtotal de kg destinada al producto A y al producto Bporseparado?

U3 MAT 3M (146-215).indd 177 2/11/11 15:33:20

Page 178: 003000.000 grou

178

1 “He repetido mil veces que no se metan a jugar en mi taller –gritó el papá de Alberto, al ver que su caja de 180 tornillos estaba toda desordenada. Ya había apartado los defectuosos a un lado y los que estaban en buen estado al otro–. No me acuerdo cuántos fallados eran, pero sé que el doble de los fallados era menor que los en buen estado”. Alberto, un poco sonrojado y sintiéndose culpable, le dijo: “Yo te puedo ayudar a saber cuántos tornillos fallados, son...”. Ahora den la respuesta a la pregunta del papá de Alberto.

2 “¡De nuevo ha salido una cuenta de teléfono muy alta! Nidia y Matías, mis hijos, no tienen conciencia deloqueespagar.Voyatenerquepararesteasunto.EnlaCompañíameofrecencambiarmeaunodeestos dos planes:

PLAN A PLAN B

caRGO FiJO: $7000$50 por minuto para llamadas locales.

caRGO FiJO: $10000$45 por minuto para llamadas locales.

Sé que mis dos hijos, juntos, gastan cerca de 1100 minutos, sin contar los pocos minutos que usamos el teléfono mi esposa y yo”.

Conforme a lo leído en el párrafo anterior, contesta las siguientes preguntas:a. ¿ParacuántosminutosdeduraciónesmáseconómicotomarelPLANA?b. ¿Quéplanleaconsejaríasalafamiliadelrelato?¿Porqué?

3 ParamejorarlabibliotecadelcolegiodeBlas,seharáunacompradelibrosyDVDeducativosporunvalor total entre los $220000 y los $360000 (incluyendo ambos valores). Si se compran xDVD,a$3500 la unidad, entonces se adquirirán 3x libros, con un precio promedio de $5500cadauno.¿EntrequévaloresvariaráeldinerogastadoentotalparaadquirirlosDVDyloslibros?

4 –Disculpa,Vilma,peroelaguaquemeacabasdetraerparaelcafédemitazóndeuncuartodelitroestá tibia.

–¡Pedro, sabes que el hervidor está fallando, no calienta mucho!

–Es verdad. Mira, aprendí hace tiempo que para hacer hervir 1,5 litros de agua, se requieren 120 kcal,

si el agua inicialmente estaba a 20ºC y llega a 100ºC, sabiendo que el calor específico del agua

es kcal1kg °C

...

–Pedro, este discursito lo has venido repitiendo desde antes que nos casáramos.–Disculpa,Vilma,tienesrazón,creoqueesmejorcambiarnuestroviejohervidor.¿Quétemperaturaselograalcanzarsilamasade1,5 kg de agua recibe una cantidad superior a 96 kcal, pero inferior a 120 kcal, partiendo con una temperatura inicial de 20ºC? Usa la siguiente fórmula:

Q c m T Tf i= ⋅ ⋅ −( )

Calor recibido(kcal o cal) Calor

específicoTemperatura

final

Temperatura inicial

Masa

5 “Siempre estuvimos pendientes del crecimiento de nuestros nietos. Jonás, mi marido, dice que por cada 5 cm que crece Sandrita, 6 cm lo hace Robertito. Le dije que si sumábamos sus estaturas, el total estaría entre 3,30 m y 3,60 m”.¿Cuálseríaelrangodeestaturasparacadaunodelosnietos?

Trabaja

U3 MAT 3M (146-215).indd 178 2/11/11 15:33:21

Page 179: 003000.000 grou

UN

IDA

D 3

179

6 –MaríaElena,¿cómoleístetanrápidoelúltimobestsellerqueestabaenlalibrería?Tienepocomenosde 300 páginas.–Magdalena, amiga, tengo mis técnicas de lectura. El primer día leo una cierta cantidad de páginas, al segundo doblo la cantidad anterior de páginas, al tercer día triplico la cantidad de páginas del día anterior, y así, en este libro, al cuarto día leí las 15 restantes. –Entonces,¿concuántaspáginascomenzaste?¿Puedenresponderestapregunta?

7 Iván está preparando su próxima prueba de desigualdades, y lee un problema que decía:“En una clase hay un total de 42 estudiantes, donde, respecto de los resultados del examen de Matemática, el doble de los reprobados era menor que el triple de los aprobados”.

Se pide estimar el menor número de aprobados posibles. Entonces, Iván dijo: “Si x representa el número de aprobados, 42 – x son los reprobados. Por lo tanto, el número de aprobados supera los 12; 13eselmínimodeaprobadosposibles”.¿SeráciertolaafirmacióndeIván?

8 “Nicole, pienso que debemos participar más en clase, porque ni tú ni yo entendimos el ejercicio final de hoy. Se trataba de averiguar las condiciones para a, de tal manera que la parábola y ax x= + +2 5 0 25, intersecte al eje x por lo menos en un punto. Debiéramos haberle preguntado más elprofesor¿nolocreesasí?”ContestenlapreguntahechaenlaclasedeNicole.

9 Marcelo y sus amigos, aprovechando un camino recto de la carretera principal, en 90 s aceleraron el auto en que viajaban, superando los 140 km/hr. Más allá fueron detenidos por los carabineros de ruta. Trataron de disculparse diciendo que habían mantenido la velocidad del auto en 90 km/hr, y que fue solo un impulso irracional, al ver el camino casi desocupado y recto. No se libraron del parte; la infracción estaba hecha.Usando la información de este suceso, indiquen qué valores pudo haber tomado la aceleración, suponiendo que estamos frente a un movimiento rectilíneo uniformemente acelerado. Expresen su respuesta en m/s2. Pueden ayudarse con la siguiente fórmula:

velocidad inicial + aceleración • tiempo = velocidad final

10 –Adriana, el precio de cada botella de bebida Green Cola de tres litros para el cóctel que hoy tuvimos es mayor que $1300.–Yo, el fin de semana pasado, en el supermercado Baratísimo, compré tres botellas de esta bebida, dos paquetes de un cuarto kilo de margarina, a $650 cada una, un paquete de queso fresco a $990 y doné $15 al momento de cancelar en caja y todo esto salió menos de $7000. Discúlpame, pero el precio de esta bebida no es lo que tú aseguras.

Hallen el intervalo de los posibles valores del precio de una botella de bebida Green Cola de tres litros. ¿EstabaenlociertoAdrianarespectoalpreciodelabebida?Justifiquensurespuesta.

11 JuanitasabemuybienlarelaciónentrelasescalasdetemperaturaCelsiusyFahrenheit.Estase

expresa en la conocida fórmula C F= −( )59

32 , en donde C es la temperatura en grados Celsius y F en

gradosFahrenheit.Ellalausamuchoenellaboratoriodecalorimetría.Undíatomóunlápizypapely

escribió C F< −( )59

32 . Más aún, remplazó C por 100, el punto de ebullición del agua en condiciones

normales. Luego, resolviendo la inecuación resultante, anotó algunas conclusiones con respecto a este

puntoylosgradosFahrenheitobtenidos.

Les solicitamos que habiendo leído el texto anterior, resuelvan la inecuación de Juanita:

a. ¿Cuálessurespuesta?b. ¿Cómointerpretanfísicamentelasoluciónqueescribieronena.?

U3 MAT 3M (146-215).indd 179 2/11/11 15:33:22

Page 180: 003000.000 grou

180

12 “A veces me molesta mi curso, porque nos cuesta mucho ponernos de acuerdo en cosas tan simples como elegir el sabor de frambuesa o chocolate del helado que nos serviremos en la celebración del día del alumno. Somos 45 en total; cinco simplemente no van a consumir helado; por lo tanto, se restaron de todo este lío.

Usando la pizarra, hicimos una votación y resultó que a quienes nos gusta el sabor de frambuesa, éramos menos una y media veces que aquellos que prefirieron el sabor de chocolate”.

a. ¿Acuántos,comomáximo,lesgustaelsaboraframbuesa?b. Indiquen entre qué valores varía el número de estudiantes que prefirieron chocolate.

13 “Asíes,Violeta.Talcomotúlodices,paraconvertirx grados Celsius a grados Kelvin basta que sumes a x, 273. Entonces no te será tan difícil plantear la desigualdad para encontrar el valor de todas las temperaturas, en grados Celsius, que superen los 298 K, y después resolverla”.

¿Yasabescuáleslatemperaturamínima,engradosCelsiusyexpresadacomonúmeroentero,quecumplelorequeridoenladesigualdad?

Planteen la desigualdad mencionada, encuentren el intervalo de solución e indiquen el valor pedido.

14 “Señorita Natalia, necesitamos embaldosar el patio de atrás de la casa que ocupamos como oficinas anexas a nuestra sede. Hay que cubrir una superficie de a lo menos 25 m², pero sin sobrepasar los 30 m²,segúnmiscálculos.Queremoshacerloconbaldosascerámicascuadradas,de20 cm x 20 cm. Consulté en los negocios del ramo y averigüé el número mínimo de baldosas, como también el máximo que se necesitarían”.

Planteen las inecuaciones que representan lo requerido. Resuélvanlas y estimen cuál es el máximo y cuál el mínimo de baldosas enteras que se necesitarían.

15 “Tía, no puedo negar que gasté dinero en golosinas y bebidas. No debía haberlo hecho, sabiendo que estoy de visita en su casa, pero no alcancé a gastar $2500.Fueron3 barras de chocolates, a $150 cada una, 10 caramelos más dos bebidas a $750 cada una y me sobraron $20”.¿Cuántovalíacadacaramelo?

16 Avelino va a dar un recado a su tío, quien trabaja como soldador. Al llegar al taller, se encuentra con que su tío no logra comprender una instrucción: “Para este tipo de trabajo la soldadura debe aplicarse a temperaturas mayores o iguales a 3,2ºFymenoresoigualesa4,0ºF”. Su tío le dice que solo conoce de grados Celsius.

Avelino, que sabe que la temperatura en grados Celsius está dada por 59

32Tf −( ) , ayuda a su tío y le dice entre qué temperaturas debe

trabajar la soldadura.

Repite lo que hizo Avelino y da la respuesta que él encontró.

17 ÚrsulaestáestudiandoQuímicayFarmacia,yenlaguíadesu

laboratorio lee: “La dosis de medicamento para un niño muy pequeño

se calcula con la fórmula 150Ad

C = , donde d es la dosis para adultos, C

la dosis para niños y A la edad del niño, en meses”.

Ella debe calcular para qué edades la posología (dosis) infantil está

entre un 25% y un 50% de la dosis para adultos. Ayúdale a efectuar

su primer cálculo.

U3 MAT 3M (146-215).indd 180 2/11/11 15:33:24

Page 181: 003000.000 grou

UN

IDA

D 3

181

En matemática se asocian

conectores a operaciones de

conjuntos. Así, podemos

escribir que:

y ofi fi∩ ∪

Recordar y archivar

Inecuaciones fraccionarias y cuadráticas

A la mañana siguiente, Julián entra corriendo a la cocina, apurado.–Emilio... ¡tú aquí haciendo tareas!–Sí, y necesito tu ayuda. Dice así: “Una cierta cantidad se divide por un número tres unidades menor, quedando menor que 0.¿Paraquénúmerossecumpleesteenunciado?”Lotratodehacerynomedala respuesta del libro.–Veamos–diceJulián.

xx −

<3

0

–Te puedes sentir tentado de amplificar ambos lados por 3x − , pero veamos por qué no sirve hacer eso. Recuerda que cuando multiplicamos una desigualdad, debemos saber si el número es mayor o menor que 0, porque dependerá de eso si el signo de la desigualdad cambia de sentido o no. Pero en este caso no sabemos si 3x − será positivo o negativo. Luego, debemos analizar esta inecuación por casos.

Observa:

Quelafracciónx

x −<

30 significa que

xx −3

es negativo, y para que

esto suceda, se debe tener que el numerador o el denominador

deben ser negativos. Esto lo podemos escribir como:

a. 0x > y 3 0x − < 0 3x x⇒ > ∩ <

o b. 0x < y 3 0x − > 0 3x x< ∩ >

0 3 0 3

0,3aS = bS =∅

0,3fS∴ =

–Entiendo–dijoEmilio–;¿mepuedesayudarconesteahora?2 53 1

1xx++

<

–Bien. Hay que dejar el lado derecho de la desigualdad en 0 parapoder separar en casos. Recuerda que solo podemos hacer esoporque 0 es el límite entre un número positivo y uno negativo.

U3 MAT 3M (146-215).indd 181 2/11/11 15:33:26

Page 182: 003000.000 grou

182

Puedes repasar los contenidos

sobre inecuaciones en una clase

virtual. Ingresa a la página:

http://matematicasies.com/

spip.php?article913

Links de interés

Entonces, sumemos –1 a ambos lados. Con esto se tiene que:

2 53 1

1 0

2 5 3 13 1

0

2 5 3 13 1

0

43 1

0

xx

x x

x

x xx

xx

++

+ − +( )+

+ − −+

− ++

<

<

<

<

/ m.c.m. (3x + 1). (Solo sumaremos el lado izquierdo)

(Entonces, podemos separar)

a. − +x 4 0> y 3 1 0x + < o b. − + <x 4 0 y 3 1 0x + >− − ∩ − ∪ − − ∩ −

∩ − ∪ ∩ −

x x x x

x x x x

> < < >

< < > >

4 3 1 4 3 1

4 13

4 13

∪13

−0 4 1

3− 0 4

1,3aS

= −∞ − ∪ 4,bS = ∞

1, 4,3fS

∴ = −∞ − ∪ ∞

–¿Yesteotroejercicio?

xx+−3

2 10≥

Julián le recordó a Emilio que debería tener presente que un denominador no puede ser cero. Esto tiene que ver directamente con que, al separar en casos, el denominador deberá ser estrictamente mayor o menor que cero. Además, para que una fracción sea positiva, numerador y denominador deben ser ambos positivos o ambos negativos. Observa:

a. x +3 0≥ y 2 1 0x − > o b. x +3 0£ y 2 1 0x − <

x x x x

x x x x

≥ > £ <

≥ > £ <

− ∩ ∪ − ∩

− ∩ ∪ − ∩

3 2 1 3 2 1

3 12

3 12

∪132

x x≥ − ∩ >–3 0 132

x x≥ − ∩ >–3 0

U3 MAT 3M (146-215).indd 182 2/11/11 15:33:31

Page 183: 003000.000 grou

1 ,2aS = ∞

∪ , 3bS = −∞ −

1, 3 ,2fS ∴ = −∞ − ∪ ∞

Hagamos ahora este ejercicio:

x x2 3 2 0+ + £ (Factoricemos)

x x+( ) +( )1 2 0£ (Esto se separa en casos igual que los ejercicios anteriores, pues la misma regla

se cumple para multiplicación y división)

a. 1 0x + ≤ y 2 0x + ≥ o b. x + ≥1 0 y 2 0x + ≤

1 2x x≤ − ∩ ≥ − ∪ 1 2x x≥ − ∩ ≤ −

∪–2 –1 0 –2 –1 0

2, 1aS = − − ∪ bS =∅

2, 1fS∴ = − −

PiensaahoraestoconmigoEmilio...¿teacuerdasdelasparábolas?...

Si miramos la inecuación x x2 3 2 0+ + > y pensamos en el trinomio como una función, entonces establecer el conjunto de números reales que hagan que el trinomio sea mayor que cero, es equivalente a encontrar las imágenes de los valores de x en IR que sean positivas. Si miramos el gráfico de y x x= + + >2 3 2 0, tenemos que,

y

8

6

4

2

–4 –3 –2 –1 10

x

Por lo tanto, la solución de la inecuación son todos los valores de x que corresponden a las ramas de la parábola que están sobre el eje x x x+( ) +( )1 2 0£y > 0x x+( ) +( )1 2 0£. Esto es, − −] [∪ −] [• •, ,2 1

Si generalizamos esto, podemos decir que, para encontrar la solución de una inecuación cuadrática debes proceder de la siguiente manera:

i. Igualar la inecuación a 0 y encontrar las soluciones de dicha ecuación cuadrática (ceros de la función o intersección con el eje x).

ii. Determinar el conjunto solución, dependiendo si la inecuación es mayor o menor que cero, esto es:

UN

IDA

D 3

183

U3 MAT 3M (146-215).indd 183 2/11/11 15:33:33

Page 184: 003000.000 grou

184

12 Resuelve las siguientes inecuaciones:

a. 2

2

4 04

xx− ≥+

b. 2 1

14 42 3

yy

yy

−+

−−

£

c. 2

2 1

2xx

x+

>

d. 3 1

x xx x

≤− +

e. z z2 2 0−( )£

f. xx+−

−52 3

13 Encuentra los valores de x que cumplen que 1 4 73 1

2< <xx++

.

14 Encuentra el dominio de la función ( ) 1xh x

x−= .

15 A continuación, te presentamos cinco problemas que debes resolver en tu cuaderno, y usando intervalos, expresar cada respuesta. Revisa tus respuestas.

a. Resuelvan el siguiente control.

CONTROL DE MATEMÁTICA

Nombre:

Curso: Fecha:

Tiempo para responder: 10 minutos.

PREGUNTA ÚNICA

Encuentra todos los números que al duplicarse, sustraerle 3 y, a esta diferencia, dividirla por el triple del número, supere a cinco.

Desarrollo:

Respuesta:

Trabaja

ax bx c2 + + >0 <0

0, 0a > ∆ >x x1 2< −] [∪] [• •, ,x x1 2 x x1 2,] [

0, 0a > ∆ =x x1 2= R−{ }x1 ∅

0, 0a > ∆ <No hay No hay nix x1 2 ni No hay nix x1 2

R ∅

0, 0a< ∆ >x x1 2< x x1 2,] [ −] [∪] [• •, ,x x1 2

0, 0a< ∆ =x x1 2= ∅ R−{ }x1

0, 0a< ∆ <No hay No hay nix x1 2 ni No hay nix x1 2

∅ R

* en los casos donde las desigualdades son ≥0 o £0, se deben incluir los valores de x1 y x2.

Emilio bosquejó en la clase cada uno de estos casos con su profesor, haz lo mismo tú con el tuyo.

U3 MAT 3M (146-215).indd 184 2/11/11 15:33:43

Page 185: 003000.000 grou

UN

IDA

D 3

185

Inecuaciones con valor absoluto

Emilio llegó muy contento a su casa esa tarde. Sus padres y hermano llegaron después y se sorprendieron.

–Emilio,¿haspreparadolaonce?–dijoJulián.

–Sí, estoy muy contento y te quiero agradecer la ayuda para miprueba; yo creo que me fue muy bien.

–¡Québueno!,mealegromucho;cuandoquieras.

–Ahora, la profesora nos dio una tarea para investigar y llevarla mañana.

–¿Soninecuacionestambién?

–Sí, son unas muy raras, pero nos ofreció unas décimas si podíamosexplicar cómo se resuelven y por qué se aplica ese método.

–Mmmm...veamos.¿Quépodrépediracambio?–rióJulián.

–Casi lo que quieras –respondió Emilio, a quien ya le había gustadosacarse buenas notas.

–Ya sé, préstame tu skate para el fin de semana.

–Ok, me parece un buen trato; aquí van.8 7x + ≤

–Ah, dijo Julián. Para esto debes recordar algunas cosas sobre el valorabsoluto.Veamos:

•Elvalorabsolutoesladistanciaquehayenlarectanuméricaentreel 0 y el número dado.

Así, por ejemplo, si se tiene que 2x ≤ , buscamos todos los números que al remplazarlos por x, satisfagan la condición de ser menores o iguales a 2. Algunos de estos valores son: 1, –1, 0, 1,5, –1,5, etc. Si lo graficamos, tendremos que,

–2 0 2

Si te fijas, esto es equivalente a hacer la siguiente intersección:

–2 0 2

Esto se puede escribir como 2 2x x≤ ∩ ≥ − .

Recuerda que el valor absoluto

está definido de la siguiente

manera:

00

a si aa

a si a

≥= − <

Recordar y archivar

Entonces, podemos generalizar que:

x a x a≤ ⇒ ≤ y ∩( ) ≥ −x a

x a x a< ⇒ < y ∩( ) > −x a

U3 MAT 3M (146-215).indd 185 2/11/11 15:33:43

Page 186: 003000.000 grou

186

–¿Entiendes,Emilio?–dijoJulián.

–Sí,creo.¿Hagamosjuntoselejercicioquetedije?

–Bien, veamos...

8 7x + ≤ , según lo que acabamos de decir, debemos anotar que:

8 7 8 7x x+ ≤ ∩ + ≥ − (Resolvemos cada inecuación por separado).

1 15x x≤ − ∩ ≥ − (Intersectamos las soluciones).

–15 –1 0

Por lo tanto, la solución es: 15, 1− −

–Muy bien, hagamos otro:

3 5 2x x− −>

3 5 2 3 5 22 3 4 7

32

74

x x x x

x x

x x

− − ∪ − − +∪

> <

> <

> <

0 32

74

Recuerda que la solución final será la unión de ambos intervalos, es decir, la solución es R.

Por otro lado, fíjate en lo siguiente. Supongamos que queremos determinar los números que cumplen que 2x ≥ . Algunos ejemplos son: 2, 3, 4, pero también –2, –3, –4. Entonces podemos representar estos números en la recta numérica de la siguiente manera:

–2 0 2

Esto se puede escribir como 2 2x x≥ ∪ ≤ − .

Entonces, podemos generalizar que:

x a≥ ⇒ ( )x a o x a≥ ∪ ≤ −o ∪( ) ≤ −x a( )x a o x a≥ ∪ ≤ −

x a> ⇒ ( )x a o x a> ∪ < −o ∪( ) < −x a

Recuerda que cada vez que

escribas el opuesto de una

expresión algebraica, debes

cambiar el signo de todos los

términos de la expresión. Esto es:

el opuesto de a b c+ − es:

− + −( ) = − − +a b c a b c

Recordar y archivar

U3 MAT 3M (146-215).indd 186 2/11/11 15:33:45

Page 187: 003000.000 grou

Y por último...

1 33

xx x

+− < +

(Amplificamos cada desigualdad por 3)

1 33

xx x

+⇒ − < + ∩ 1 3

3x

x x+− > − −

3 1 3 9 3 1 3 9x x x x x x− +( ) < + ∩ − +( ) > − − ∩ 3 1 3 9 3 1 3 9x x x x x x− +( ) < + ∩ − +( ) > − −

3 1 3 9 3 1 3 92 1 3 9 2 1 3 9

10 5 8

10

x x x x x

x x x x

x x

x

− + ∩ − − − −− + ∩ − − −

− ∩ −

< >

< >

< >

< ∩∩ −x >85

–10 085

Como la solución final es la intersección de ambos intervalos, entonces es:

8 ,5

− ∞

Desarrollen en grupo los siguientes ejercicios. Háganlos en el cuaderno y revisen sus respuestas.

18 Resuelvan las siguientes inecuaciones:

a. 1 5 6, x £

b. 11 4 7x − <

c. 0 02 4 7, x − <

d. 0 5 4 1 5, ,+ x >

e. 3 2 0− x <

f. 1 13 8 12

x− ≤

g. x x x x−( ) +( ) − −( ) +( ) ≥1 1 4 5 10

h. 3 1 2 15x − − >

i. 1 51

3 4 12x x +− − <

j. 2 13

261 7

2x + + >

19 Resuelvan los siguientes problemas de planteo:

a. Radomiropregunta:¿Cuáleselpuntomediodelintervalo(–2, 5)? Clodomiro responde: 1,5. Dime tú, si yo escribo 1,5 3,5x − < ,¿representaréelmismointervalo?

b. El nuevo profesor de Matemática de Lorenzo llegó haciendo los ejercicios de desigualdades de otra manera. Empezó a ver desigualdades con valor absoluto. Simplemente dijo: “Si un valor x oscila entre l a+ y l a− , lo escribiremos como x l a− £ ”.

Trabaja

UN

IDA

D 3

187

En un plano cartesiano, grafica

en el eje x el intervalo 3 7,] [, y en

el eje y, el intervalo 1 4,] [. Ahora

bien, dibuja con líneas punteadas

y hacia arriba segmentos

paralelos al eje y que nazcan

desde los extremos de 3 7,] [ y

hasta una de altura de cinco

unidades. Obtienes una especie

de franja vertical, ¿no?

Análogamente, efectúa lo mismo

sobre el eje y con el intervalo

1 4,] [, provocando una franja

horizontal, de tal manera que se

intersecte con la anterior. ¿Qué

representa esta intersección?

Observa que usando intervalos

puedes delimitar zonas del

plano cartesiano.

Para saber más

7+¡$

><

2? = %

U3 MAT 3M (146-215).indd 187 2/11/11 15:33:50

Page 188: 003000.000 grou

Completa el siguiente cuadro resumen con los pasos que debes seguir para resolver las inecuaciones. Luego, responde las preguntas planteadas.

•¿Sédistinguirunadesigualdaddeunainecuación?

•¿Pudeenumerarlospasosquesedebenseguirpararesolvercadaunodelostiposde inecuacionesestudiados?

•¿Puderesolvercorrectamentelasinecuacionesyproblemaspropuestosenlasactividadesdelaunidadcorrespondientesaestasección?

Revisemos lo aprendido

SintetizandoRecuerda que:

•Lasinecuacionessondesigualdadesqueseverificanparaunconjuntodenúmerosreales.

•Cadavezquesemultiplicaodivideunadesigualdadporunnúmeronegativo,ladesigualdadcambia de sentido.

•Pararesolverunainecuaciónconunaincógnitaeneldenominadorocuadráticasedebehacerunanálisis de casos.

inecuaciones

inecuaciones lineales sencillas

inecuaciones con valor absoluto

inecuaciones fraccionarias y cuadráticas

cómo se resuelven

188

Escriban las siguientes ideas:

i. La temperatura del ambiente oscila entre –2 °C y 2 °C.

ii. Al bajar el precio de los lácteos en treinta pesos, estos fluctuarán entre los $400 y los $420.

iii. El valor del dólar empezó en $510 y ya va en $495. Lorenzorespondióbienlostresejercicios,pero,¿cuálessudesarrolloysurespuestaaellos?

c. Segundo trabaja como ayudante de un laboratorio. Su labor de hoy es llenar con medio litro de agua varias cubetas. Para ello está usando un vaso cilíndrico graduado. Ahora bien, cada vez que revisa las cubetas, no contienen exactamente medio litro de agua, ya que el volumen (V) que Segundo vierte oscila en un poco menos de 5 cm3 por arriba o por debajo de lo solicitado.

i. Planteen la desigualdad, usando valor absoluto, que representa esta situación.

ii. Resuélvanla y encuentren entre qué valores varía la altura (h) para que se produzcan esos errores cometidos por Segundo.

U3 MAT 3M (146-215).indd 188 2/11/11 15:33:51

Page 189: 003000.000 grou

UN

IDA

D 3

189

Trabaja más...Trabaja en forma individual

Aplica lo aprendido.

1 Resuelve en tu cuaderno las siguientes inecuaciones. Revisa tus respuestas:

a. 2 32 02x − <

b. 2 2 0,2

15 5x − >

c. 2 04x

x − ≤

d. x x2 6 8 0− + >

e. x x2 2 1 0+ + ≥

f. 5 15 20 02x x+ − <

g. − + −x x2 4 7 0£

h. y −( ) >8 172 2

i. y y y−( ) ≥ −( )20 4 36

j. 5 8 3 2 15

2x x− + , <

k. x x x x+( )− +( ) ≤3 2 1 0( ) ( )3 2 1 0x x x x+ − + ≤

l. − +( )+ −( ) >3 2 4 2 3x x x x

2 En tu cuaderno, resuelve las inecuaciones propuestas usando las propiedades y escribe tu respuesta en notación de intervalos. No olvides revisar tus resultados.

a. 3 4

3 3 2x x

x+< −

+

b. 1

3 74

3 2x x− −≥

c. 2 21 1

x xx x+ −>+ −

3 El menor de dos números es x y el otro es cinco unidades mayor que x. Se requiere que su producto supere a 66.¿Cuálessonlosposiblesvaloresdedichosnúmeros?Anotaturespuestausando intervalos.

4 El lado de un triángulo equilátero mide x

centímetros y su altura debe superar los 1 32

cm cm.

Encuentra todos los posibles valores para x, sabiendo que el área a lo máximo debe ser

26,25 3 cm cm2.

5 El discriminante de una ecuación de segundo grado está dado por 2 3 1z z+( ) −( ). Se quiere que dicha ecuación no tenga soluciones reales. ¿Paraquévaloresdezseproduceesto?

6 Encuentra el dominio de las funciones:

a. f x x( ) = −36 2 b. g x x( ) = −4 12

7 Sin pedirle permiso a nadie, Tobías se subió a lo alto del edificio donde vive, que mide 96 m de altura. Desde la azotea, lanzó hacia el cielo su pelota, y al caer, lo hizo sobre la antena que estaba en la azotea del edificio contiguo. Hubo un reclamo y también un correctivo. A los días, en el colegio estudió esta ecuación h t t t( ) = + −96 12 12 2, donde h es la altura (m) que alcanza un objeto a ser lanzado hacia arriba, en función del tiempo t(s). Encuentra el intervalo de tiempo que estuvo la pelota en el aire, antes de chocar con la antena ubicada a 24 m de altura.

8 “Omar, yo creo que ninguno de los dos entendió bien ese ejercicio de la pizarra. Tenemos que encontrar los valores que puede tomar b, de tal manera que la parábola y x b x= + +3 0 752 , intersecte al eje x por lo menos en un punto. Debiéramos haberle preguntado más a la profesora”.

¿PuedesayudarleaOmarysucompañeraaencontrarlarespuesta?

9 Néstor está en primer año de ingeniería mecánica. Le han dado las ecuaciones de dos parábolas: y x x y x x= − + = + −2 23 0 75 4 1, Le solicitan que encuentre el intervalo en que se encuentra x, de tal modo que la razón entre las ordenadas de la primera y las de la segunda sea menor a uno. Néstor escribió bien la desigualdad, pero no la resolvió correctamente.

¿Puedestúdarlarespuestacorrecta?

U3 MAT 3M (146-215).indd 189 2/11/11 15:33:57

Page 190: 003000.000 grou

190

10 “No sé en qué momento de mis sueños se me

ocurrió ser aprendiz de matemático. El maestro

se puso en medio de nosotros, estiró una hoja

arrugada y nos mostró lo que allí estaba

escrito: xx+−5

2 11< .

Todos nos miramos sin encontrar nada valioso

en esa inecuación. Después nos pidió que la

resolviéramos y luego encontráramos un valor

dentro de la solución que nos ayudara a

mostrar que 5 1− < . Nosotros lo hicimos.

¿Puedestútambiénhaceresto?”

11 A Magdalena le han ofrecido un remplazo en

un prestigioso laboratorio. Hoy debe terminar

el informe que había comenzado. Este está

bastante avanzado, pero se han quedado

empantanados en la resolución de la siguiente

inecuación: x

x x

+− +

32 11 15

02 < . Magdalena la

resolvió correctamente. Tú también lo puedes

hacer.¿Cuálessusolución?

12 Arcadio ya ha rendido su prueba sobre parábolas y está iniciando la unidad de desigualdades. En esta se le pide que encuentre el intervalo en x, donde la curva

2 7 18y x x= − − está bajo el eje x (los valores de y que son negativos).

13 María Isabel está preparada para aceptar el

desafío matemático del concurso del famoso

programa Consiguiendo vacaciones para mi

curso. Dispone para ello de un cordel de 1 m de

longitud y de una huincha graduada solo en

centímetros. Al pasarle una tijera, ella debe

hacer un corte en el cordel, de tal manera que

la razón entre el trozo menor resultante con

respecto al mayor sea menor que 57

.

Ella logró resolver el desafío. Indica cuáles son

las posibles longitudes para el trozo menor

que María Isabel pudo haber hecho.

Trabaja en grupo

1 Unan cada inecuación con su conjunto solución.

Inecuación Solución

a. 3 1 1x + < − −

∪] [• •, ,2

30

b. 8 1x − > − − −] ]∪ −[ [• •, ,4 2

c. 3 1 1x + >2 , 03

− d. 2 5 7x x+ − £ −[ ]4 2,e. 2 7 5x x+ − ≥ R

2 Dadas las siguientes inecuaciones, encuentren la intersección de los conjuntos soluciones de las inecuaciones en cada caso.

a. 2 5 4x x− −£ y x x− +7 2 3>

b. 3 3

51x +

> y 12

25

16

x + <

c. 2 5 4x + < y 3 7 8x + <

d. xx+5

6> y 5 12

x x+ >

e. 4 6 9x< + <

3 Coloquen ⊂ o ⊄ (.........) en cada una de las siguientes afirmaciones, dependiendo de si el conjunto dado es subconjunto o no del conjunto solución de la inecuación dada.

a. − −[ ]7 5, ......... de la solución de

x x+ +5 2 9>

b. 40 63,] ] ......... de la solución de 1 9

6 2x + <

c. −] [•,0 ......... de la solución de

2 1 3 5 1x x+( )− +( ) <d. −[ [1 2, ......... de la solución de

11 72 3

x x+ +>

e. 30,2

......... de la solución de

3 1 2x x x− +( ) < +

U3 MAT 3M (146-215).indd 190 2/11/11 15:34:05

Page 191: 003000.000 grou

UN

IDA

D 3

191

4 En las indicaciones para instalar una de las cámaras de vigilancia de una ciudad dice que se debe colocar en dirección sur o norte a partir del centro de la Plaza de Armas de la ciudad. Además, si se restan 200 m a la distancia a la que debe ser colocada, esta distancia (en valor absoluto) no supera los 1000 m.¿Cuántosmetros,comomáximo,haciael norte y hacia el sur, debe haber entre el centro de la plaza y la cámara si el instalador estámirandohaciaelsur?

5 Milton necesita hacer una estimación del sistema de refrigeración de su empresa. Él ha observado que la diferencia, en valor absoluto, entre la temperatura que marca el control del sistema y la temperatura ambiental, no supera los 8ºC. Si en este momento la temperatura que marca el sistema es 30ºC,¿cuáleselintervaloenquevaríalatemperaturaambiente?

6 Bernardita está estudiando para el examen de admisión del colegio al que quiere cambiarse. En una de las preguntas que ha encontrado dice así: “El valor absoluto del doble del valor absoluto del sucesor de un número es mayor o igual que 6.¿Cuálessontodoslosposiblesvaloresdeestenúmero?”

Ayuden a Bernardita y den la respuesta.

7 Erika ha inventado un juego en el que hay que resolver inecuaciones. El ganador será aquel cuyo conjunto solución tenga el menor número de elementos. La inecuación de Erika es 2 5 4x − £ ; la de Joaquín 2 1 6x − ≤ y la de Teo, 1 0x − ≤ .¿Quiénganóeljuego?

8 En el colegio de Néstor han elegido a un grupo de estudiantes para comenzar una academia matemática, y el profesor encargado lo ha invitado. En una de las sesiones, el profesor planteó la siguiente inecuación x x+ −5 3 1£ . Además, el profesor les dijo, como ayuda, que separaran una vez el valor absoluto de la izquierda y luego volvieran a separar el valor absoluto que quedaba.

¿Cuáleslasolucióndeesteproblema?

Mis apuntes

U3 MAT 3M (146-215).indd 191 2/11/11 15:34:06

Page 192: 003000.000 grou

192

Sistemas de inecuaciones: ¿qué son?, ¿cómo se resuelven? y ¿en qué se aplican?

Qué son los sistemas de inecuaciones, cómo se resuelven y en qué tipo de problemas se usan.Desarrollarás las siguientes habilidades:• Identificar•calcular•comprender•Resolver•Relacionar•aplicar• interpretar y generar ideasHabilidades por actividad:• Identificarycalcular:1•comprender y resolver: 1, 2• interpretar y generar ideas: 3

Trabaja más...

Habilidades por actividad:•comprender y resolver: 1, 2, 1, 2, 3, 4, 5,

6, 7

En esta sección aprenderás Emilio miró que comenzaba a llover esa tarde. Increíblemente, habían pasado un par de semanas desde la última vez que le había pedido ayuda a Julián.

“Después de todo –pensó–, Julián tenía razón: la matemática no es tan complicada y puede llegar a ser entretenida”.

“Premio para el que escriba todos los números que cumplen con ser menores que 10 si se les suma 1; y mayores que –9 si a su doble se le resta 3” , había dicho su profesor al cerrar la puerta de la sala.

“Yo me quiero ganar ese premio”, –pensó Emilio, y escribió:

x

x

+− −1 10

2 3 9<

>

“¿Quéesesto?...Tranquilo–sedijo–,yosoycapaz”.

Pensemos, era lo que siempre decía Julián cuando no sabía por dónde comenzar un ejercicio.

“Esto se parece a un sistema de ecuaciones, pero los métodos que estudiésoloservíansihabíaigualdades.¿Quéhago?

Bien, resolveré cada inecuación por separado:

2 3 9 32 6 2

3

x

x

x

− − +−−

>

>

>

// :

1 10x + < / 1−9x <

Yahora,¿quésigue?”–Julián, tengo una pregunta, está en mi cuaderno.Su hermano lo observó y le dijo: –¿Cuáleslapregunta?–No sé cómo seguir...–Pensemos –dijo Julián, mientras Emilio soltaba una carcajada.–¿Quécondicióndebencumplirtusnúmerosahoraquedespejastelaincógnita?–Queseanmenoresque9 y mayores que –3.–Ah...ambascondicionesalavez,¿no?

Emilio no tardó en tomar de nuevo su cuaderno y lápiz:–¡Lo tengo! –gritó–; debo intersectar ambas soluciones.

Si x <9 y x > −3, entonces:

–3 0 9

Por lo tanto, los números solución son todos los que pertenecen al intervalo 3,9− .

U3 MAT 3M (146-215).indd 192 2/11/11 15:34:08

Page 193: 003000.000 grou

UN

IDA

D 3

193

Entonces, hay algunos conceptos importantes que debemos recordar sobre los sistemas de inecuaciones:

Resolvamos juntos algunos sistemas:

Graficando:

En este caso, la intersección es vacía; por lo tanto, el sistema NO tiene solución.

Recuerda que para resolver una inecuación con valor absoluto debessepararla.Veamos:

Entonces, la solución de la primera inecuación es: 1,7− .

•Unsistemadeinecuacionesesunconjuntodeinecuacionesque puede tener una o más incógnitas.

•Parasolucionarlosedeberesolvercadaunadelasinecuaciones por separado y luego intersecar las soluciones. Dicha intersección será la solución del sistema.

–11 074

3 4x − < ∩ 3 4x − > −

7x < ∩ 1x > −–1 0 7

2. ( )3 4

2 1 5 20

x

x x

− <

− ≥ −2 1 5 20x x−( ) ≥ −

3 14

5

3 2 8

x

x x

− +

3 14

5 4

12 1 20 112 21 12

211274

x

x

x

x

x

− ⋅ ( )− +

/

// :

m.c.m. x x

x x x

x

x

− + ++ −

− ⋅−−

3 2 8 32 11 211 1

11

£

///

1.

U3 MAT 3M (146-215).indd 193 2/11/11 15:34:10

Page 194: 003000.000 grou

194

Aquí podrás encontrar otra

explicación sobre la resolución

de los sistemas de inecuaciones

junto a nuevos ejemplos. Te

invitamos a verla.

El link es:

http://www.matesymas.es/

images/stories/videos/

inecuac3.swf

Links de interés

Graficando:

Por lo tanto, la solución del sistema es: 74 ,7

15−

–16 0 77415−

4. Marcela trabaja junto con su papá en la construcción de barcos a escala. En esta ocasión están construyendo un modelo de galeón. Marcela tuvo una inquietud:

–¿Cuántaspersonasviajaríanenunbarcocomoeste?–preguntó.

–No lo sé con exactitud, hija, pero leí lo siguiente:

Resolvamos la segunda inecuación.

2 1 5 202 2 5 20 2 5

3 18 36

x x

x x x

x

x

−( ) −

− − + −− −

£

// :

x a≥ ⇒ Intersectando las soluciones de ambas inecuaciones tenemos:

–1 0 6 7

Por lo tanto, la solución del sistema es: 1,6−

3.

2 8 4 62 8 4 24 8 4

2 32 216

x x

x x x

x

x

− +( )− + + −

− −−

<

<

<

>

// :

5 12x + < / 5−

7x <

x + <5 122 8 4 6x x− < +( )

3 5 15

x +( ) >

3 5 15

5

15 5 115 75 1 751 5 74 15

7415

x

x

x

x

x

+( ) ⋅

+( )+ −

−−

>

>

>

>

>

/

// :

U3 MAT 3M (146-215).indd 194 2/11/11 15:34:12

Page 195: 003000.000 grou

Te desafiamos. Este ejercicio fue publicado por el DEMRE (Departamento de Evaluación, Medición y Registro Educacional) en el año 2009 para preparar la PSU.¡Seguro que puedes resolverlo!El gráfico que representa al conjunto solución de este sistema de inecuaciones

3 6 34 2 9

x

x

− <− ≤5 es:

a. ∅

b. 3

c. –1

d. –1 3

e. –1 3

Para entretenerse“Para este tipo de galeón (ver imagen), se sabe que un tercio del doble de su tripulación disminuida en tres personas no sobrepasaban las 59 almas a bordo y que, por otro lado, el triple de las personas a bordo, aumentadas en 10, no eran menos de 300”.

–¿Puedescalcularestopormí?Ayerteviestudiandoinecuaciones.

Ayudemos a Marcela.

Si llamamos x a la tripulación de la nave, tenemos que:

3 10 300x +( ) ≥

2 3 593

x − ≤

2 3 177 3 30 3002 180 3 270

90 90

x x

x x

x x

− +£ ≥

£ ≥

£ £

Por lo tanto:

0 90

Entonces, la intersección es 90, lo que quiere decir que viajaban 90 personas.

Trabaja

1 Resuelve los siguientes sistemas de inecuaciones:

a. 4 38 02 4

x

x

− >

>

b. 6 31 3

x

x x

< +− > +

c. 2 5 97 3 12

x

x

+−

>

£

d. x x

x x

+ +( )+ −( )9 2 6

3 1 4 2 5

>

<

e.

5 132

1

3 75

2

x

x

+

£

£

f.

2 4 13 1 2

335

15

x

x

x

−+ −

<

<

g.

4 3 2 51 2 3 5 6

13

2 74

x x

x x x x x

x x

+ ++( ) −( ) + +( ) −( )+ +

<

h.

5 3 4 2 1 2 5 2

2 3 5 2 5 42 13

24

2 2

x x x

x x x x x

x

+( )+ +( ) −( )+( ) + −( ) +( ) + −( )

+ −

>

£

xx −16

0≥

UN

IDA

D 3

195

U3 MAT 3M (146-215).indd 195 2/11/11 15:34:17

Page 196: 003000.000 grou

196

Resuelvan en grupo los siguientes problemas de planteo de sistemas de inecuaciones lineales. No olviden revisar sus respuestas.

1 Bárbara va a recibir el próximo mes $300000 por comisión de ventas, pero asegura que al juntarlo con su sueldo mensual actual no lo doblará. Añade que, hasta el momento, con los $150000 que paga por concepto de dividendo, le quedan, a lo más, $200000paraelrestodesusnecesidades.¿Entrequévaloresfluctúasusueldomensual?

2 Elías va al negocio Los más famosos de la Vega Central y compra 5 kg de tomates y 6 kg de limones, paga $3500 y recibe vuelto. Eliana lleva 6 kg de tomates y 6 kg de limones, pero al tratar de pagar con $3500 se da cuenta de que no le alcanza. ¿Entrequépreciosvaríaelkilodetomates?

3 Durante la resolución de un sistema de dos inecuaciones, Luis Ernesto encontró que x <7 y x >7. Pensó que el sistema no tiene solución, porque falta el 7... es decir, ningún valor real sirve...”.

¿Estándeacuerdoconsupensamiento?Justifiquensurespuesta.

Trabaja

“LOS MAS FAMOSOS DE LA VEGA CENTRAL”

OFERTA DE LA SEMANA

TOMATES SUPER REBAJADOS.

LIMONES GRANDES Y JUGOSOS POR SOLO

$200 EL KILO.

¡ ¡ L O S E S P E R A M O S ! !

Contesta las siguientes preguntas para revisar tu aprendizaje:

•¿Soycapazdereconocerunsistemadeinecuacioneslineales?

•¿Sécuálessonlospasosporseguirpararesolverlo?Descríbelos:

•¿Resolvícorrectamentelosejerciciospropuestos?

•¿Cooperéconeltrabajodemigrupocuandofuenecesario?

•Loquemásmecostódeestasecciónfue:

•Loqueharéparasuperaraquelloquemecostómásserá:

Revisemos lo aprendido

Los sistemas de inecuaciones son conjuntos de inecuaciones. En esta sección has aprendido a trabajar con sistemas de inecuaciones lineales con una incógnita. Para resolverlos debes desarrollar cada inecuación por separado y luego intersectar todas las soluciones parciales. Esta intersección será la solución del sistema.

Sintetizando

U3 MAT 3M (146-215).indd 196 2/11/11 15:34:18

Page 197: 003000.000 grou

UN

IDA

D 3

197

Trabaja más...Trabaja en forma individual

1 Resuelve los siguientes sistemas de inecuaciones:

a. − − −

+ −5 5 9

8 122

x x

x x

£

£

b. x x

x

2

2

2 99100+ £

c.

xx

x x

+−+

62

1

2 7 152

>

d.

1 2 01

7 3 1 08

xx xx

x

− + >−

+ + ≥

e.

x x

xx

x

2 5 6 02 1+ −+ −

£

f.

x x

x x

xx

2

2

8 20 07 0

9 15 3

0

− −− −

+−

£

£

2 Resuelve los siguientes sistemas de inecuaciones:

a. x x

x

+ +( ) −

+

2 3 15

3 8 10

<

b.

2 59

23

4 5 2

x x

x x

+ +

+ −( )

>

£

c. 5 4

3 7

x

x

− <

+ >

d. 2 9 12

3 1 3

x

x x

+

+ −

>

>

e.

( ) ( ) ( )

( ) ( )

23 5 7 6

7 1 21 13

3 9 2 1 26

x x x x

x

x x

+ − − ≥ +

+ + <

+ − − <

x x x x+( )− −( ) ≥ +( )3 5 7 6 2

3 9 2 1 26x x+( )− −( ) <

f.

x

x x

x x

+

+ −

+ +

3 9

2 6 1

15 1 8 1

£

£

Trabaja en grupo

1 Ricardo quiere estimar la medida del frente de su nueva casa. El arquitecto le ha dicho que todavía la está diseñando, pero que si a la medida del frente le agrega 1 m a cada lado, éste sobrepasa los 6 m y que, por otro lado, si disminuye 1 m a cada lado, el frente medirá menos de 5 m.¿Cuáleslaestimaciónque puede hacer Ricardo de la medida del frente desucasaconlosdatosrecibidos?

2 Amaro le preguntó a su hermano cuánto dinero tenía en el bolsillo. Él le respondió: “Tengo solo monedas de $100. Si al dinero que tengo le agregas $600, entonces, el total será mayor que $900. Por otro lado, si tuviera una moneda menos y a ese dinero le agregaras $500, entonces el dinero que queda sería menor que $900”. ¿CuántodineroteníaelhermanodeAmaroenelbolsillo?¿Cuántasmonedastenía?

3 Una empresa constructora ha decidido construir casas en el terreno que acaba de adquirir. El informe entregado al directorio, para que se dé la orden de comenzar a construir, dice que si se construyen 10 casas más que el doble de las que se presupuestaba, sobrepasarán las 20 y que, además, no serán más de 70.¿Cuáleselrangodecasasqueseplaneaconstruir?

U3 MAT 3M (146-215).indd 197 2/11/11 15:34:22

Page 198: 003000.000 grou

198

4 Para lograr estimar los kilos de pan que se consumirán en el próximo campamento scout, los organizadores decidieron leer la bitácora del campamento pasado para tener datos concretos. Cuando comenzaron a leer, se dieron cuenta de que los organizadores del campamento anterior no eran muy precisos. La bitácora decía así: “Al triple de pan que se comió hoy hubo que agregarle 5 kg y, de esta manera, compramos más de 8 kg. Ayer, que se consumió la misma cantidad de pan que hoy, se estableció que teniendo el doble del pan consumido, sobraron 6 kg y, con esto, se compraron menos de 12 kg”. Estima cuántos kilos de pan se consumieron diariamente.

5 El papá de Soledad le ha dicho que le va a dar dinero para sus vacaciones. Si al dinero que le ha dado, Soledad le agrega $15000, entonces el dinero que tendría superaría los $75000. Por otro lado, si tuviera el doble de lo que le ha dado su papá, podría pagar $90000 en pasajes de avión, pero quedaría con menos dinero que la

cantidad que su papá le dio. Estimen cuánto dinero le ha dado a Soledad su papá. Expresen su respuesta en intervalos.

6 A María Paz le encantan los chocolates. Su pololo le ofreció regalarle una barra muy grande si podía responder el siguiente desafío: “Hay números que cumplen con las siguientes condiciones simultáneamente. El doble del número aumentado en 10 unidades es menor o igual que el número disminuido en 5 unidades. Además, el cuadrado del número es mayor o igual que 36.¿Decuálesnúmerosestamoshablando?”

Respondan la pregunta que le hicieron a María Paz.

7 –¿Quéedadtienes,abuela?–preguntóCristina.–Hija mía, si sumamos el doble de tu edad y la mía, no superamos los 115 años. Ahora bien, si te digo que tú naciste cuando yo tenía 61 años, podrás responder tu pregunta porque mi edad es la mayor que puedas encontrar. Ayuden a Cristina y respondan su pregunta.

Mis apuntes

U3 MAT 3M (146-215).indd 198 2/11/11 15:34:23

Page 199: 003000.000 grou

UN

IDA

D 3

199

Taller de profundización

A resolver inecuaciones fraccionarias y cuadráticas con el método de análisis de signos.Desarrollarás las siguientes habilidades:• Identificar•calcular•comprender•Resolver•Relacionar•aplicar• interpretar y generar ideasHabilidades por actividad:• Identificarycalcular:1, 2, 3, 4•comprender y resolver: 5

En esta sección aprenderásBuscando otros métodos de resolución de inecuaciones fraccionarias y cuadráticas

Una de las características más bellas de la matemática es que ante un problema o ejercicio determinado, podemos resolverlo por varios caminos distintos y llegar a la solución correcta. Esto es lo que pasa con las inecuaciones fraccionarias y cuadráticas.

Si recuerdas lo estudiado y lo que nos enseñó Julián, para resolver,

por ejemplo, la inecuación xx+−5

2 30> , debíamos separarla, utilizando

casos (si ambos eran positivos o si ambos eran negativos). Pero

existe un método que nos ayudará a resolver esta y otras

inecuaciones que pueden ser más complejas. Lo llamaremos

método de análisis de signos.

Razonemos juntos:

Si se debe cumplir que xx+−5

2 30> , entonces se podrían

analizar los signos del numerador y denominador por separado.

Si es así, que algo sea mayor o menor que cero tiene un límite: ser igual a cero.

A estos límites donde numerador y denominador se hacen cero los llamaremos puntos críticos. Calculemos estos valores:

a. Cálculo de puntos críticos:

• 5 0 5x x+ = ⇒ = −

•2 3 0 32

x x− = ⇒ =

b. Confección de tabla de valores con los puntos críticos:

Numerador

Denominador

División de ambos

Tomamos un número menor que –5 y evaluamos cada una de las partes en ese número, colocando en el casillero correspondiente solo el signo

Lo mismo con un número entre –5 y 1,5

Lo mismo con un número mayor que 1,5

Esta fila es el resultado de los signos de la división de ambas filas

Recta numérica

–5

x+5

:

– + ++0

– – – +0

+ – +0

2x–3

32

U3 MAT 3M (146-215).indd 199 2/11/11 15:34:24

Page 200: 003000.000 grou

200

Entonces, para llenar la tabla debemos realizar los siguientes pasos:

•Colocarlospuntoscríticosencontradosenordenascendente,deizquierda a derecha.

•Evaluarcadaexpresión(numeradorydenominador)conun

número menor que –5, un número entre –5 y 32

y un número

mayor que 32

y en los puntos críticos.

Por ejemplo, si tomamos x = −6 y evaluamos en la primera fila x +5, tendremos que − + = −6 5 1; solo nos interesa el signo. Por lo tanto, colocamos en ese espacio un signo negativo −( ). Hacemos esto para toda la tabla.

•Efectuamosladivisión,teniendoencuentaquesolonosinteresanlos signos y que al dividir por cero la fracción quedará indefinida.

c. Dar la solución:

Por lo tanto, como xx+−5

2 30> , se está pidiendo que la división sea

mayor que cero, es decir, que sea un número positivo (resultado

+ en la tabla).

⇒ La solución es: 3, 5 ,2 −∞ − ∪ ∞

(Nota que los intervalos son abiertos en –5 porque la

desigualdad es estrictamente mayor que 0, y en 32

porque,

además, en ese punto el denominador se hace cero, es decir, no

está definida)

Es importante destacar que este método sirve cuando la inecuación está formada por un producto o división, ya que son las operaciones donde se pueden analizar signos bajo una regla general (en sumas o restas dependería del valor de cada número). Además, para poder aplicar este método se debe escribir una desigualdad en que el lado derecho sea cero (límite entre positivo y negativo).

U3 MAT 3M (146-215).indd 200 2/11/11 15:34:26

Page 201: 003000.000 grou

Junto con tu compañero o compañera de banco, resuelvan las siguientes inecuaciones por el “método de análisis de signos”.

1 2 3 27

70

2

2

x xx x− −−

2 x x

x

2 27

0++

<

3 x x

x x

2 105 10

0+( )

−( ) −( ) ≥

4 x

x x

+−( ) −( )

≤25 3

02( ) ( )2

2 05 3x

x x

+ ≤− −

5 Emilio aprendió hace unos años en su colegio, que a partir de un número podía escribir, en forma general, múltiplos, sucesores, antecesores, etc. Él ha escrito, a partir de 2x, su sucesor par, su antecesor, el triple de él disminuido en 5, y el sucesor de este último.

Ahora ha pensado que puede formar dos razones, una con los dos primeros números formados y la otra con los dos últimos, en el mismo orden en que los ha pensado. “Hasta aquí –se dijo– es muy fácil calcular para qué valores de xseformaráunaproporciónconellas,pero,¿paraquévaloresdex la primerarazónserámenorquelasegunda?”

Trabaja

Revisemos lo aprendido

Responde las siguientes preguntas:

•¿Entendíelmétodoplanteadoeneltallerycomprendíqueesunmétodoalternativopararesolveralgunostiposdeinecuaciones?

•¿Fuicapazderesolvercorrectamentelosejerciciospropuestoseneltaller?

•¿Aportéamigrupoparaterminarcorrectamentelasactividadespropuestas?

•Eligeelmétodoquemástegusta(porestudiodecasosoporanálisisdesignos)yexplicaporqué.U

NID

AD

3

201

U3 MAT 3M (146-215).indd 201 2/11/11 15:34:28

Page 202: 003000.000 grou

202

Evaluación Unidad 3

Síntesis conceptual de la unidad

I. Responde en tu cuaderno las siguientes preguntas de la forma más completa posible. Da un ejemplo en cada caso.

1 ¿Quéesunadesigualdad?

2 ¿Quésucedeconelsentidodeunadesigualdadalmultiplicarlaporunnúmeronegativo?¿Cuándomássucedelomismo?

3 ¿Quéesunintervalo?

4 ¿Quésignificaqueelintervalo ,a b sea cerrado en a y abierto en b?

5 ¿Quéesunainecuación?

6 ¿Cuáleselerrorenelsiguientedesarrollo?

xx

x

x

x

+ ⋅

+−

12

0 2

1 01

>

>

>

/

7 ¿Quécondicióncumplex si x a> ?

8 ¿Quécondicióncumplex si x b< ?

9 ¿Quéesunsistemadeinecuacioneslineales?

10 ¿Cómosedeterminalasolucióndeunsistemadeinecuacioneslineales?

II. Completa el siguiente mapa conceptual:

inecuaciones

Lineales

Fraccionarias

cuadráticas

con valor absoluto

Sistemas de inecuaciones

lineales

Se resuelven

Desigualdades

Propiedades

tipos de intervalos

intervalos

Desigualdades e inecuaciones

cómo se resuelven

U3 MAT 3M (146-215).indd 202 2/11/11 15:34:28

Page 203: 003000.000 grou

UN

IDA

D 3

203

III. Desarrollen cada uno de los ejercicios propuestos. Háganlo en el cuaderno y no olviden revisar sus respuestas.

1 Escriban el menor intervalo que

contenga: 13 5;0,7; 3; ; ; 4,07;3 9

− π −π −

2 Encuentren los números que divididos por 5 no exceden a 0,34.

3 Si 2 4x− ≤ ≤ , establezcan todos los valores

que toma la función f xx( ) = +3

3 .

4 Usando una tabla de valores, muestren que si a y b son números reales, se cumple a b a b+ ≤ + . Esta desigualdad es muy

famosa en el desarrollo del cálculo y se llama “La desigualdad del triángulo”.

5 Para lanzar un objeto al espacio y que quede rotando alrededor de la Tierra es necesario que sea lanzado con una velocidad mayor o igual a 11 2, km s (sin considerar el roce con el aire). En general, la velocidad de escape es la velocidad mínima inicial que necesita un objeto para escapar de la gravitación de un cuerpo astronómico y continuar desplazándose sin tener que hacer otro esfuerzo propulsor.

En una tabla, representen cada una de las siguientes situaciones:

“Si el objeto se traslada a una velocidad inferior a 0,71 veces la velocidad de escape, no puede conseguir una órbita estable. Ahora bien, si tiene una velocidad igual a 0,71 veces la velocidad de escape, la órbita es circular; y a una velocidad mayor, la órbita se convierte en una elipse hasta que alcanza la velocidad de escape y luego la órbita se convierte en una parábola”.

IV. En tu cuaderno, desarrolla las siguientes operaciones con intervalos. Ayúdate graficándolos en la recta numérica:

1 1 7 1 6, ,] [∪ −] ]

2 5,3 3,5− ∩

3 0 3 3, ,] [∪[ [•4 R∩∅

5 −( )∩ −( )∩ −( )2 5 3 4 4 4 7, , , ;

6 −] ]∪ −] [( )∩ −] [•, , , ; ,2 3 4 3 5 4 4

7 2 24 4 0 5 7, , , ;•[ [∩ −] [( )∪ −

8 26 541, ,5 1,69 90

−∞ ∪ − ∩

9 −] ]∪ −[ [( )∩ [ ]∪

•, , , ,3 6 5 1 6 6 809

90

10 −∩ −

( )∩

( )3 3 3 6 5 1 6 6 7, , , ,

V. Resuelve las siguientes inecuaciones y sistemas de inecuaciones lineales:

1 8 12

13

2 15

2 53

− +

− +

x x x x x≥

2 − −( ) ≥ −( )2 1 7 1 3 1, x x

3 4 6 3 53

9 2 29

− −

xx<

4 x x x x x−( ) +( ) − −( ) > − −( )1 1 2 5 5

5 x x x− −( )

−−

3 26

1 32

£

6 7 1 5 117

7x x x x−( ) −( ) ≥ −

7 x

x

+( )−

+( ) ≤3

32

20

( )( )

3 2 03 2

x

x

+− ≤

+

8 5 22

53

xx+−

<

U3 MAT 3M (146-215).indd 203 2/11/11 15:34:34

Page 204: 003000.000 grou

204

9 2

2

7 02

x xx x

− ≥− −

10 2 1 1xx+ ≥

11 25 10xx

+ <

12 2 1

52x

x−+

13

x

x

438

0

53

1 4

>

£

14 x

x x

2 3

2 2 0 1 5 45

<

−( ) +,

15

1 15

11 2

xx

x

<

<−

16

x

x

x

4 1

3 1 43

£

£

VI. Resuelve los siguientes problemas:

1 “Si a y b son números reales cualesquiera, entonces a b a b− ≤ − ”, dijoImeldaaRosaura.“Pero¿seráverdad?”,pensóestaúltima.

Usa una recta numérica, escoge valores de a y b y verifica la afirmación.

2 Expresa, usando una desigualdad con valor absoluto, los números reales menores que 4 pero superiores a –2.

3 Sin resolver la inecuación 2 3 1x − < , decide si es posible comprobar si la solución está dada por 1 3< <x . Justifica matemáticamente.

4 Rómulo lee unas instrucciones con respecto a un medicamento en gotas que están sugeridas en una página de internet: “Para menores de 4 años, solo 5 gotas; para mayores, pero que no alcancen los 12 años, 7 gotas. Si tiene más edad y hasta los 20 años, 10 gotas. Para mayores, 15 gotas”.

Elige alguna forma de expresar estas instrucciones usando intervalos.

5 “Bueno,dijofuriosoFulanoaSutano,

siempre te haces notar cuando vas a la

pizarra. Ahora mira esto: se dan dos

números impares a y b (positivos), tal que

a < b¿puedesdemostrarque1 1b a

− > − ?”

6 La alegría del barrio fue disponer de un sitio de 75 m por 60 m para instalar algunos juegos. Estos deben ocupar entre el 80 y el 90% del terreno disponible. Todos opinan, pero, en resumidas cuentas, requieren encontrar todas las medidas posibles para un área rectangular cuyo ancho sea al largo como 2 es a 3.¿Cuálessonestasmedidas?

7 En un test de habilidades matemáticas te presentan el siguiente desafío. Averiguar todos los posibles valores de x, sabiendo que en el platillo derecho de la balanza hay x gramos de bicarbonato y que Marco agregó cinco gramos de esta misma sustancia en el otro platillo vacío, pero no alcanzó a equilibrar la balanza y ella sigue inclinada hacia el mismo platillo. Por otro lado, a María Ignacia se le informó que si ella agregara la mitad del valor de x a los cinco gramos puestos por Marco, la balanza se inclinaría al otro lado de donde estaba. Francisco,porsuparte,determinóquesiélquitaba un cuarto del bicarbonato que había en el platillo inicialmente, este todavía no superaba los 5 gramos.

¿Cuálesturespuestaaestedesafío?

8 Clara es la hija del medio, también en estatura, de los Jiménez. Su hermana menor mide 1,65 m y su hermana mayor supera en veintitrés centímetros a esta última.

U3 MAT 3M (146-215).indd 204 2/11/11 15:34:37

Page 205: 003000.000 grou

UN

IDA

D 3

205

Clara es un poquito más alta que la estatura promedio de su curso (1,75 m). ¿CuántopuedemedirClara?

9 Manuel necesita construir un paralelepípedo de base cuadrada. Para ello, sabe que el alto debe ser de 10 cm y que su volumen no puede superar los 560 cm3. ¿Cuálespuedenserlosvaloresdelaaristadelabase?

VII. Desarrolla los siguientes ejercicios y marca la alternativa correcta. Revisa tus respuestas al final del libro y calcula tu porcentaje de logro.

1 ¿Cuáldelassiguientesalternativascorresponde a la definición correcta de la relación de orden “mayor que”(>) entre números reales a y b?a. 0a b a b> ⇔ − >b. a b b a> ⇔ >c. a b a b> ⇔ − > −d. a b b a> ⇔ − ∈R

e. Ninguna de las anteriores.

2 Si aesunnúmerorealnegativo,¿cuál(es)delas siguientes desigualdades es(son) siempreverdadera(s)?

I. 0a a+ ≥II. a+( ) >1 02

III. 0a− >a. Solo I y IIb. Solo II y IIIc. Solo I y IIId. I, II y IIIe. Ninguna de las tres.

3 Si x x− −4 2 3> , entonces la inecuación equivalente es:

a. 2 3 0x + >

b. 2 3x >c. 3 2 0− x <d. 2x >e. 3 2 0x − >

4 La solución para x en la inecuación 56

5 34

x x− £ se puede expresar como:

a. 48x ≤ −b. 36x ≤ −c. 18x ≤ −d. 18x ≤e. 60x ≤

5 El conjunto solución de la inecuación 7 3x − < es:

a. { }/ 10x x∈ <R

b. { }/ 4x x∈ <R

c. { }/ 4x x∈ > −R

d. { }/ 4x x∈ >R

e. { }/ 4 10x x∈ < <R

6 Gg x( ) representa los gastos de una persona.

Si G x a x( ) = −3 2 , donde a es un número

real fijo mayor que cero, entonces cuando x

varía entre 4a

y 2a

, el gasto varía entre:

a. 2a y a

b. 52

a y a

c. 3a y 2a

d. 3a y a

e. 52

a y 2a

7 a, b y c son tres números reales tales que a b< y 0c < .¿Cuál(es)delassiguientesrelacioneses(son)verdadera(s)?

I. ac bc<II. a c b c+ < +III. a c b c− < −

a. Solo Ib. Solo IIc. Solo I y II

d. Solo II y IIIe. I, II y III

8 Al resolver la inecuación 2 5 4 2x x−( ) ≥ + , el conjunto solución es:

a. 3x ≥b. 3,5x ≥c. 3,5x ≤

d. ∅e. R

U3 MAT 3M (146-215).indd 205 2/11/11 15:34:43

Page 206: 003000.000 grou

206

9 Sean p, q, s, t números reales, entonces p q s t+ < + si:

(1) s t> y p t<(2) q s< y s t q− >

a. (1) por sí solab. (2) por sí solac. Ambas juntas, (1) y (2)d. Cada una por sí sola, (1) o (2)e. Se requiere información adicional

10 La inecuación que representa al siguiente gráfico es:

–3 3

a. 3x ≥b. 3x ≤c. 3x >d. 3x <e. 3x =

11 ¿Dequéinecuaciónno es solución el siguientegráfico?

–2

a. −2 4x >b. −4 2> xc. 2x− <d. 8 4< − x

e. 2 x− >

12 ¿Quéinecuacióndescribealsiguienteenunciado: Todos los números reales que están al menos a tres unidades de –1?

a. 1 3x − ≥b. 3 1x − ≥ −c. 1 3x + ≥d. 1 3x + ≤e. 1 3x + >

13 El gráfico del conjunto solución de la inecuación x x2 4 21 0+ − ≥ es:

–7 3

–7 3

–7 3

–7 3

e. Ninguna de las anteriores.

a.

b.

c.

d.

14 El conjunto solución de 25

54

3 84

53

x x+ − +> es:

a. 95 ,21 ∞

b. 95,21

−∞

c. 95,21

−∞

d. 95 ,21 ∞

e. 95 95,21 21

15 Los valores que satisfacen la inecuación 2 8

32x −

−−£ corresponden a:

a. 1x ≤

b. 32

x ≥

c. 7x ≥

d. 92

x ≤

e. 0x ≥

U3 MAT 3M (146-215).indd 206 2/11/11 15:34:47

Page 207: 003000.000 grou

UN

IDA

D 3

207

16 ¿Cuál(es)delossiguientesnúmerospertenece(n) al conjunto solución de la inecuación 2 3 5x − £ ?

I. 4II. 5III. 3a. Solo Ib. Solo IIc. Solo IIId. Solo I y IIIe. I, II y III

17 ¿Cuál(es)delossiguientesnúmerosNOcumplen con la siguiente condición: La quinta parte de un número disminuido en 6 es mayor que 10?I. 80II. 60III. 120a. Solo IIb. Solo I y IIc. Solo I y III

d. Solo II y IIIe. I, II y III

18 Al intersectar los intervalos 5,4− y 3,5− se obtiene el conjunto:

a. { }/ 5 5x x∈ − ≤ ≤R

b. { }/ 3 5x x∈ − ≤ ≤R

c. { }/ 3 4x x∈ − < ≤R

d. { }/ 3 5x x∈ − < ≤R

e. { }/ 3 4x x∈ − < <R

19 El conjunto solución para el sistema de

inecuaciones 1 21 2

x

x

− <+ > es:

a. 1,3 b. , 3 3,−∞ − ∪ ∞ c. ,1 3,−∞ ∪ ∞ d. 1,3 e. 3,∞

20 La distancia a la que una persona se encuentra de Santiago (en km) está dada por la inecuación 3 200 50x x x− < − + , donde xrepresentadichadistancia.¿AquédistanciaseencuentradeSantiago?

a. A menos de 150 kmb. A exactamente 150 kmc. A más de 150 kmd. A menos de 250 kme. A exactamente 250 km

21 Si 3 0a≥ ≥ y 3 0b− ≤ ≤ ,¿quévalor(es)puede tomar a b+( )?a. Los valores entre –3 y 3, ambos incluidos.b. Solo los valores entre –3 y 0, ambos

incluidos.c. Solo los valores entre 0 y 3, ambos

incluidos.d. Solo el 0.e. Ninguno de los anteriores. DemRe

22 Si a b> , con a b, ∈R, entonces, se puede afirmar siempre que:

I. a b>II. 2 2a b>III. ac bc> , si 0c >a. Solo IIb. Solo IIIc. Solo I y II

d. Solo II y IIIe. I, II y III

23 Juan ha dicho que el número de bolitas (b) que tiene no supera las 25 y que exceden las 12. Este enunciado se puede escribir como:

a. 12 25b≤ <

b. 12 25b< ≤

c. 12 25b≥ ≥

d. 12 25b> >

e. Ninguna de las anteriores

24 La inecuación 4 2 5 7 1x x+( ) ≥ +( )− tiene por solución al conjunto:

a. 26,•[ [b. − −] [•, 26

c. − −] ]•, 26

d. −] ]•,26

e. −[ [26,•

U3 MAT 3M (146-215).indd 207 2/11/11 15:34:50

Page 208: 003000.000 grou

208

25 Gráficamente, la solución de la inecuación 4 6 7

2 3x x+ −≥ es el conjunto:

a. 47

b. 167

c. 213−

d. 1613

e. 27−

26 La solución de

−] [∪ − −] [( )∩ −] [9 8 16 5 3 21, , , ,•

es el intervalo:

DemRe

a. −] [3 8,b. −] [9 8,

c. −[ [16 21,d. −] [9 5,

e. − −] [9 8,

27 La solución de la inecuación 4 1 0

5x

x− ≥+

es:

a. −] ]∪

•, - 5 •14

,

b. −] [∪

•, - 5 •14

,

c. −] [∪

•, - 5 •14

,

d. −

5 14

,

e. −

5 14

,

28 La solución de la inecuación 3 1 9 5x x+ < − es:

a. −] [•,5∞−] [•,5b. 1 5,] [c. −] [•,1∞−] [•,1d. −] ]•,1∞−] ]•,1e. −] ]•,5∞−] ]•,5

29 La solución de la inecuación 25 2 2 61x x− > + es:

a. −] [∪ ] [•, - 9 •7,

b. −] [∪ ] [•, - 7 •9,

c. −[ ]9 7,

d. −] [9 7,

e. ∅

30 La solución del sistema de inecuaciones x x

x x

+ +( )− −

2 3 72 5 1 8

£ es:

a. 19,2

−∞ −

b. 3,5

−∞

c. 19 3,2 5

d. 19 ,2

− ∞

e. 3 ,5 ∞

U3 MAT 3M (146-215).indd 208 2/11/11 15:34:57

Page 209: 003000.000 grou

UN

IDA

D 3

209

31 ¿Cuáldelossiguientesintervaloses

subconjunto del conjunto solución de la

inecuación x x+ −911

23

1£ ?

a. 1 ,2

− ∞

b. 6 ,

19 ∞

c. 1,2

−∞ −

d. 6,

19 −∞ −

e. 6,

19 −∞ −

32 Marcela quiere estimar cuántos libros tiene la biblioteca de su colegio. En su investigación encontró que el triple de los libros existentes (l) disminuido en 933 no superan las 12603 unidades. Entonces, la relación que Marcela tiene para los libros es:

a. 4.512l ≤ 4512

b. 3.890l ≤3890

c. 4.512l ≥ 4512

d. 3.890l ≥ 3890

e. 13.533l ≤ 13533

33 La siguiente representación gráfica representa al conjunto:

–5

a. { }/ 5x x∈ ≤ −R

b. { }/ 5x x∈ < −R

c. { }/ 5x x∈ > −R

d. { }/ 5x x∈ ≥ −R

e. { }/ 5 5x x∈ − ≤ <R

34 Resolver la inecuación 2 5x + < es equivalente a resolver:

a. 3 7x x≤ ∩ ≥ −

b. 3 7x x< ∪ > −

c. 3 7x x< ∩ < −

d. 3 7x x> − ∩ < −

e. 3 7x x< ∩ > −

35 La solución de la inecuación 5 9

21310

3x x+ − −≥ es el conjunto:

a. 25/4

x x ∈ > −

R

b. 25/4

x x ∈ ≥ −

R

c. 25/4

x x ∈ < −

R

d. 25/4

x x ∈ ≤ −

R

e. 25/4

x x ∈ ≥

R

36 El conjunto solución de la inecuación x x2 4 3 0− + £ es igual al de la inecuación:

a. 2 1x − <

b. 2 1x − ≥

c. 2 1x − ≤

d. 1 2x − ≤

e. 1 2x − ≥

37 La inecuación que representa al enunciado “existe un número x tal que es mayor o igual que 5 o también menor o igual que –5” es:

a. 5x ≤

b. 5x ≥

c. 5x <

d. 5x >

e. 5 0x − ≥

38 ¿Cuál(es)delassiguientesafirmacionesNOes(son) verdadera(s) con respecto a la inecuación x x +( ) ≤9 36( )9 36x x + ≤ ?

I. El conjunto solución es −[ ]12 3,II. –15 no es parte de la solución de la

inecuación

III. 0 2,] [ es subconjunto del conjunto solución de la inecuación:

a. Solo Ib. Solo IIc. Solo I y IIId. Solo II y IIIe. Todas son verdaderas

U3 MAT 3M (146-215).indd 209 2/11/11 15:35:00

Page 210: 003000.000 grou

210

Mis apuntes

39 El conjunto solución de la inecuación x x x+( ) ≥ −( )1 3 5 es:

a. ∅b. R

c. { }15−R

d. { }2− −R

e. No se puede determinar DemRe

40 El conjunto solución de la inecuación

02

xx

≥+

es:

a. { }/ 2 0x x x∈ ≥ − ∧ ≤R

b. { }/ 2 0x x x∈ ≤ − ∨ ≥R

c. { }/ 2 0x x x∈ < − ∨ ≥R

d. { }/ 2 0x x x∈ ≥ − ∨ ≤R

e. { }/ 2 0x x∈ − ≤ ≤R

U3 MAT 3M (146-215).indd 210 2/11/11 15:35:01

Page 211: 003000.000 grou

UN

IDA

D 3

211

Criterios para autoevaluar tu aprendizaje

Marca con una 8 en el casillero correspondiente según la evaluación que hagas de tu trabajo y tu aprendizaje.

Indicadores +++ ++– +––

Respondí correctamente sin ayuda las preguntas de la síntesis conceptual de la unidad.

completé correctamente sin ayuda el mapa conceptual de la síntesis conceptual de la unidad.

Pude resolver correctamente los ejercicios de evaluación de la unidad.

me siento capaz de resolver cualquier ejercicio similar a los planteados sobre desigualdades e inecuaciones.

aporté al trabajo grupal cuando fue necesario.

Recuerda que si tuviste alguna dificultad con los contenidos o ejercicios de esta unidad, debes repasar y preguntar a tus compañeros o compañeras que saben más, o a tu profesor o profesora. Para continuar con la siguiente unidad necesitas lo estudiado hasta ahora.

Calcula el porcentaje de logro que obtuviste enelítemVI.

Porcentaje de logro

PL = .Nº de respuestas correctas2040

100

Porcentaje de logro

Nota obtenida

Nivel de mi aprendizaje

Cómo mejorar

29% a 0% 1,0 a 2,5 alertaLos contenidos no han sido comprendidos. Debes repasarlos nuevamente y rehacer los ejercicios. Fíjate muy bien en los ejercicios resueltos. Debes pedir ayuda. ¡ánimo! con trabajo y estudio se puede.

49% a 30% 2,6 a 3,5 muy bajo

La mayoría de los contenidos no han sido comprendidos. Debes volver a repasarlos y rehacer los ejercicios incorrectos. Pídeles ayuda a tus compañeros o compañeras. Vuelve a estudiar; seguro que lo lograrás.

59% a 50% 3,6 a 3,9 Bajo

Una gran parte de los contenidos no han sido comprendidos es su totalidad. Rehaz aquellos ejercicios incorrectos, pero antes, vuelve a estudiar los contenidos. trata nuevamente, pero primero revisa los contenidos de la unidad. Pide ayuda a tus compañeros o profesor.

69% a 60% 4,0 a 4,7 medio bajo

adquiriste una parte de los contenidos, pero aún faltan. Debes corregir aquellos ejercicios incorrectos y revisar los contenidos de los temas en que fallaste. Bien, has avanzado, aunque aún queda camino por andar.

79% a 70% 4,8 a 5,4 medio

Has logrado entender una buena parte de los contenidos; sin embargo, aún faltan otros y afianzar los primeros. corrige las respuestas erróneas; puedes pedir ayuda si lo deseas. Revisa los contenidos. ¡Puedes hacerlo mucho mejor!

89% a 80% 5,5 a 6,2 medio alto

Has logrado adquirir gran parte de los contenidos. Revisa los ejercicios en los que fallaste y repasa aquellos contenidos menos logrados. ¡Lo has hecho bien!

100% a 90% 6,3 a 7,0 alto

Has logrado aprender todos o casi todos los contenidos tratados. ¡muy bien!, has logrado los objetivos propuestos. Sigue así.

U3 MAT 3M (146-215).indd 211 2/11/11 15:35:01

Page 212: 003000.000 grou

212

Evaluación de síntesis 2 (Unidades 1 a 3)

I. Sopa de letras. Dadas las siguientes definiciones, encuentra el concepto al que corresponden.

S W P R U P m V D N D W F a Z N x V D iQ G a G m D D R G S Z U c x R O G P e BF Q R a i Z c U a D R a D a m i N U S JD K Y P O Y F O R R x B t F H c D a i cV G D i S c R i m i N a N t e a t Y G tm H t Y Z t U a V N c O Y F a U U L U ci K F F Z P m J a i Z x P D D c a O a QS D W x L Q R Q a W J t N G Y e F U L tt e G R F e Y N F Y S F F Y W N O c D RN O i c a Z i L a N O i c a R i S Z a Zx W L H F G O J Y t H P U D Y J N a D Fm V B J t G O N L Y a t L G x t Z O t cJ e F L H H e S J R t e W S m U R J N UO R i a m D c K a N V U m c V B i Y H PW t B Y U B K B O O F U a m P J O i D ZD i L R B D O W D m m K H Z O Z J m x iH c e W V L Y D m R S Z Q H L B U a K LH e t O a V Q L K V O G L L m G P a e HO L a V R e t N i G Y W e c e F c R R ZD U e Q G L c F N U a U G t Z O W c m x

1 Formamatemáticadeexpresarunarelación de orden (mayor o menor)

2 Desigualdad que se verifica para ciertos valores de la variable involucrada

3 Método por el cual se eliminan las raíces del denominador de una expresión fraccionaria

4 Representación gráfica de una función cuadrática

5 Representación de un subconjunto de números reales

6 b ac2 4−

7 Máximo o mínimo de una función cuadrática

8 Potencia de exponente 12

II. Resuelve los siguientes ejercicios. Coloca todo el desarrollo en el cuaderno y revisa tus respuestas en el solucionario.

1 Resuelve los siguientes ejercicios de operatoria de raíces.

a. 3 2 5 122

−( )b. 44 5 396 7 275− +

c. +− −

2 33 2 2 3

2 Resuelve las siguientes ecuaciones.

a. 2 1 23x x+ + =

b. x x x+( ) −( ) + +( )+ =6 8 2 3 1 41 0

c. 3 7 5 1

32x

xx− = + +

d. ⋅ + = ⋅ +3 3 3 33 3 48x x x

3 Dadas las siguientes parábolas, determina vértice y puntos de corte de la parábola con los ejes coordenados.

a. y x x= − −4 35 92

b. f x x x( ) = −( ) −( )5 3 2

c. yx x= −2 2

3

U3 MAT 3M (146-215).indd 212 2/11/11 15:35:05

Page 213: 003000.000 grou

EV

AL

UA

CIÓ

N

DE

SÍN

TE

SIS

213

4 Resuelve las siguientes inecuaciones o sistemas de inecuaciones.

a. 7 8 10 2 6 3 5 1x x x+( )− +( ) > −( )

b. x x x− − + −5

62 7

48 3

12£

c. − ≥+

7 2 51

xx

d. 12 33

24 1x

x− −<

e.

( )( )

4 3 9 10

7 52 15 2 4

x x

xx

+ > −

−− ≤

4 3 9 10x x+ > −( )25

12

7 54

x x− ≤

−( )25

12

7 54

x x− ≤

−( )

III. Resuelve los siguientes problemas:

1 Mónica está haciendo su tarea de

Matemática y tiene un ejercicio que no ha

podido resolver; este dice así: “Existe un

número que al dividirlo por

5 3 2 5 1−( ) +( ) da por resultado

2 3 3 52

− −( ) .¿Cuálesestenúmero?”Túya tienes los conocimientos necesarios

para ayudar a Mónica, da la respuesta que

ella busca.

2 Una empresa estima que los costos de producción (C) del producto que desean lanzar al mercado está dado en función del número de artículos (a) que se deben producir por la función C a a( ) = − +2 5 12, donde C está medido en miles de pesos y a encientosdeartículos.¿Cuáleselcostomínimo y cuántos artículos se producen conestecosto?

3 Esteban trabaja en laboratorios haciendo

experimentos con ciertos microrganismos

que habitan en las plantas. Su trabajo

consiste en estudiar el comportamiento de

las poblaciones de microrganismos para

que estos no afecten el normal crecimiento

de las plantas. En su último experimento

determinó que el porcentaje de

crecimiento de los individuos de la

población está dado en función del tiempo

(medido en semanas) según una función

cuadrática. Si Esteban ha anotado en sus

informes que aquella función pasa por los

puntos (2, 0); (5, 0) y 7 9,2 2

, determina la

función P tc ( ) (porcentaje de crecimiento

en función del tiempo).

4 Pilar está haciendo su tarea de Matemática. Ella debe encontrar la función que está representada por la curva en rojo y la medida del segmento que une los puntos A y B. Para esto, su profesora le ha dado el siguiente dibujo.

Ayuda a Pilar y da la respuesta que necesita.

8

6

4

2

–2

–4

–6

y

x

A

B

10–1–5 –3–7 –2–6 –4–8–9

U3 MAT 3M (146-215).indd 213 2/11/11 15:35:08

Page 214: 003000.000 grou

214

5 Vicenteentróesteañoalacarreradeingeniería. En su clase de cálculo están estudiando funciones. En la última clase su profesor dijo, como parte de una de las explicaciones de un ejercicio, que era fácil encontrar los puntos de intersección de la parábola 24 3 9y x x= + + con la recta

5 14y x= − + . Él les dio estos puntos y prosiguió con su explicación. Ahora que Vicenteestárevisandolaclaseensucasaquiere hacer el desarrollo para llegar al resultadodelprofesor.¿Cuálesfueronlospuntosdadosporelprofesor?

6 Una piscina rectangular, de la misma profundidad en todo su largo y ancho, tiene medidas, en metros, que son números pares consecutivos, siendo el menor de ellos su profundidad. Si la superficie del fondo de la piscina mide 48 m2,¿cuálessuprofundidadysucapacidadenlitros?

7 La profesora de César les ha planteado el siguiente acertijo: “Existen números que cumplen que la diferencia entre el triple de su sucesor y el cuádruple de su antecesor es un número no mayor que 6 y mayor que – 9?”Ellalesofreció2 décimas para su próxima prueba si lo podían resolver. César lo hizo correctamente y le mostró su resultadoalaprofesora.¿Cuálfueeste?

8 La señora Estela y su marido tienen una verdulería. Ellos desean fijar el precio de venta de los tomates. El marido le ha dicho que el porcentaje de ganancia (sobre el precio en que ellos compraron los tomates) debe ser de un 20% para no encarecer tanto los tomates y que las personas los compren. Si, finalmente, el precio del kilo de tomates no excedió los $550,¿cuálfueelprecio máximo que ellos pudieron haber pagado para comprar los tomates para sunegocio?

IV. Marca la alternativa correcta.

1 El resultado de multiplicar 2 5 3 3− por − −3 5 2 3 es:

a. − +12 5 15

b. − +12 5 8

c. − +48 5 15

d. − +12 13 8

e. − −48 5 15

2 La expresión 2 5

10 2 2−

+ es equivalente a:

a. – 2

b. 2

c. − +27 10 246

d. 27 10 2

46−

e. − −27 10 2

46

3 El recorrido de la función f x x( ) = − −2 7 3 es:

a. R

b. −[ [3,•

c. 7,•[ [

d. 3,•[ [

e. 7 ,2 ∞

4 El conjunto solución de la ecuación 3 1

54 1

35 1

71

2x x x− + + = + + es:

a. { }2

b. 5375

c. 532,75

d. 532,75

e. 532,75

− −

U3 MAT 3M (146-215).indd 214 2/11/11 15:35:13

Page 215: 003000.000 grou

EV

AL

UA

CIÓ

N

DE

SÍN

TE

SIS

215

5 El(los) valor(es) que debe tener k en la ecuación − − + −( ) =5 3 5 2 7 02x x k para que esta tenga una sola solución en el conjunto de los números reales es(son):

a. 691200

b. 709200

c. 691 ,200 ∞

d. 709 ,200 ∞

e. No se puede determinar

6 El punto máximo de la función y x x= − + −3 2 72 es:

a. 1 20,3 3−

b. 1 20,

3 3−

c. 1 20,

3 3− −

d. 1 80,3 3−

e. 1 80,

3 3− −

7 Dada la función y x x= + +8 14 32 , se puede afirmar que:

I. Tiene un punto mínimo

II. Corta al eje x en dos puntos

III. Es cóncava negativa

a. Solo Ib. Solo IIc. Solo III

d. Solo I y IIe. Solo I y III

8 El conjunto solución de la inecuación 4 32 1

6xx+−

≥ es:

a. 1 9,2 8

b. 1 9,2 8

c. 9 1,8 2

− −

d. 1 9, ,2 8

−∞ ∪ ∞ e. ∅

9 Al resolver el sistema

( )( ) ( )2 2

2 3 5 1 11

7 2 3

x x

x x x

≤ + −

+ + − >

2 3 5 1 11x x≤ +( )−2 3 5 1 11x x≤ +( )−7 2 3 2 2x x x+( )+ −( ) >

se obtiene por

solución el conjunto:

a. 823,

13 −

b. 8 ,

17 ∞

c. 23,13

−∞

d. − −] [•, 23

e. 8 ,

13 ∞

10 El conjunto de la inecuación 3 5 9 1x x+ +< es:

a. 2 ,3 ∞

b. 1 ,2

− ∞

c. 1 2,2 3

d. 1 2,2 3

e. 1 2, ,2 3

−∞ − ∪ ∞

U3 MAT 3M (146-215).indd 215 2/11/11 15:35:16

Page 216: 003000.000 grou

U N I D A D 4

Algo más sobre triángulos

rectángulos

tRiáNGULOS RectáNGULOS

teORemaS:• TeoremadePitágoras.• TeoremadeEuclides.

tRiGONOmetRÍa:• Relaciónentreángulosyladosenuntriángulorectángulo.

APLICACIONES:• Resolucióndeproblemasdelavidadiaria.

• Tríospitagóricos,TeoremadeFermatyotros.

216

U4 MAT 3M (216-289).indd 216 2/11/11 15:38:38

Page 217: 003000.000 grou

O B J E T I V O S F U N D A M E N T A L E SY T R A N S V E R S A L E S

En esta unidad:

Conocerás y utilizarás conceptos matemáticos de nociones de trigonometría en el triángulo rectángulo, mejorando en rigor y precisión la capacidad de análisis, de formulación, verificación o refutación de conjeturas.

Aplicarás los conocimientos adquiridos en la resolución de problemas y en el análisis de situaciones concretas.

Resolverás desafíos con grado de dificultad creciente, valorando tus propias capacidades.

Percibirás la matemática como una disciplina que recoge y busca respuestas a desafíos propios o que provienen de otros ámbitos.

217

U4 MAT 3M (216-289).indd 217 2/11/11 15:38:39

Page 218: 003000.000 grou

A P R E N D I Z A J E S E S P E R A D O S

C O N T E N I D O S

En esta unidad se espera que:

1 Reconozcas que las razones trigonométricas son cocientes invariantes entre las medidas de los lados, en familias de triángulos rectángulos semejantes.

2 Conjetures sobre propiedades geométricas en triángulos rectángulos semejantes y las demuestres utilizando diversos recursos argumentativos.

3 Resuelvas problemas que involucran propiedades de los triángulos rectángulos; analices las soluciones que se obtienen y su pertinencia.

4 Reconozcas el sentido y la necesidad de la demostración en matemática y, en particular, conozcas la historia del teorema de Fermat-Wiles y los tríos pitagóricos.

Teorema de Euclides.

Razones trigonométricas en el triángulo rectángulo.

Aplicación de las razones trigonométricas a problemas de medición de la vida diaria.

Otra mirada del teorema de Pitágoras.

Tríos pitagóricos.

Teorema de Fermat y otros.

218

U4 MAT 3M (216-289).indd 218 2/11/11 15:38:39

Page 219: 003000.000 grou

La trigonometría se remonta al tiempo de los babilonios. Ellos la utilizaban en la agricultura. Posteriormente, los egipcios la utilizaron en la construcción de pirámides. Más tarde, en Grecia, la astronomía hizo uso de sus relaciones entre ángulos y lados en los triángulos. Allí, Hiparco de Nicea fue el primer representante. Luego de 300 años, otro matemático griego, Ptolomeo, hizo de su libro el más consultado por los astrónomos. En el siglo XVII, la trigonometría contribuyó al desarrollo de conceptos como los logaritmos, el cálculo y otros.

Por otro lado, las relaciones métricas en el triángulo rectángulo han sido ampliamente desarrolladas en este ámbito, siendo Euclides uno de sus mayores exponentes. Con su serie de libros llamados “Los elementos”, recorre la geometría conocida actualmente. De los trece libros que la componen, los seis primeros corresponden a lo que se entiende todavía como geometría elemental. En ellos, Euclides recoge las técnicas geométricas utilizadas por los pitagóricos para resolver lo que hoy se consideran ejemplos de ecuaciones lineales y cuadráticas, e incluyen también la teoría general de la proporción, atribuida tradicionalmente a Eudoxo. Los libros séptimo al décimo tratan de cuestiones numéricas, y los tres restantes se ocupan de geometría de los sólidos (cuerpos geométricos), hasta culminar en la construcción de los cinco poliedros regulares y sus esferas circunscritas, que había sido ya objeto de estudio por parte de Teeteto.

Como ves, nuevamente se puede asegurar que la matemática ha sido descubierta hace muchísimos años, que fue trabajada por varios matemáticos y que aún hoy se sigue profundizando y encontrando cosas nuevas. Te invitamos a explorar en los triángulos rectángulos y sus relaciones.

Elorigendelatrigonometríaseremontaalasprimerasmatemáticasconocidas,enEgipto,dondelautilizabanparadeterminarmedidasenagriculturayenlaconstruccióndelaspirámides

DespuésdelaBiblia,Los elementosdeEuclideseslaobraquemásedicioneshaconocidodesdequeseleatribuyeraaGutenberglainvencióndelaimprentamoderna.

UN

IDA

D 4

219

U4 MAT 3M (216-289).indd 219 2/11/11 15:38:41

Page 220: 003000.000 grou

220

Conocimientos previosRecordaremos un concepto fundamental en matemática que ya has trabajado en años anteriores: el de razón.

Una razón es la comparación de dos cantidades mediante cociente. Por ejemplo, se podrían comparar las horas trabajadas con el sueldo recibido. Entonces, si la razón es 3200:1, podríamos interpretar que una persona gana $3200 por cada hora que trabaja.

Lo primero que se debe saber al trabajar con razones es que tanto el antecedente como el consecuente no representan, necesariamente, las cantidades reales involucradas en una situación. Por ejemplo, si la razón entre los niños y niñas en un curso es 2:3, esto no quiere decir que en el curso haya 2 niños y 3 niñas, sino que por cada 2 niños hay 3 niñas.

Una razón podría confundirse con una fracción, pero debes saber

que no son lo mismo, aun cuando se utilice la misma notación o

forma de escritura: 22:33

= .

La fracción 23

representa un número racional (que está en la recta

numérica entre el 0 y el 1); en cambio, la razón 23

o 2:3 (dos es a

tres) del ejemplo anterior está comparando dos grupos de personas.

Recuerda que en una razón los términos se llaman antecedente y consecuente.

Realicemos algunos ejemplos:

1 Pamela quiere hacer un queque para la once y la receta dice que por cada 400 gr de harina debe agregar 200 g de margarina. ¿Cuál es la razón entre la harina y la margarina? ⇒ buscar la razón h :m (donde h representa la harina y m la margarina).

Nota que cuando se escribe una razón, las cantidades deben estar en la misma unidad de medida si son de la misma naturaleza. En este caso, como ambas cantidades miden masa, entonces deben estar en gramos, kilogramos, etc.

400 4 2200 2 1

hm

⇒ = = = , esto es, que la razón es 2 1: , lo que significa

que por cada 2 g de harina, se debe agregar 1 g de margarina.

También podríamos decir que se debe agregar la mitad de

margarina que de harina.

antecedente

consecuente

ab

U4 MAT 3M (216-289).indd 220 2/11/11 15:38:41

Page 221: 003000.000 grou

EvaluaciónRevisemos lo que has aprendido. Responde las siguientes preguntas:

1. ¿Entendí los conceptos planteados y los ejercicios resueltos?

2. ¿Soy capaz de definir el concepto de razón?

3. ¿Pude hacer la actividad grupal planteada?

4. ¿Trabajé bien en mi grupo de manera que nuestra labor fuera productiva y que todos pudiéramos aprender?

Recuerda que si no has logrado entender algún concepto o ejercicio, debes preguntar a tu profesor o profesora.

TrabajaResuelve en grupo las siguientes actividades.

1 Escribe la razón entre:

a. 2 L de aceto y 250 cc de aceite.b. 3 kg de harina y 2800 g de azúcar.c. El número de estudiantes de 2º medio y el número de estudiantes de 3º medio de tu colegio.d. El número de salas y el número de oficinas de tu colegio.

2 Si una razón tiene consecuente 12 y antecedente 32, ¿cuál es la razón?

3 El largo y el ancho de un rectángulo están en la razón 4:3. Si el largo es 48 cm, ¿cuál es el ancho?

4 El sueldo de una persona y los días hábiles que trabaja están en la razón 6500:1. Si una persona trabaja 25 días hábiles, ¿cuánto dinero recibe?

2 Según el Censo del año 2002, la densidad poblacional de

Santiago era de 392 05, hab km2. Si la superficie de Santiago es

de 15403 km2, aproximadamente, ¿cuántos habitantes había el

año 2002?

Nota que al decir que la densidad era 392 05, hab km2 se está

dando una razón que significa que hay 392,05 personas por

cada km2 de superficie, aproximadamente.

Por lo tanto, si la superficie de Santiago es, aproximadamente, de 15403 km2, se puede escribir que:

392 051 15 403, = x

, despejando x (Recuerda que ya estudiaste proporciones)

⇒ = ⋅ ⇒ =x x

392 05 15 4031

6 038746 15, ,

Entonces, en el año 2002 la población era, aproximadamente, de 6038746 habitantes.

UN

IDA

D 4

221

U4 MAT 3M (216-289).indd 221 2/11/11 15:38:43

Page 222: 003000.000 grou

222

Euclides, Pitágoras y sus teoremas–Amelia, ¿por qué te paseas de un lado para otro sin saber qué hacer? Me tienes un poco mareado –dice su papá.–Es que tengo un trabajo de Tecnología y no sé qué hacer para encontrar una medida.–Pero si Tecnología te encanta. ¿Qué medida tienes que calcular?–Mira, en este bosquejo tengo una pared en forma de triángulo y necesito encontrar la medida del trazo x. Observa.

C

A D

x

B

–¿Y tienes alguna otra medida?

–Sí. AD mide 90 cm y DB mide 1 m. ¿Me ayudas, papá? Tú eresprofesor de Matemática.–Ah, ¡ahora me preguntas! Muy bien. Veamos qué tenemos aquí. ¿Te acuerdas que ya estudiaste lo que eran las figuras semejantes?–Sí, papá.–Bien, si miras los triángulos que se forman en tu figura, verás quehay tres: ADC∆ , ABC∆ y BDC∆ y ellos son semejantes. ¿Me puedesdecir por qué?–Trataré; déjame colocar algunos ángulos en la figura:

C

A D

x

B

β

β

α

α

–Partamos por los triángulos: ADC∆ y ABC∆ . Ellos son semejantesporque tienen dos ángulos iguales (α y β), ese es el criterio A – A(ángulo, ángulo), ¿verdad?–Así es, hija. Entonces, ¿puedes escribir cuáles lados son proporcionales o las razones que se forman entre ellos?–Sí, claro. A ver. Creo que no me acuerdo.

Cuál es el teorema de Euclides, recordarás el teorema de Pitágoras, cómo se demuestran y en qué se aplican.Desarrollaráslassiguienteshabilidades:• Identificar• Calcular• Comprender• Resolver• Relacionar• Aplicar• InterpretarygenerarideasHabilidadesporactividad:• Identificarycalcular:1,2,3• Comprenderyresolver:4,5,6,7,9,

1,2,3,4• Relacionaryaplicar:8,10

Trabaja más...

Habilidadesporactividad:• Identificarycalcular:1,4,12,13,14, 15,22• Comprenderyresolver:3,5,6,7,9, 16,17, 18• Relacionaryaplicar:2,8,10,11,19, 20,21

En esta sección aprenderás

U4 MAT 3M (216-289).indd 222 2/11/11 15:38:43

Page 223: 003000.000 grou

UN

IDA

D 4

223

–Tienes que nombrar los triángulos de manera ordenada primero, es decir, usando sus ángulos homólogos.–¡Ya me acordé! Entonces se puede escribir que:

ADC ACB∆ ∆ y, por lo tanto, AD DC AC

AC CB AB= =

–Mira ahora, Amelia, yo voy a colocar el nombre a los lados del triángulo en tu figura y plantearé nuevamente tus proporciones.Entonces tendremos que:

C

b a

c

q p

x

DA B

β

β

α

α

2q bb q c

b c= ⇒ = ⋅q x b

p p c= = . Si tomamos las razones de los extremos, 2q b

b q cb c= ⇒ = ⋅

–Entiendo, papá, ¿pero de qué me sirve esto?–Paciencia, Amelia, el apuro no conduce a nada.–Está bien, ¿y ahora qué sigue?–Todavía faltan dos pares de triángulos, ¿no?–Ah, sí, por supuesto. Si tomamos los triángulos ABC y DBC yanotamos correctamente la semejanza, tenemos que:

ABC CBD∆ ∆ (tienen dos ángulos iguales α y β)

AB BC AC

CB BD CD⇒ = =

c a ba p x

⇒ = = . Si tomamos las dos primeras razones, podemos

escribir que: 2c a

a c pa p

⇒ = ⇒ = ⋅

–Bien, Amelia, te queda un par de triángulos.

–Ya, veamos: ADC CDB∆ ∆ (dos ángulos iguales α y β)

AD DC AC

CD DB CB⇒ = =

q x bx p a

⇒ = = . Si tomamos las dos primeras razones, tenemos que:

2q xx q p

x p⇒ = ⇒ = ⋅

U4 MAT 3M (216-289).indd 223 2/11/11 15:38:43

Page 224: 003000.000 grou

224

–¡Esta sí me sirve, papá! En mi bosquejo, q = 90 cm y p = 100 cm (o 1 m); por lo tanto, puedo decir que:x x x x2 290 100 9000 9000 94 86= ⋅ ⇒ = ⇒ = ⇒ ≈ , .Entonces x debe medir 95 cm, aproximadamente.–Muy bien, Amelia. ¿Ves que era fácil?–Papá, ¿y esto se cumple siempre?–Sí. Estas relaciones que acabas de encontrar son los llamados teoremas de Euclides. Estos se pueden resumir de la siguiente manera:

Por ejemplo:

1. Dado el triángulo ABC de la figura, calcula los trazos p, q, b y a.

En el ∆ABD :

C

D

BA 20 u

15 u

b

p

q

a

Sea ∆ABDABC rectángulo en C, y CD la altura trazada con respecto a la base, como muestra la figura. Entonces, siempre se cumple que:

β

β

α

α

C

b ah

c

q pD BA

2a p c= ⋅2b q c= ⋅2h q p= ⋅

El teorema de Euclides dice que: “En todo triángulo rectángulo, el cuadrado de un cateto es igual al producto de la hipotenusa y la proyección del cateto sobre esta. Por otro lado, el cuadrado de la altura correspondiente a la hipotenusa es igual al producto de las proyecciones de los catetos sobre esta”.

U4 MAT 3M (216-289).indd 224 2/11/11 15:38:44

Page 225: 003000.000 grou

UN

IDA

D 4

225

Usando el teorema de Euclides, podemos escribir que:

h p q

p

p

p

p

p

2

215 5 7

225 5 72255 7

225 735

45 77

= ⋅

= ⋅

= ⋅

⇒ =

=

=

(Racionalizamos)

Si sumamos p y q, obtendremos el valor de a; por lo tanto:⇒ = +

= + = +

=

a p q

a

a

45 77

5 7 45 7 35 77

80 77

En el ADC∆ (aplicando Pitágoras), tenemos que:

45 77

2

( )2

2 245 715

7b

+ =

20257

225 2025 15757

2 2+ = ⇒ + =b b

36007

2= b /

(Racionalizamos)607

b =

b = 60 77

⇒ =b3600

7

Al día siguiente, Amelia se encontró con un compañero antes de entrar a clases.–Amelia, Amelia.–Dime, Mario.–Necesito que me ayudes con la tarea que nos dieron en Matemática. ¿Ya la hiciste?

–Sí, me ayudó mi papá. Mira, teníamos que demostrar, usando los

teoremas de Euclides, que en todo triángulo rectángulo se cumple

U4 MAT 3M (216-289).indd 225 2/11/11 15:38:47

Page 226: 003000.000 grou

226

que a b

hc⋅= .

–Esto nos dice Euclides, ¿recuerdas?

Sea ABC∆ rectángulo en C, y CD la altura trazada con respecto a la base, como muestra la figura. Entonces siempre se cumple que:

C

A D B

ab

h

q p

2b q c= ⋅

2a p q= ⋅2b q c= ⋅

2h q p= ⋅

c

β

β

α

α

–Entonces, de las dos primeras igualdades podemos despejar p y q yescribir que:

2a

pc

= y 2b

qc

=

2 22 a b

h p qc c

⇒ = ⋅ = ⋅2 2

22

a bh

c⋅= /

a bh

c⋅=

–¿Ves que fácil es, Mario?

–Sí, gracias. Me alegra ser tu compañero.

Sea ABC∆ rectángulo en C, y CD la altura trazada con respecto a la base, como muestra la figura. Entonces siempre se cumple que:

C

D

c

q q

ab

h

A B

a bh

c⋅=

β

β

α

α

U4 MAT 3M (216-289).indd 226 2/11/11 15:38:47

Page 227: 003000.000 grou

UN

IDA

D 4

227

Hagamos juntos el siguiente ejemplo:

1. –¿Un qué? –dijo Nancy extrañada. –Un deltoide: trapezoide con dos pares de lados iguales y dos

ángulos rectos – respondió su hermana, mientras trataba de averiguar las medidas del cometa que estaba construyendo. Nancy, su hermana menor, se acercó a la mesa y vio el dibujo que hacía.

B

D

25 cm20 cm

A C

E

¿Puedes ayudar a la hermana de Nancy a calcular las medidas de

los trazos BC , EC , AE AC , AD y DC? (da tu respuesta con

aproximación a la décima).

En el ADB∆ se tiene, por Pitágoras, que:

22 220 25AD+ =2

400 625AD+ = / 400−2

225AD =

15AD = cm

En el ACB∆ se tiene, por Euclides, que:

cm

(Simplificamos por 5)

2DB AD DC= ⋅

220 15 DC= ⋅ / :1540015

DC=

803

DC=

26,6DC⇒ ≈ 26,7DC ≈

En el ACB∆ se tiene que:

cm

AC AD DC= +80153

AC = +

1253

AC =

41,6AC⇒ ≈ 41,7AC ≈

El deltoide:

a a

No tiene lados paralelos. Está

formado por dos triángulos

isósceles que tienen la misma

base. Es simétrico con

respecto a la diagonal

formada por las alturas de los

triángulos isósceles trazadas

con respecto a la base común.

Recordar y archivar

U4 MAT 3M (216-289).indd 227 2/11/11 15:38:48

Page 228: 003000.000 grou

228

Y, por otro lado, en el mismo triángulo ACB,

según Euclides: 2

BC AC DC= ⋅2 125 80

3 3BC = ⋅

BC2 10000

9=

1003

BC =

33,3BC⇒ ≈ cm

Entonces, como los deltoides son simétricos, se tiene que:

33,3 cmBC EC= = cm; 25 cmAE AB= = cm

41,6 cmAC = cm, 15 cmAD = cm y 26,6 cmDC = cm

Responde en tu cuaderno. No olvides revisar tus respuestas.

Según la figura adjunta, responde los ejercicios 1, 2 y 3.

C

A D B

1 Si 3,6 cmAD = cm; 6,4 cmBD = cm. ¿Cuáles son las medidas de AC y BC?

2 2 cmAD = cm; 4 cmBD = cm. ¿Cuánto mide CD?

3 15,6 cmAB = cm; 6 cmAC = cm. ¿Cuál es el valor de CD? Aproxima tu respuesta a la centésima.

4 Los catetos de un triángulo rectángulo miden 1,50 cm y 3,60 cm. Determina las medidas de las proyecciones de los catetos sobre la hipotenusa. Aproxima tu respuesta a la centésima.

5 En la figura siguiente, 6 cmAD = cm; 4,5 cmBD = cm. Determina el área del triángulo ABC.

A

C

D

B

Trabaja

U4 MAT 3M (216-289).indd 228 2/11/11 15:38:48

Page 229: 003000.000 grou

UN

IDA

D 4

229

6 De un triángulo se sabe que la altura sobre la hipotenusa es cuatro unidades más que la proyección del cateto menor. Esta, a su vez, tiene diez unidades menos que la otra proyección. ¿Cuál es el valor del perímetro?

7 FG mide 6 cm e Y lo divide dejando un trazo de 4 cm. La perpendicular XY , al trazo FG, mide 8 cm, pero al completar con trazos punteados, aparece el FGX∆ . ¿Es este un triángulo rectángulo en X? ¿Por qué?

X

G

FY

4 cm

8 cm

8 En amarillo se muestra el triángulo rectángulo; en rojo, una transversal de gravedad y en azul una de sus alturas. Calcula la medida del HM si los catetos miden quince y veinte unidades, respectivamente.

H

M

9 El radio de la semicircunferencia es 5 cm y el pie del trazo perpendicular dista 1,20 cm del centro. ¿Cuánto mide dicho trazo? Aproxima tu respuesta a la centésima.

10 Conforme a la siguiente figura, donde h es perpendicular a la hipotenusa, ¿es verdad que la suma de los recíprocos de las proyecciones de los catetos sobre la hipotenusa, es el cociente entre la hipotenusa y el cuadrado de h? Justifica claramente tu respuesta.

b a

q p

h

U4 MAT 3M (216-289).indd 229 2/11/11 15:38:49

Page 230: 003000.000 grou

230

Resuelvan en grupo los siguientes problemas. Respondan en su cuaderno y no olviden revisar sus respuestas.

1 El misterioso detective miró las huellas del carruaje sospechoso en el bosquejo que su ayudante, también misterioso, hiciera rápidamente.

x

yBosquejo del ayudante misterioso

La graduación de los ejes está en cm

Huella del carruaje

20

–20–20 20 40 60 80 1000–40–60–80–100

–40

40

60

80

Huella del carruaje

Ajustó su pipa; luego informó: “Aunque las huellas son de carruaje inglés, no es el caso, porque el espacio entre ruedas no es de 4 pies y 8,5 pulgadas (aproximadamente de 142,24 cm)”. Enseguida, dio las especificaciones del espacio entre las ruedas de este sospechoso carruaje y soltó una carcajada después de enviar el informe.“Otra vez me olvidé que estos bosquejos siempre se hacen en escala 1:4”.

a. ¿Qué medida hay entre las ruedas del carruaje sospechoso?b. ¿Qué tan acertado estuvo el informe del misterioso detective?

2 En la clase de hoy haremos figuras a partir de otras –dijo el profesor de Arte de Marcelo.

Comenzaremos con la L, formada con dos segmentos de 6 cm. Ustedes pueden hacer lo que quieran a partir de ella. Marcelo pensó un rato y alargó la base de la L hacia la derecha en la mitad de la medida de la base y, hacia la izquierda, en dos unidades menos que esta. Luego construyó un triángulo rectángulo. Era lo único que había en su cabeza después de la prueba del teorema de Euclides de la hora anterior. ¿Cuáles son las medidas de sus catetos?

3 Aníbal y Pamela son buenos compañeros con todo su curso. Debido a que ese día el profesor estuvo involuntariamente ausente, se propusieron ayudar a sus compañeros. El diálogo que mantuvieron fue:

–¿Recuerdas ese problema con los cuadrados pintados?–Sí, el de los cuadrados violeta y amarillo. Creo que en el interior del más chico dice 21 cm2.–Se pide una representación gráfica de la media geométrica entre 3 y 4, es decir, 2 3 4x = ⋅ , usando dos cuadrados y sabiendo que el menor de ellos tiene 21 cm2 como área.–Lee las preguntas.–Bien.a. ¿Cuánto debe medir el área del otro cuadrado?b. ¿Qué representa gráficamente la media geométrica? Indica su valor.

21 cm2

Trabaja

U4 MAT 3M (216-289).indd 230 2/11/11 15:38:49

Page 231: 003000.000 grou

UN

IDA

D 4

231

Marca con una 8 el casillero correspondiente según la evaluación que hagas de tu trabajo.

MB: Muy bien (7,0 - 6,0)

B: Bien (5,9 - 5,0)

S: Suficiente (4,9 - 4,0)

I: Insuficiente (3,9 - 1,0)

Indicador MB B S I

EntiendolosteoremasdeEuclides.Séenquétipodetriángulosysituacionesseocupan.Entendílosejerciciosresueltos.Fuicapazderesolvercorrectamentelosejerciciosyactividadespropuestas.Preguntémisdudasaquienycuandocorrespondía.

Si has marcado 2 o más cruces en las columnas de Suficiente (S) o Insuficiente (I), debes repasar lo visto y volver a hacer los ejercicios que fueron más difíciles de resolver.

Revisemos lo aprendido

Ahora respondan individualmente:

4 Esta pregunta ha recorrido varias generaciones:

“¿Cuántos viajes debe hacer un hombre para atravesar un río con un gallo, un zorro y un saco de maíz, sabiendo que puede atravesar solo uno de ellos en cada viaje, de modo que el gallo no se coma el maíz, ni el zorro al gallo?”

Estaca

Borde del río

15 m

Estaca Estaca25 trancosBorde del río

Marco vio la gráfica de las travesías del posible hombre, su caminata de 25 trancos paralelos a la orilla en las hojas de un viejo cuaderno de su abuelo. Luego completó la figura con el trazo rojo, formando un triángulo rectángulo. Las estacas en cada vértice estaban a 1,5 metros del borde del río. Posteriormente, miró los 15 m de estaca a estaca por encima del río. Entonces:

a. Si su tranco fuera de un metro, encuentra el ancho del río.b. Sin adivinar, responde ¿cuántos viajes debe hacer?

U4 MAT 3M (216-289).indd 231 2/11/11 15:38:49

Page 232: 003000.000 grou

232

Trabaja más...Trabaja en grupo

1 A partir del triángulo ABC de la figura y usando los datos dados en cada caso, determinen lo pedido (puedes usar tu calculadora).

C

D

BA

a. AD AC CB= = =5 10u, u, ?

b. AB CD AD= = =4 8u, u, ?

c. DB AD AC= = =2 7 9u, u, ?

d. CB AB CD= = =16 12u, u, ?

e. AC AD CD DB= = =2 15u, u, ?

f. AD CB P ABC= = =∆2 26 21u, u, ?

g. AB CD A ABC= = =∆6 9u, u, ?

h. AD AB P ABC= = =∆74

94

u, u, ?

i. DB AB P ABC= = =∆15 25u, u, ?

j. CB ACAD

AB= = =11

565

u, u, ?

2 “¿Sabes, Rebeca?, encuentro un poco débil el fondo rectangular de la caja donde embalamos la loza. Será mejor que reforcemos los pliegues con doble cinta adhesiva naranja”.

Rebeca va a buscarla, pero sabe que queda muy poca.

¿Cuánta cinta naranja necesitan en total?

60 cm

45 cm

3 Eduardo aprendió hace algunos años que la

diagonal de un cuadrado de lado a era 2a .

Ahora, su profesor le ha pedido que demuestre,

usando el teorema de Euclides que acaba de

estudiar, que la mitad de la diagonal es 2

2a

.

Háganlo ustedes también.

4 Blanca está diseñando un nuevo mosaico para la terraza de su casa. Ha decidido hacerlo de forma rectangular, con medidas de 7 y 24 dm para sus lados. Sin embargo, Blanca tiene un problema porque necesita medir la distancia que hay entre uno de los vértices de su rectángulo y la diagonal opuesta a él. ¿Pueden darle la respuesta? (Recuerden que la distancia de un punto a una recta es la medida de la perpendicular trazada desde el punto).

5 Verónica quiere colocar un cerco y un portón en el campo que acaba de comprar. Ella le ha hecho el siguiente bosquejo del portón que quiere al maestro que lo construirá.

Le ha indicado que los listones que van desde el vértice a la diagonal deben medir 1,66 m y que el alto del portón debe ser de 2 m.

U4 MAT 3M (216-289).indd 232 2/11/11 15:38:53

Page 233: 003000.000 grou

UN

IDA

D 4

233

El carpintero hizo algunos cálculos y determinó el largo del portón. ¿Cuál es este? (Usen calculadora y aproximen su resultado a la centésima).

6 Daniel había dibujado una circunferencia y trazado su diámetro de 10 cm. Escogió un punto de ella al que llamó A y formó un triángulo con los extremos del diámetro. Luego, calculó que la distancia entre el punto A y el diámetro eran 4,8 cm. ¿Cuánto medían los catetos del triángulo?

7 El dueño del circo dio las siguientes instrucciones a Gerardo, su trapecista: “Súbete al trapecio de vuelo y amarra estas cuerdas en la polea que lo sostiene. Luego, lánzamelas, de manera que yo pueda anclarlas al piso para formar un triángulo de 90º en el cielo”. Si la distancia de la polea al piso es de 10 m y el anclaje más corto mide 12,5 m, encuentren la medida del otro anclaje y de estos al punto del piso donde descenderá Gerardo.

Polea

Anclaje corto

Techo carpa

Anclaje largo

Gerardo Suelo

8 A Pancracio le gusta dibujar cuando tiene tiempo libre. Hoy ha hecho un rectángulo y ha pensado que es bueno proponerle un desafío a su hijo pidiéndole calcular la medida de la superficie pintada.

¿Pueden darle la respuesta a Pancracio? (Usen calculadora y aproximen su respuesta).

18 cm

7,5 cm

9 Constanza debe construir un cubo de lado 16 cm con palos de maqueta y colocar 2 palos más en el interior de él, como indica la figura que le dio su profesora. Constanza debe llevar mañana a la clase el número de palos que necesita para construir su cubo y la medida de ellos. ¿Pueden ayudar a Constanza a calcular lo que necesita?

10 Braulio compró un terreno rectangular de 12 x 16 m. Allí colocará un restaurante para las personas del sector. Ha bosquejado el siguiente plano, donde lo más importante en este momento es fijar el terreno para la bodega de alimentos. ¿Cuál es el área del terreno que ocupará la bodega de alimentos? (Usen calculadora).

U4 MAT 3M (216-289).indd 233 2/11/11 15:38:54

Page 234: 003000.000 grou

234

Bodega de alimentos

11 Patricia ha dibujado el plano para su nueva casa en escala 1:100 como muestra la figura. La casa está compuesta por dos rectángulos y su patio es un triángulo debido a lo irregular del terreno. ¿Cuántos metros tendrá en su terreno el sendero x que Patricia quiere plantar con flores? Aproximen su respuesta a la centésima.

16 cm

12 cm

5 cm

4 cm

x

12 En la prueba de Matemática de Ximena el problema que dejó sin responder decía así: “Dadas las circunferencias concéntricas de la figura de diámetros 10 y 5 cm, determina si

1 22h h= . Usa el teorema de Euclides y coloca todo el desarrollo en el cuaderno”.

Ustedes pueden responder esta pregunta con los conocimientos que han adquirido hasta el momento. Anímense y háganlo.

C

6 cm

BE

F

h2

h1

4 cm

DA

13 Dados los datos de la figura adjunta, determinen la medida de los siguientes segmentos:

a. AC

b. AD

c. CD

d. DE

e. DB

A BD

E

C

5 u

3 u

14 En la semi circunferencia de centro O, los catetos del triángulo rectángulo de la figura son tales que AC CB=2 . Determinen:

C

BDOA 6 cm

a. AC b. CB c. CD

15 En el rectángulo ABCD de la figura se han trazado dos segmentos que forman triángulos rectángulos. Determinen la medida de:D C

BA

l

h

24 u

10 u

a. h b. l

U4 MAT 3M (216-289).indd 234 2/11/11 15:38:55

Page 235: 003000.000 grou

UN

IDA

D 4

235

16 Sobre la altura del triángulo ABC y la proyección

del cateto DB se ha dibujado un rectángulo. Calculen el área del rectángulo ABCD.

D C

BE A

7 u

3 u

17 Sea ABCD un rombo de lado 12 cm. Calculen la distancia del punto de intersección de las diagonales a uno de los lados del rombo si la diagonal menor mide 6 cm (hagan un bosquejo).

18 En el triángulo de la figura, rectángulo en C, se han determinado los puntos medios de los lados M, N y P. Determinen la medida de:

C

Q

BE P40 cm

30 cmMN

a. PQ b. la superficie del trapecio PQMB

19 En la figura se tiene que 12 , 25AC cm DB cm= = cm, 12 , 25AC cm DB cm= = cm y DC CB< . Determinen:

D

BA F

CE

a. la longitud de EC .b. la longitud de CF .c. al área del EDC∆ .

20 Se ha inscrito un deltoide en una circunferencia de diámetro 18 cm, como se muestra en la figura adjunta. Determinen:

D

B60°

C

A

a. la medida de la diagonal CD.b. el área del BCD∆ .c. la medida de la superficie sombreada.

21 En la figura se ha trazado la recta / /DC AB, de modo

que / /DC AB/ /DC AB. Además, se tiene que 362

ADGB cm y

DE= = cm y

362

ADGB cm y

DE= = . Si 5EF cm= cm, determinen la medida de:

E

CD

F

GA B

a. FG b. AG c. EB

22 Dado el triángulo rectángulo de la figura adjunta, determinen, en función de m y n:

C

n

mDA B

a. el perímetro del triángulo ABC.b. el área del triángulo ABC.

U4 MAT 3M (216-289).indd 235 2/11/11 15:38:56

Page 236: 003000.000 grou

236

Teorema de Pitágoras y teorema de Fermat

Otra demostración del teorema de Pitágoras y su relación con el teorema de Fermat.Desarrollaráslassiguienteshabilidades:• Identificar• Calcular• Comprender• Resolver• Relacionar• Aplicar• InterpretarygenerarideasHabilidadesporactividad:• Identificarycalcular:1,2,5,11,2,3,4• Comprenderyresolver:3,4,6,7,12,13,1• Relacionaryaplicar:9• Interpretarygenerarideas:8,10,4,6

Trabaja más...

Habilidadesporactividad:• Identificarycalcular:1,2• Comprenderyresolver:2,3• Interpretarygenerarideas:1

En esta sección aprenderás Era miércoles después de almuerzo y hacía mucho calor. Mario y Amelia esperaban su clase de Matemática.

–Buenas tardes.

–Buenas tardes, señorita.

–Asiento. Comencemos la clase. Ayer estudiamos el teorema deEuclides y les dejé una tarea que revisaré más tarde. Ahora meinteresa analizar con ustedes otras aplicaciones de este teorema. ¿Se podrá demostrar el teorema de Pitágoras usando los teoremas de Euclides?

Miremos. Lo que se quiere demostrar es que si ABC∆ es rectángulo en C y CD es la altura trazada con respecto a la base, entonces

2 2 2a b c+ =

C

DA B

c

h

ab

q p

Por Euclides se tiene que:2a p c= ⋅ , 2b q c= ⋅ , 2h q p= ⋅

( )2 2 2a b p c q c c p q c c c⇒ + = ⋅ + ⋅ = + = ⋅ =

α

α

β

β

–Fácil, ¿verdad?–Sí –respondieron los estudiantes.–¿Alguien se acuerda qué son los tríos pitagóricos?–Yo –respondió Mario rápidamente–. Se llaman tríos pitagóricos a aquellos números que pueden ser lados de un triángulo rectángulo y, por lo tanto, cumplen con el teorema de Pitágoras.–Bien, pero estos números deben ser números naturales.¿Conoces algún trío?–Sí, 3, 4 y 5, donde 3 y 4 serían los catetos y 5 la hipotenusa.–Bien, Mario. Ahora, si generalizamos, podríamos escribir que:

a b c

x x x

x x x

x x

x x

2 2 2

2 2 2

2 2 2

2 2

2

3 4 5

9 16 5

25 5

5 5

+ =

( ) + ( ) = ( )+ = ( )= ( )

( ) = ( ))2

B

C A

4 x 5 x

3 x

U4 MAT 3M (216-289).indd 236 2/11/11 15:38:56

Page 237: 003000.000 grou

UN

IDA

D 4

237

–Esto significa que todos los tríos que resultan de amplificar 3, 4 y 5 por un mismo número, serán también tríos pitagóricos; por ejemplo: 9, 12 y 15 o 12, 16 y 20 o 30, 40 y 50, etc.–Señorita, ¿hay alguna forma de obtener tríos pitagóricos?–Sí, la fórmula dice que: “si x e y son números naturales, tales que x > y, entonces se puede obtener un trío pitagórico usando lassiguientes fórmulas:a x y b xy c x y= − = = +2 2 2 22, , ".”.

–Amelia, ¿podrías demostrar que esto es cierto?–Voy a tratar. Si a, b y c son tríos pitagóricos, entonces deberíansatisfacer el teorema de Pitágoras, ¿verdad?–Sí, ven a escribirlo en la pizarra.

⇒ + =

⇒ −( ) + ( ) = +( )⇒ − + + = +

a b c

x y xy x y

x x y y x y x y

2 2 2

2 2 2 2 2 2 2

4 2 2 4 2 2 2 2

2

2 4 (( )⇒ + + = +( )⇒ +( ) = +( )

2

4 2 2 4 2 2 2

2 2 2 2 2 2

2x x y y x y

x y x y

(Resolvemos el cuadrado de binomio)

–Perfecto, Amelia. Jorge, ahora tú. ¿Podrías darme algunosejemplos numéricos de tríos pitagóricos usando las fórmulas?–Sí, claro, profesora. Escojamos dos números, por ejemplo, 6 y 7; entonces el trío pitagórico será:

2 27 6 49 36 13= − = − =a

2 7 6 84= ⋅ ⋅ =b2 27 6 49 36 85= + = + =c

Por lo tanto, los números son: 13, 84 y 85. Comprobémoslo:2 2 213 84 85+ =

169 7 056 7 225+ =7 225 7 225=

–Muy bien, se cumple, ¡qué curioso!–Señorita, ¿y los múltiplos de este trío también?–Sí, claro, y se puede demostrar de la misma manera como lo hicimos anteriormente.–Profesora, ¿hay otra forma de encontrar tríos pitagóricos?–Esa es la tarea de hoy. Busquen en Internet si existe otra forma degenerar tríos pitagóricos y, además, deben buscar qué relacióntendrá con estos tríos un matemático llamado Fermat.Hasta luego, jóvenes; nos vemos mañana.

Puedes construir una planilla Excel que genere tríos pitagóricos.Observa:

Pon en cada celda las fórmulas para a, b y c. Al colocar un número en a, se calcularán automáticamente a, b y c.

Para la primera fórmula puedes escribir:

Inténtalo.

Para entretenerse

U4 MAT 3M (216-289).indd 237 2/11/11 15:38:59

Page 238: 003000.000 grou

238

Esa tarde Jorge se puso a buscar en Internet. Le parecía increíble que se pudieran generar tantos tríos pitagóricos. “¿Acaso esto es inagotable?”, pensaba. Buscó y buscó y esto fue lo que encontró:

Si n es un número natural, entonces, a n= +2 1, b n n= +( )2 1 y c n n= +( )+2 1 1 forman un trío pitagórico. Demostrémoslo.

“Bien, ya lo demostré. Veamos un ejemplo numérico”.

“Entonces, ya sé que 5, 12 y 13 es un trío pitagórico”.

¿Podrás generar tú otro trío a partir de esta fórmula? Sin duda se pueden generar infinitos tríos pitagóricos. Buscaré al señor Fermat y sus teoremas. ¿Para qué habrán demostrado esto los matemáticos? ¿Tendrían alguna utilidad o solo será una simple curiosidad matemática? En Internet, Jorge encontró lo siguiente:

Fermat fue un matemático francés que trabajó toda

su vida con los números, demostrando

regularidades y buscando fórmulas para encontrar

ciertos números, como los números amigos, lo que

se conoce como teoría de números.

Fermat dejó muchos teoremas sin demostrar, los

que han sido demostrados por otros matemáticos.

El teorema que tiene relación con los tríos pitagóricos se conoce

como “El último teorema de Fermat” y dice así:

Es imposible descomponer un cubo en dos cubos, un bicuadrado en

dos bicuadrados y, en general, una potencia cualquiera, aparte del

cuadrado, en dos potencias del mismo exponente. He encontrado una

demostración realmente admirable, pero el margen del libro es muy

pequeño para ponerla.

Pierre de Fermat (1601–1665)

Solo en 1994, Andrew John Wiles logró demostrar este teorema.

En este link encontrarás un

video donde se muestra el

teorema de Fermat, búscalo...

http://www.portalplaneta

sedna.com.ar/fermat.htm

Links de interés

¿Simple curiosidad matemática? Dos números a y b se llaman números amigos si a es la suma de los divisores de b, excluyendo a b, y b es la suma de los divisores de a, excluyendo a a.

Fermat redescubrió y demostró la fórmula que Thabit ibn Qurra ibn Marwan al-Sabi al-Harrani, matemático turco, ya había usado.

Esta dice que dos números son amigos si se generan a partir de la fórmula:

Si 13 2 1−= ⋅ −nP ; 3 2 1= ⋅ −nQ ; 19 22 1−= ⋅ −nR , con n (número

natural) 2⇒ = ⋅ ⋅na P Q y 2= ⋅nb R son números amigos.

¿Puedes encontrar un par de números amigos?

Para entretenerse

Si 2 2 2 1 5= ⇒ = ⋅ + =n ab

c

= ⋅ +( ) = ⋅ =

= ⋅ +( ) + = + =

2 2 2 1 4 3 12

2 2 2 1 1 12 1 13

b

c

= ⋅ +( ) = ⋅ =

= ⋅ +( ) + = + =

2 2 2 1 4 3 12

2 2 2 1 1 12 1 13

4 8 8 4 1 4 4 1 8 4 4 14 8 8 4 1 4

4 3 2 4 2 3 2

4 3 2

n n n n n n n n n

n n n n n

+ + + + = + + + + + ++ + + + = 44 3 28 8 4 1+ + + +n n n

2 1 2 1 2 1 1

4 4 1 2 2 2 2 1

2 2 2

2 2 2 2

n n n n n

n n n n n n

+( ) + +( )( ) = +( ) +( )

+ + + +( ) = + +(( )+ + + + + = + +( )

2

2 4 3 2 2 24 4 1 4 8 4 2 2 1n n n n n n n

2 1 2 1 2 1 1

4 4 1 2 2 2 2 1

2 2 2

2 2 2 2

n n n n n

n n n n n n

+( ) + +( )( ) = +( ) +( )

+ + + +( ) = + +(( )+ + + + + = + +( )

2

2 4 3 2 2 24 4 1 4 8 4 2 2 1n n n n n n n

2 1 2 1 2 1 1

4 4 1 2 2 2 2 1

2 2 2

2 2 2 2

n n n n n

n n n n n n

+( ) + +( )( ) = +( ) +( )

+ + + +( ) = + +(( )+ + + + + = + +( )

2

2 4 3 2 2 24 4 1 4 8 4 2 2 1n n n n n n n

(Desarrollamos el cuadrado de trinomio)

2 2 2+ =a b c

U4 MAT 3M (216-289).indd 238 2/11/11 15:39:03

Page 239: 003000.000 grou

UN

IDA

D 4

239

Si anotamos el enunciado de Fermat de otra manera, dirá: “No existe un trío de números enteros a, b y c (con a, b y c distintos de 0) que cumplan la igualdad an + bn = cn, si n > 2”. Es decir, solo se pueden hallar los llamados tríos pitagóricos.

Un ejemplo numérico puede ser el siguiente:

1. Si n = 4 y c = 6, entonces trataremos de encontrar a y b. Para esto calculemos cn = 64 = 1296, entonces probemos algunos pares de números enteros para a y b:

5 5 625 625 12504 4+ = + =(Esta es la mayor

combinación posible)

4 41 5 1 625 626⇒ + = + =4 42 5 16 625 641+ = + =

Nota que los valores de a y b deben ser a lo más 5, pues no pueden ser mayores que c; por lo tanto, el teorema es cierto para este caso.

Se necesitan muchas herramientas matemáticas para poder demostrar este teorema. De hecho, no pudo ser demostrado, sino hasta que se avanzó mucho en las diferentes ramas de la matemática. Andrew John Wiles utilizó más de 100 páginas y modernas técnicas matemáticas en su demostración, hasta lograrlo.

Otro matemático llamado Gauss escribió: “La aritmética superior nos proporciona un conjunto inagotable de verdades interesantes, de verdades que además no están aisladas, sino en estrecha relación unas con otras, y entre las cuales, con cada sucesivo avance de la ciencia, descubrimos nuevos y,a veces, completamente inesperados puntos de contacto”.

Resolvamos algunos ejercicios:

1. Dados los siguientes triángulos rectángulos, coloca valores a los

catetos y a las hipotenusas, de modo que: ∆ ∆ ∆ ,A B A ∆ ∆ ∆C y D B∆ ∆ ∆ ,A B A ∆ ∆ ∆C y D B y ∆ ∆ ∆ ,A B A ∆ ∆ ∆C y D B

A B C D

Este problema puede tener infinitas soluciones, dependiendo de los valores que puedas dar a los lados de los triángulos. Aquí te presentamos una de ellas, en la que hemos dado algunos valores para el triángulo A y luego elegido otros para el resto de los triángulos.

AndrewJohnWiles(1953),matemáticobritánico,alcanzófamamundialen1993porlademostracióndelúltimoteoremadeFermat

U4 MAT 3M (216-289).indd 239 2/11/11 15:39:05

Page 240: 003000.000 grou

240

Según el enunciado, los triángulos A, B y D son semejantes (igual forma, pero distinto tamaño) y estos no son semejantes con C. Esto quiere decir que los lados homólogos (lados de ambos triángulos que unen vértices de ángulos iguales) de los triángulos semejantes son proporcionales.

–Si tomamos el triángulo A y la fórmula vista para tríos pitagóricos:a n= +2 1, b n n= +( )2 1 y c n n= +( )+2 1 1, y hacemos n = 5,entonces los lados de A serán: a = 11, b = 60 y c = 61.–Como B y D son en tamaño más grandes que A, entoncespodríamos decir que en D, los lados son: a’ = 22; b’ = 120 yc’ = 122, y en B : a’’ = 33; b’’ = 180 y c’’ = 183.–Como C no es semejante a A y además tiene sus catetosaproximadamente de la misma medida, podríamos decir que susmedidas pueden ser, aproximadamente, 34, 34 y 48,08. Chequeatú este último trío pitagórico.

2. Paulo era muy testarudo y aunque había escuchado atentamente el desarrollo de la tarea hecha por Jorge, no podía creer lo que había enunciado Fermat. ¿Cómo era posible esto? Su profesora había tratado de explicarle que no tenía todas las herramientas necesarias para entender la demostración planteada por el célebre matemático Wiles, pero que podía probar con algunos números. –¡Pero señorita! –había dicho Paulo–, usted dice que con probar algunos números no basta. –Paulo, Paulo, –dijo la profesora, armándose de paciencia. ¿Qué sugieres hacer? –Yo voy a probar, probar y probar eso de los bicuadrados, dijo Paulo.

¿Qué tuvo que escribir él para probar que se cumple lo que Fermat enunció para los bicuadrados? Si Paulo probó todas las combinaciones posibles de números naturales para verificar que no existen números naturales que cumplan que a4 + b4 = c4, debería haber escrito algo como lo siguiente:

Anotemos los números que son bicuadrados perfectos.

Por ejemplo:

•14 = 1, el único candidato para a y b es 1 (aun cuando no forma un trío de números distintos), pero 14 + 14 = 2. No se cumple.

•24 = 16, las posibles combinaciones de a y b serían: 14 + 14 = 2, pero no se cumple (nota que ni a ni b pueden ser iguales a 2).

•34 = 81, las posibles combinaciones de a y b serían: 14 + 14 = 2; 14 + 24 = 17; 24 + 24 = 32, pero no se cumple.

•44 = 256, las posibles combinaciones de a y b serían 14 + 14 = 2; 14 + 24 = 17; 14 + 34 = 82;

•24 + 24 = 32; 24 + 34 = 97, pero no se cumple.

Cuando dejé a Paulo llevaba una lista más larga que esta y ya estaba un tanto aburrido. ¿Qué harás tú?

Triángulos semejantes. Recuerda

que dos triángulos congruentes

tienen la misma forma y el

mismo tamaño. Sin embargo, si

dos triángulos tienen la misma

forma, pero no necesariamente el

mismo tamaño, se denominan

triángulos semejantes.

βα

βα

γ

γ

F

ED

kbka

kc

A B

C

ab

c

Dos triángulos son semejantes si

los ángulos correspondientes son

congruentes y los lados

correspondientes son

proporcionales.

Ángulos correspondientes

congruentes:

≅ ABC DEF≅ BAC EDF≅ ACB DFE

Lados correspondientes

proporcionales:

= = =DE EF DFk

AB BC AC

La razón de semejanza se

denomina k.

Entonces, ∆ ∆ABC DEF Observación:

Si k = 1, los triángulos serían

congruentes.

http://www.educarchile.cl/ Portal.Base/Web/VerConten ido.aspx?GUID=123.456.789. 000&ID=136332

Recordar y archivar

U4 MAT 3M (216-289).indd 240 2/11/11 15:39:05

Page 241: 003000.000 grou

UN

IDA

D 4

241

Responde en tu cuaderno. No olvides revisar tus respuestas.

1 Si x e y son números naturales, tales que x > y, entonces se puede obtener un trío pitagórico usando las siguientes fórmulas: 2 2 2 2, 2 ,a x y b xy c x y= − = = +, b xy=2 , 2 2 2 2, 2 ,a x y b xy c x y= − = = + . Bosqueja un triángulo rectángulo y ubica a, b y c según corresponda.

2 Si n es un número natural, entonces a n= +2 1, b n n= +( )2 1 y c n n= +( )+2 1 1 forman un trío pitagórico. Escribe los 7 primeros tríos. Puedes hacer uso de una planilla Excel.

3 Se dispone de dos cubos de cobre de 8 y 27 cm3. Se funden, sin pérdida de material, y se forma otro cubo. ¿Será su arista de medida entera? ¿Contradice el teorema de Fermat? ¿Por qué?

4 Las medidas de los catetos de un triángulo son 8 y 6 cm. El cateto de un segundo triángulo es 24 cm, y con dos centímetros más, tenemos la hipotenusa. ¿Cuál es el polígono de menos lados que se obtiene si se unen algunos de sus lados?

5 ¿Cuáles son las medidas de los lados de este triángulo?

4x–3

x

3 1x +( )

6 La altura de un triángulo equilátero es 1,5 cm. Usando exclusivamente el teorema de Pitágoras, encuentra el valor del lado.

7 Calcula el perímetro de un rombo cuyas diagonales miden 9 cm y 12 cm.

8 De un triángulo escaleno solo se sabe que para conocer el lado menor y/o mediano se aplica:

lado lado mayor otro lado= ( ) − ( )2 2. ¿Esto garantiza que el triángulo sea rectángulo? ¿Por qué?

9 A un cuadrado le circunscriben una circunferencia de largo 25,12 unidades. ¿Cuál es su perímetro? Considera 3,14=π

10 ¿Podrá inscribirse un triángulo de catetos 5 y 12 mm en una circunferencia de 132,665 mm2 de área?

11 Decide para cada caso si los siguientes tríos de números son o no pitagóricos:

a. 35, 12 y 37 b. 485, 483 y 44 c. 841, 840 y 40

12 Usando la fórmula a n= +2 1, b n n= +( )2 1 y c n n= +( )+2 1 1 para generar tríos pitagóricos y, además, sabiendo que uno de los números que se buscan es 60, encuentra los otros dos.

13 Dados los siguientes triángulos, encuentra los otros lados de tal manera que sus medidas formen tríos pitagóricos. (Puedes encontrar más de una solución para cada uno).

C

B

A

60 u

C

B

A

60 u

C

B

A60 u

Trabaja

U4 MAT 3M (216-289).indd 241 2/11/11 15:39:09

Page 242: 003000.000 grou

Ya sabes lo importante que es revisar lo que vas aprendiendo paso a paso. Coloca frente a cada indicador los siguientes conceptos: T (totalmente entendido), M (medianamente entendido) y N (no entendido, debo volver a estudiar).

1. _____ Comprendí las demostraciones de esta sección.

2. _____ Aprendí cuáles son los tríos pitagóricos y cómo se calculan.

3. _____ Comprendí el teorema de Fermat.

4. _____ Comprendí los ejercicios resueltos de esta sección.

5. _____ Pude resolver correctamente los ejercicios propuestos.

6. _____ Trabajé de manera colaboradora en mi grupo cuando fue necesario.

Recuerda que de tener 3 o más respuestas marcadas con N, debes revisar nuevamente los contenidos de la sección, buscando ayuda en un compañero o compañera, o en tu profesor o profesora.

Revisemos lo aprendido

242

TrabajaResuelvan en grupo los siguientes ejercicios. Respondan en su cuaderno y no olviden revisar sus respuestas.

1 Dos amigos conversan: “Si el cuadrado construido sobre el cateto menor se divide en 36 cuadraditos iguales y después, con estos mismos, le agrego veintiocho iguales, tendremos el cuadrado construido sobre el otro cateto; de esta manera, si a todo esto agrego...”. “¡Ya basta de explicaciones tan enredosas!”, grita uno de ellos, agregando: “dime mejor cuánto suman las alturas, que es lo que piden”.

¿Cuál debiera ser la respuesta correcta?

2 “Don Polo, el almacenero, sabe harta matemática”, comenta uno de sus empleados a la madre de Claudia. El profesor de Matemática de la niña les pidió que demostraran que: “existe un triángulo cuyos lados valen, en cm: 2 6n+ , 2 9n+ y 12 45n+ , con n natural, y que además es rectángulo”. Don Polo ayudó a Claudia y le dijo: “¡Sí, el profesor tiene razón!, porque...”, y le explicó todo un desarrollo matemático. Escriban por lo menos uno de los suyos.

3 “¡Ya! escribe: distancia desde este punto de observación a la azotea: 156, 205 m y distancia desde este punto de observación a la base del edificio: 120 m. Sí, este hay que demolerlo”. Los hombres de azul y cascos amarillos se alejaron, mientras Juan Esteban, que estaba paseando en su bicicleta, los escuchó.

Se trata del viejo edificio donde vive y que tanto le gusta con sus jardines, las palomas que viven en la techumbre y que lo despiertan cada mañana. Llegó afligido: “¡No quiero que lo demuelan!” Sus papás ya estaban enterados. Al mes, comenzaron los trabajos de... ¡REPARACIÓN! El edificio se salvó justito porque su altura era la apropiada. ¿Cuál era esta?

4 La tarea de tríos pitagóricos que hizo Aurelio, en medio de las jugarretas, decía lo siguiente:2 2 23 4 5+ = .... 4 – 3 es uno2 2 26 8 10+ = .... 8 – 6 es dos2 2 29 12 15+ = .... 12 – 9 es tres

2 2 212 16 20+ = .... 16 – 12 es cuatro

a. Indiquen los tríos pitagóricos cuya diferencia entre los catetos es:

i. Cinco ii. Ocho

Después, siguió con las jugarretas de Fermat y escribió:

“Si a es natural, a a a+( ) − +( )1 12 nunca será el cubo de un número natural”.

b. Efectúen, con a natural mayor que 1, a a a+( ) − +( )1 12 y relaciónenlo con el teorema de Fermat.

U4 MAT 3M (216-289).indd 242 2/11/11 15:39:10

Page 243: 003000.000 grou

UN

IDA

D 4

243

Trabaja más...Trabaja en forma individual

1 Considera = − = = +2 ; 3 y 3 2a x b x c x , con < <a b c .

a. Halla x, tal que a, b y c conformen un trío pitagórico.

b. Escribe a, b y c.

2 En un triángulo rectángulo, las proyecciones

de los catetos miden 64 225cm y cm17 17

cm y 64 225cm y cm17 17

cm.

a. Encuentra las medidas de sus lados.b. ¿Es verdad que los números de las medidas

obtenidas en a forman un trío pitagórico? Justifica tu respuesta.

Trabaja en grupo

1 Entonces, el matemático llegó a la siguiente expresión: 4 4 4131 119x = + . Nos miró diciendo: “Les aseguro, sin hacer ningún cálculo, que x no es un natural”. En otros momentos nos había dicho lo mismo al ver expresiones similares. ¿Por qué dijo esto? De seguro ustedes también pueden contestar.

2 En la película se veía sobre la mesa tres panecillos de forma triangular e igual grosor, con queso y palta, encerrados en cajitas aparentemente similares. El hombre notó que solo una de ellas tenía en un vértice un ángulo distinto a 90º; las demás eran como perfectos triángulos rectángulos. En escenas posteriores, un policía que descubre el cadáver del hombre, exclama: “Murió por otro ataque de un grupo ritualista. La clave me la dieron las medidas del panecillo envenenado: 7,5; 10 y 12,5 cm, y las relaciones entre estos números; ellos hacen este tipo de envíos a sus víctimas”. ¿Cuál será la relación entre ellos?

3 Alma y Elmer están conversando sobre una tarea de tríos pitagóricos a través de sus celulares. Ella dice que con dos números naturales, donde uno de ellos es el doble del otro, obtuvo un trío pitagórico, siendo 180 el mayor de los números obtenidos. Él le pregunta con cuáles números comenzó... y se corta la comunicación.

a. ¿Cuáles fueron los números con que Alma obtuvo su trío pitagórico?

b. Indiquen dicho trío pitagórico.

Mis apuntes

U4 MAT 3M (216-289).indd 243 2/11/11 15:39:11

Page 244: 003000.000 grou

244

Trigonometría: ¿qué es y para qué se usa?Después de clases, Mario salió a recorrer su barrio en bicicleta, como le gustaba hacerlo siempre. En el camino vio a dos personas trabajando. Parecía que estaban sacando fotos, pero la máquina que tenían no era una máquina fotográfica, de seguro no lo era.–¡Qué rara máquina usaban esos caballeros!, le contaba Mario a su prima.–¿Cómo era?, puedes hacerme un bosquejo o describirla un poco más.–Sí, era como esta, la encontré en Internet, pero no entendí bienpara qué se usa.–¡Ah, una máquina topográfica!–¿Qué es eso? Suena complicado.–Verás. La topografía es una ciencia que tiene por objetivo larepresentación gráfica del estudio de la Tierra y para ello usan esasmáquinas.–Y en eso hay matemática, ¿verdad?–Sí, claro, y sobre todo trigonometría.–¡Ay sí!, de eso que no entendí nada en clases. Es muy raro.–No tanto, Mario, tú eres un joven inteligente. Mira. Es muy fácil, ya verás.–Fíjate en el edificio que tenemos al frente. ¿Crees tú que podríamosmedir su altura solo sabiendo que estamos a 10 m de su entrada yque si miramos la azotea, lo estamos haciendo con un ángulo de 45º grados?Si lo graficamos sería algo así:

10 metros

45°

–Ya, entiendo, pero ¿qué tiene que ver lo del seno, coseno y todasesas cosas que mencionó mi profesor?–¿Estuviste atento a la clase, Mario?–Mmm, la verdad no mucho.–Bien, entonces pon atención ahora. La trigonometría relacionaángulos y lados en un triángulo rectángulo a través de razonesmatemáticas. De este modo podemos definir dos razonesfundamentales que llamaremos seno y coseno.

Qué es la trigonometría y en qué se aplica.Desarrollaráslassiguienteshabilidades:• Identificar• Calcular• Comprender• Resolver• Relacionar• Aplicar• InterpretarygenerarideasHabilidadesporactividad:• Identificarycalcular:1,4,5,6,7,8• Comprenderyresolver:2,3,9,10,11,12,

1,2,3,4,5,6,7,8,9

Trabaja más...

Habilidadesporactividad:• Identificarycalcular:1,2,3,4,7, 8,9,14,

16• Comprenderyresolver:10,11,13,1,2,3,

4,6, 7,8,9, 10, 11, 12, 13,14• Relacionaryaplicar:5,6,12,15,5

En esta sección aprenderás

SegúnlaRAEtopógrafoeslapersonaqueprofesaelartedelatopografíaotieneenellaespecialesconocimientos.Sucampolaboralseestableceenempresasconstructoras,deurbanizaciónyobrasciviles,mineras,forestalesysanitarias.

U4 MAT 3M (216-289).indd 244 2/11/11 15:39:12

Page 245: 003000.000 grou

UN

IDA

D 4

245

Miremos el siguiente triángulo rectángulo. En él distinguiremos varios elementos con respecto al ángulo α:

B

C A

a

b

c

Cateto opuesto al ángulo α: a Cateto adyacente al ángulo α: bHipotenusa del triángulo: c

α

Entonces, las razones trigonométricas se definen de la siguiente manera:

sen cateto opuesto ahipotenusa

sen seno deα α α α= ⇒ = ( )ac

cosα α α α= ⇒ = ( )cateto adyacente ahipotenusa

cos coseno debc

–¡Ya entiendo! es solo la comparación entre dos lados del triángulo.Pero, al ser una razón, su valor siempre será el mismo, independientedel tamaño del triángulo, ¿verdad?–Cierto, por eso se pueden calcular las razones trigonométricas dealgunos ángulos especiales usando un triángulo rectángulocualquiera. ¿Me puedes decir cómo calcularías el valor del seno ycoseno de ángulos de 30º y 60º?–Mmm, déjame pensar un rato A ver, a ver... ¡ya lo tengo!Dibujaré un triángulo equilátero y trazaré su altura:

C

30°

60°

A BD

a a

2a

2a

En el triángulo ADC, CDa=2

3 (porque es altura de un triángulo

equilátero. También lo puedes calcular usando el teorema de Pitágoras).

Podemos escribir que:

s ne o60 23

23 1 3

2= = = ⋅ =CD

AC

a

aa

a1 1cos60

2 2AD a

aAC= = ⋅ =

1 12sen 30 =2 2

° = = ⋅ =

aAD a

a aAC

cos 30 23

23 1 3

2o = = = ⋅ =CD

AC

a

aa

a

Nota que como c es la hipotenusa,

lado más largo de un triángulo

rectángulo, entonces se tiene que

c > a y c > b; por lo tanto, los

valores de seno y coseno del α

nunca serán mayores que 1.

Toma nota

Recuerda que para calcular la

altura de un triángulo equilátero

puedes usar el teorema de

Pitágoras de la siguiente manera:

C

A BD

aa

2a

2a

En el triángulo BDC tenemos que:

DCa a

DCa

DCa

2 2 2

2 2

44

34

23

= −

=

=

/

2 2 2+ =DB DC BC

22 2

2 + =

aDC a

2 2 2

4+ =a

DC a2

/4

− a

22 2

4= − a

DC a

Recordar y archivar

U4 MAT 3M (216-289).indd 245 2/11/11 15:39:15

Page 246: 003000.000 grou

246

–Bien, Mario, muy bien hecho. ¿Y para un ángulo de 45º?–Veamos... ¿en qué triángulo consigo un ángulode 45º?... ¡Ya sé!, en un triángulo rectángulo isósceles. Dibujémoslo:

B

C Aa

a

45°

En el triángulo ABC, AB a= 2 (es la hipotenusa. Lo puedes calcular usando el teorema de Pitágoras).

Entonces se puede escribir el seno y coseno de 45º así:

(Racionalizamos)

(Racionalizamos)

s n

cos

e o

o

452

12

22

452

12

22

= = = =

= = = =

BC

AB

a

a

AC

AB

a

a

–¡Felicitaciones, Mario! , y dime ahora: ¿Era tan difícil?–No, es fácil; debí haber puesto más atención en clases.–Pero dime, ¿cómo calculamos la altura de aquel edificio?–Vuelve a mirar nuestro problema y dime tú qué harías.

10 metros

45°

–Si la altura del edificio la nombramos h, entonces podemos escribirque... ¿Qué hago? ¿Cómo relaciono el cateto opuesto al ángulo conel cateto adyacente?–¡Ah! Esa relación es nueva y se llama tangente del ángulo. Haz unesfuerzo y podrás deducirla. Vamos, piensa, ¿qué harías? Escribequé es seno y qué es coseno.Veamos:

sen cateto opuesto ahipotenusa

senα α α= ⇒ = a

c y

catetoadyacenteacoshipotenusa

αα =

entonces, para relacionar solo los catetos y que la hipotenusadesaparezca, ¿deberíamos hacer la razón entre seno y coseno?

U4 MAT 3M (216-289).indd 246 2/11/11 15:39:16

Page 247: 003000.000 grou

UN

IDA

D 4

247

–Genial, Mario, muy bien pensado. Escríbelo. Ya has definido

tangente de α αtg( ) como todo un matemático.

–Bien, aquí va:

–Ah, necesito el valor de tg 45º, pero es muy fácil. Como el sen 45ºtiene el mismo valor que el cos 45º, entonces la tg 45º valdrá 1(porque es el cociente o división entre dos cantidades iguales).

Entonces, para calcular la altura del edificio, podemos escribir que:

tg 45ºtg 45 110 10

° = ⇒ =h h, multiplicando por 10, tendremos que

h = 10 m; por lo tanto, el edificio mide 10 metros.

–Muy bien, Mario, como siempre, has logrado resolver el problema.–Gracias prima, me ayudaste mucho.

Existen relaciones entre ángulos y

lados en triángulos que no son

rectángulos, que se puedan

determinar usando trigonometría,

a través de los teoremas del seno

y del coseno. Estos temas se

tratan en profundizaciones de los

contenidos de geometría, pero

puedes encontrarlos también, si te

interesa, en el siguiente link: http://www.vadenumeros.es/primero/trigonometria-resolver-triangulos.htm

Recordar y archivar

Resumiendo, podemos decir que:

•Latrigonometríaeslaramadelamatemáticaqueestudialasrelaciones entre los lados y los ángulos de los triángulos.

•Lasrazonestrigonométricasprincipalessonsenoycoseno,que se definen de la siguiente manera:

αA

B

C

ac

b

sen cateto opuesto ahipotenusa

senα α α= ⇒ = a

c

catetoadyacenteacoshipotenusa

αα =

•Latangentedeunánguloesotrarazóntrigonométricaquese

puede definir en función de seno y coseno como:

tg senα αα

=cos

, o también, tg cateto opuestocateto adyacente

α =

•Losvaloresdelasrazonestrigonométricasdelosángulosde30º, 45º y 60º son:

30º 45º 60º

sen12

22

32

cos 32

22

12

tg 33

1 3

catetoopuestocatetoopuesto hipotenusa catetoopuestohipotenusa

catetoadyacentecos hipotenusa catetoadyacente catetoadyacentehipotenusa

sentg

ααα

= = = ⋅ =tg senα αα

=cos

U4 MAT 3M (216-289).indd 247 2/11/11 15:39:18

Page 248: 003000.000 grou

248

Resolvamos algunos ejercicios donde se apliquen estas razones trigonométricas.

1. Después del colegio, Kandy va al centro comercial con sus amigas. Para subir al segundo piso toman la escalera mecánica y Kandy dice:

–Podríamos calcular el largo de esta escalera si sabemos qué ángulo forma con el suelo, como la profesora de Matemática nos enseñó hoy.

–¡Ya, Kandy, para! –respondieron sus amigas a coro. –No, esperen, hagámoslo y se lo mostramos mañana; seguro que

nos da alguna décima para la prueba. Kandy buscó al guardia del lugar y juntos estimaron las medidas

que necesitaba, luego bosquejó la siguiente figura. ¿Puedes calcular tú el largo de la escalera?

4 m

30°

Si consideramos que la escalera forma con el piso un triángulo rectángulo con una inclinación de aproximadamente 30º, entonces podemos escribir que:

sen 4sen 30 =°x

, donde x es el largo de la escalera.

recuerda, sen cateto opuesto

hipotenusaα =

Pero sen 30º es igual a 12

; por lo tanto,

1 4 82= ⇒ =x

x (Usamos proporciones)

Entonces, la escalera mide aproximadamente 8 m.

2. Una asistente de vuelo miraba detenidamente el avión en el que le tocaría viajar. Como era un vuelo nacional, se decidió colocar una escalera móvil para los pasajeros. Según los datos de la figura, ¿a qué distancia se encuentra el inicio de la escalera del avión?

11,3 m

x 38°

Mira tu calculadora.

En ella aparecen las funciones

seno (sin), coseno (cos) y

tangente (tan). Con ellas puedes

calcular los valores de estas

funciones para cualquier ángulo.

Recuerda que tu calculadora

debe estar en grados (deg o D).

sen tan

cos

Toma nota

U4 MAT 3M (216-289).indd 248 2/11/11 15:39:21

Page 249: 003000.000 grou

UN

IDA

D 4

249

Usando los datos de la figura, podemos escribir que:

tg recuerda, tg ±= cateto opuestocateto adyacente

o38 11 3=

,x

tg recuerda, tg ±= cateto opuesto

cateto adyacenteo38 11 3=

,

x

(Usamos la calculadora),pero tg 38º ≈ 0,7812

entonces tenemos que:

11,3 11,30,7812 14,460,7812

= ⇒ ≈ ⇒ ≈x xx

Por lo tanto, la base de la escalera está aproximadamente a 14,5 m del avión.

3. En la fábrica de exportación de frutas donde trabaja la mamá de Mauro pararon las labores de embalaje ayer porque necesitaban colocar una cinta transportadora que subiera las cajas de manzanas desde los 50 cm a los 150 cm. El técnico tenía un problema para calcular el ángulo de inclinación de la escalera, pues solo conocía las medidas que muestra este dibujo. Mauro escuchó a su mamá y le dijo que él podía solucionar el problema:

100 cm

70 cmα

Con las medidas dadas en la imagen anterior, podemos escribir que:

tg recuerda, tg cateto opuestocateto adyacente

α α= =

10070

⇒ −tg tgαª1 4285 1, / (Función de la calculadora que entrega el ángulo

si se tiene el valor de la razón trigonométrica)

⇒ ( )−αªtg 1 1 4285, (Usamos calculadora)

⇒± oª55 Por lo tanto, el técnico debería poner la cinta transportadora con

un ángulo de inclinación de 55º.

U4 MAT 3M (216-289).indd 249 2/11/11 15:39:23

Page 250: 003000.000 grou

250

4. Un navegante va por un río en su embarcación. De pronto se pregunta: ¿cuánto medirá aquella montaña? Mientras navega, realiza las mediciones respecto a los ángulos de elevación, como se muestra en la imagen. ¿Puede con ellas calcular la altura de la montaña?

10 m

B A

35°40°

22 m} Hagamos un bosquejo de la situación y coloquemos algunas

letras para ayudarnos:

D

A B C1035°40°

y

x

En el triángulo ABD, podemos anotar que:

tg o40 0 84 0 84= ⇒ = ⇒ =x

yxy

x y, ,

Por otro lado, en el triángulo ACD podemos anotar que:

tg o3510

0 7010

0 70 10=+

⇒ =+

⇒ = +( )xy

xy

x y, ,

Igualando las ecuaciones (ya que x mide lo mismo para ambas situaciones), se tiene que:0 84 0 7 100 84 0 7 7 0 700 14 7 0 14

50

, ,, , / ,, / : ,

y y

y y y

y

y

= +( )= + −=

=

(Distribuyendo)

Cuando miramos hacia arriba, el

ángulo que forma nuestra

mirada con el horizonte se llama

ángulo de elevación.

α

Cuando miramos desde una

cierta altura hacia abajo, el

ángulo que forma nuestra

mirada con la horizontal se llama

ángulo de depresión.

α

Toma nota

U4 MAT 3M (216-289).indd 250 2/11/11 15:39:26

Page 251: 003000.000 grou

Remplazando en x = 0,84 y, se tiene que:0,84 50= ⋅x

42=x

Como había 22 metros desde el suelo hasta el navegante y 42 metros desde él hasta la cima de la montaña, entonces el alto de la montaña es 64 metros.

Resuelve en tu cuaderno los siguientes ejercicios. No olvides revisar tus respuestas. Haz un bosquejo en cada ejercicio para ayudarte.

1 Si el cateto opuesto a senδ vale 6 cm y la hipotenusa 10 cm, encuentra: seno, coseno y tangente de senδ.

2 Si cos x = 0,43, ¿cuál es el valor de sen 90 −( )x ?

3 Si 1tg3

=α y 3cos4

=α , ¿cuál es el valor de senα?

4 Haciendo uso de tu calculadora, completa la siguiente tabla, aproximando a la centésima.

Medida del ánguloFunción trigonométrica

15º 43º 79º

sen

cos

tg

5 Los valores de los lados del triángulo rectángulo de la figura son primos entre sí y 5cos

13α = .

5cos13

α =

Completa la figura indicando el valor de cada lado, como también de senα y tgα .

6 Encuentra el valor de los ángulos interiores del siguiente triángulo. Aproxima tus respuestas.

3 u

4 u

Trabaja

UN

IDA

D 4

251

U4 MAT 3M (216-289).indd 251 2/11/11 15:39:26

Page 252: 003000.000 grou

252

7 Encuentra los valores de ángulos y lados que falten.

12 u

90°x

y

30°

a. b.

20 u

30°

90°

y

x

c.

56 u

83 u

90°

a

8 Sin utilizar calculadora, encuentra el valor numérico de las siguientes expresiones:

a. sentg

60 3045

º º

º

⋅ cos

b tg o oo60 4 45 2

302

2+ +coscos

9 ¿Es verdad que el cateto opuesto a α vale sen⋅v α y que el adyacente es cos⋅v α?

α 90°

v

10 Mira atentamente la figura:

α

B

C Ab

a

Define tg α, sen α, cos α, en función de a y b.

11 En un triángulo rectángulo, el cateto adyacente de uno de los ángulos agudos x es 7 y el opuesto 5. Si su ángulo complementario es y, encuentra el valor de:

a. sen yb. cos y c. tg y

12 Si tg z = 3,75, hallar los valores de:

a. sen zb. cos z

U4 MAT 3M (216-289).indd 252 2/11/11 15:39:27

Page 253: 003000.000 grou

UN

IDA

D 4

253

Resuelvan en grupo los siguientes problemas. No olviden revisar sus respuestas.

1 La Sra. Petit es muy cuidadosa con los murales que están en la gran sala del Museo de Arte, de la cual es su directora. Hay que hacer algunas reparaciones en el cielo de esta añosa sala. Para ello, los maestros deben usar una escalera de 6 m de longitud que apoyarán sobre la pared vertical, de tal manera que el pie de la escalera quedará a 1,50 m de la base de la pared, como siempre lo acostumbran.

Les pide que tengan mucho cuidado porque a poco menos de los 6 m hay unos antiguos dibujos de la época de la Colonia que no pueden ser dañados.

Cabe preguntarse: ¿a qué altura de la pared quedará apoyada la escalera y, qué ángulo forma con la pared? Puede que evitemos un gran conflicto. Los invitamos a que nos den su respuesta.

1,50 m

α

x

2 La carta para Benjamín decía así:

15 cm

40 cm

x

Grosor 5 cm

40º

HolaBenja:EncontréestafotodeunacolombinaenInternet.SeparecemuchoalaqueteníaeltíoLonchosegúnloquemostróensuálbumdelrecuerdo.Esteinstrumentomusicalesdecuerdastañidasytienelaformadeuntrapeciorecto.Temandoalgunasespecificaciones:basemayor,40cm;basemenor,15cmy5cmdegrosor.Noséelalto.Lafototepuedeinsinuarunos40ºenelánguloinferiorizquierdo;consideraestevalor.Loquetepidoesquecalculeselalto,porfavor.Acáconozcoaalguienquemepuedehacerunaréplica.TengoganasderegalárselaaltíoLoncho,queestátansoloytanviejito.Además,tañerlacolombinalesirvecomoterapia.Esperoprontoturespuesta.

Vicente.

3 “Aquí base 1 a base 2. He detectado un objeto volador no identificado situado estáticamente en un punto del espacio. Con mis instrumentos he determinado que el ovni se encuentra a 4460 m, en un ángulo de elevación de 35º. Un momento, base 2. El ovni ha comenzado a descender verticalmente hasta posarse en la superficie terrestre”.

Determinen a qué distancia del punto de observación descendió este objeto y qué distancia debió descender hasta tocar tierra.

Trabaja

U4 MAT 3M (216-289).indd 253 2/11/11 15:39:30

Page 254: 003000.000 grou

254

4 Se acerca el 18 de septiembre y ya con casi 202 años de nuestra patria. El director nos ha insistido en el correcto uso de los emblemas nacionales. La bandera del colegio está en buen estado, pero el asta que está enclavada verticalmente en lo alto del edificio de la entrada, no. Hay que cambiarla.

Nos cuenta que si nos instalamos a 12 m de la entrada, los ángulos de elevación de la punta del asta y de la parte superior del edificio son de 60º y 50º, respectivamente. La tarea para el curso es cotizar un buen precio para comprarla.

Pascual preguntó por el largo del asta. El director lo miró y le dijo: “Señor Inostroza, está usted en 3º medio; seguramente con los datos que le di, la puede calcular”. Ayuden a Pascual a encontrar la longitud del asta.

5 Las frases de cada letra representan parte de un problema que se ha desordenado. Ordénenlo y luego calculen lo pedido.

a. Que están sobre el terreno en la dirección oeste del monumento.b. Son de 45º y 30º, respectivamente.c. Hallar la distancia que los separa.d. Desde la cúspide de un monumento de 30 m de altura.e. Los ángulos de depresión de dos objetos.

6 Dos guardabosques de CONAF descubren la misma fogata clandestina en dirección N 42° O y N 48° E, desde sus posiciones respectivas (ver gráfico). El segundo guardabosque estaba a 1,93 km al oeste del primero. Si el guardabosque que está más cercano a la fogata es el que debe acudir, ¿cuál de ellos será y cuánto tendrá que trasladarse?

N

S

48° 42°1,93 km

Fogata clandestina

Segundo guardabosque

Primer guardabosque

O E

7 Juan Eduardo se encuentra en la ventana de su departamento, que está situada a 8 m del suelo, y observa el edificio de enfrente. Como se ha construido un goniómetro artesanal, ha mirado la parte superior del edificio con un ángulo de 30º y la parte inferior con un ángulo de depresión de 45º.

Preparándose para la prueba de Matemática, logró determinar la altura del edificio señalado. Se felicitó, porque averiguó con el administrador del edificio la altura registrada y su medida estaba casi exacta. ¿Cuál es la altura encontrada por Juan Eduardo?

Goniómetro:instrumentodemedicióngraduadoen180°o360°,utilizadoparamediroconstruirángulos

U4 MAT 3M (216-289).indd 254 2/11/11 15:39:31

Page 255: 003000.000 grou

UN

IDA

D 4

255

Revisemos lo aprendido

Te invitamos a hacer una pausa en tu aprendizaje para revisar lo aprendido en esta sección. Marca V (verdadero) o F (falso) según lo que creas que corresponda a tu trabajo.

1. _____ Puedo explicarle a otra persona lo que es la trigonometría.

2. _____ Entendí los problemas que se resolvieron en esta parte de la unidad.

3. _____ Pude resolver correctamente los ejercicios propuestos.

4. _____ Aporté al trabajo de mi grupo.

5. _____ Soy capaz de explicar en qué tipo de problemas se utiliza la trigonometría.

Si has logrado 4 o más respuestas afirmativas, te invitamos a seguir adelante. De lo contrario, vuelve a mirar los contenidos en los que crees que estás más débil.

8 Juvenal es ayudante de topógrafo y, atendiendo a una petición de su jefe, se situó en el punto C y localizó dos puntos, A y B, en los lados opuestos de un lago. Le envió, por Internet, esta fotografía, suponiendo que el triángulo señalado en la imagen era rectángulo en A. Conforme a cálculos trigonométricos, y usando un ángulo en C aproximado a 48°, agregó que el ancho solicitado es 5553,06 km.

A

x

B 7500 m

5000 m

C48º

Con toda esta información, respondan:

a. Usando razones trigonométricas, ¿es correcto dicho valor para el ancho solicitado?b. Obtengan el ancho pedido usando el teorema de Pitágoras.c. ¿Coinciden ambos valores? ¿Por qué?

9 Clementina está estudiando Educación de Párvulos y necesita saber qué tipo de pliego de papel lustre debe comprar para construir 5 decágonos regulares de lado 10 cm. Tiene poco tiempo y al llegar a la tienda le ofrecen dos tipos: uno de 70 cm x 50 cm que cuesta $60 y otro de 75 cm x 53 cm que cuesta $70. Como quiere ahorrar el máximo de dinero, ¿cuál pliego debiera elegir? ¿Por qué?

U4 MAT 3M (216-289).indd 255 2/11/11 15:39:32

Page 256: 003000.000 grou

256

Trabaja más...Trabaja en forma individual

1 Si tg 55

tanβ = , ¿cuál es el valor de cos β?

2 Con los datos dados en la figura adjunta, determina:

x

cos x = 2029

a. sen xb. tg xc. el valor del ángulo x

3 Se sabe que sen = 0,75δ . En cada caso, establece la relación entre ambas expresiones usando símbolos de desigualdades (>, <) sobre los segmentos de puntos.

a. senδ ....1b. senδ ....cosδc. tg δ....1d. tg δ....sen cos+δ δ

4 Los lados opuestos a los ángulos agudos α y β de un mismo triángulo rectángulo son 16 y 30, respectivamente. Indica los valores de:

a. sen sen+α β

b. cos cos−α β

c. 2 sen sen⋅ ⋅α β

d. tg tg−β α

e. tgtgαβ

f. sen tg cos tg⋅ − ⋅α β β β

5 En la figura se ha dibujado una circunferencia de centro O y una tangente a ella, donde T es punto de tangencia. Si 70PT mm= mm y

50PR mm= mm, determina:

T

QORP

a. sen TPOsen TPOb. sen POTsen POTc. tg TPOtan TPOd. tg POTtan POTe. valor de valor de TPOTPO

6 La figura muestra el triángulo AOB, rectángulo en O, y una de sus alturas. Conforme a la información presentada, indica los valores de:

B

C

OABC =3 2, uOC =2 4, u

a. seno del ángulo en Ab. tangente del ángulo en Bc. coseno de ángulo en Ad. tangente del ángulo en A

7 “Te he explicado varias veces cómo se calculan distancias y ángulos de elevación, pero aún no aprendes las razones trigonométricas. ¿Cómo quieres hacerlo, entonces?”, dijo, con clara molestia, Rita a su compañera de curso, mientras estudiaban.

U4 MAT 3M (216-289).indd 256 2/11/11 15:39:34

Page 257: 003000.000 grou

UN

IDA

D 4

257

Para que no te encuentres en situaciones parecidas a la aludida en el párrafo anterior, te proponemos que calcules todas las razones trigonométricas de ambos ángulos, en el siguiente triángulo:

x

y45 u

53 u

8 Sentados a la mesa y después de haber cenado, don Manuel, quien trabaja en la construcción, intenta narrar a su esposa y a su hijo un hecho tragicómico que les ocurrió durante la jornada.

–Estábamos cuadrando el terreno, cuando...–¿Cómo cuadran un terreno, papá?–Formamos triángulos de lados 3, 4 y 5 m. A veces,hacemos lo mismo, pero con 6, 8 y 10 m.–¿Y no miden los ángulos?–Nos basta con lo que te dije recién, pero nosaseguramos que...–¿No usan el seno, el coseno o la tangente,entonces?–Parece que no quieres que cuente mi relato.Pues bien, ya que en el colegio te hanenseñado de esas cosas, aquí tienes lasmedidas de un nuevo triángulo: 35, 12 y 37 m. Cuéntame, ¿podré cuadrar con estetriángulo? ¿Cuáles son los valores de esasmedidas trigonométricas en este triángulo?

9 “Atención, competidores. Sabiendo que en un

triángulo rectángulo uno de los ángulos

agudos tiene como tangente la razón 8413

,

¿cuál es el valor del coseno de ese ángulo

agudo? A la vuelta de comerciales esperamos

su respuesta”.

¿Cuál fue la respuesta que dio el ganador

del concurso?

10 Enrique, no puedo ocultar que ella me gustaba mucho. Todo en ella era perfecto: sus labios, su voz, sus cabellos... hasta su nariz, que parecía un triángulo casi perfecto. Pero se ha ido... ¿Quiere usted hacer un retrato de ella mientras la describo? Enrique comenzó a trabajar mientras él le describía a su amada. Cuando llegó a la nariz, él agregó: “En su perfil puedo dibujar un triángulo rectángulo de 2,7 cm de base y 3,6 cm de alto”. ¿Cuál es el valor del coseno del ángulo agudo mayor que se forma? ¿Cuál es ese ángulo? ¿Cuál es el ángulo de tu nariz?

α

11 “Viendo que no disponemos de una calculadora, páseme, Señor Tamayo, rápidamente un papel, lápiz y algo para medir”. El contratista construyó un ángulo agudo y luego unió sus lados formando un triángulo rectángulo. Midió el lado opuesto a su ángulo y la hipotenusa y formó una razón entre ellos: 17 es a 25. Dio un suspiro y dijo: “Este ángulo mide 52º”. El Señor Tamayo hizo una mueca y le dijo: “Perdón, señor, pero no estoy de acuerdo con sus cálculos”. ¿Quién tiene la razón? Usando los datos del problema, encuentra, además, el valor del seno de un ángulo de 47º.

12 “Magdalena, ¿crees realmente que con esta

cuerda dividida en tres segmentos de 40; 9 y

41 cm se puede formar un triángulo

rectángulo? Recuerda que la profesora nos

dijo que si al menor de los ángulos agudos le

llamábamos α y al mayor β, podríamos

resolver la ecuación 1 1

sen sentg

α βαβ

x x+ =cos

”.

¿Cuál es el valor de x?

U4 MAT 3M (216-289).indd 257 2/11/11 15:39:35

Page 258: 003000.000 grou

258

13 Medir la gravedad es una tarea que comenzarán a hacer los estudiantes de 3º medio del colegio de Pablo. –¿Y con qué? –se preguntaron. –Con un péndulo de medidas y materiales estándares. Veremos los detalles más adelante. Por ahora –dijo el profesor– me interesa que sepan que la mejor medición se realiza cuando el ángulo de oscilación es pequeño. Realizaremos unas mediciones. Para ello, completen la siguiente tabla. La próxima clase les explicaré cómo lo usaremos.

x

Posición de lanzamiento

Posición de equilibrio

Largo del hilo

tensor del péndulo

(cm)

Altura de la posición de lanzamiento con respecto a la posición de

equilibrio (cm)

Cateto adyacente del ángulo

x (cm)

Valor de cos x

50 20 30 30 : 50 = 0,650 15 3545 2045 1540 2040 15

14 En conjunto, actores y director han repasado el guión de la obra de teatro “Encuéntrale algún sentido”. El actor principal trata de aprenderse las líneas de su personaje, un prestigioso doctor en Matemática que ha llegado a su vejez y ha comenzado a desvariar. Repetía incesantemente. ”Dibujo un triángulo rectángulo de catetos 8 y 15 y luego sus razones trigonométricas; las del ángulo agudo de menor medida son... Ah!, no me puedo aprender tanto número al que no le encuentro sentido”. ¿Puedes tú dar los valores de estas razones?

15 “A veces siento que me cuesta resolver problemas. Escucha este y ayúdame por favor.Tengo un triángulo rectángulo de medidas 3, 4 y 5 cm. Debo aumentar en 10% el cateto menor y disminuir en 10% el otro cateto. Con estas nuevas medidas para los catetos construyo un nuevo triángulo rectángulo. ¿Qué porcentaje de variación tiene la tangente del ángulo agudo menor?” (Aproxima a la décima).

16 Lucas estuvo muy enfermo toda la semana pasada con una terrible gripe, y, a pesar de sus deseos, su mamá lo obligó a quedarse en cama. Él no quería perderse la clase de Física de la universidad, porque sabía que entender la materia no le sería fácil. Cuando llegó ese día, un compañero le prestó el cuaderno con la materia sobre fuerzas. En el primer problema decía que las fuerzas en azul se componían en la fuerza roja, y pedían calcular el valor de x e y. Lucas recordó sus clases de Trigonometría y pudo hacerlo. ¿Cuáles son los valores pedidos?

x

y24 N

10 N

U4 MAT 3M (216-289).indd 258 2/11/11 15:39:35

Page 259: 003000.000 grou

UN

IDA

D 4

259

Trabaja en grupo

Resuelvan los siguientes problemas. Usen su calculadora cuando sea necesario.

1 “No llores, Sofía. El barco ya se está perdiendo en el horizonte; deja de mirarlo por ese catalejo, ya no se ve. Es verdad que Renato, tu amado, va allí, pero no te preguntes qué tan lejos está de aquí. Él volverá. Abrígate, mira que estamos a 100 m sobre el nivel del mar, en este peligroso acantilado”. Si el ángulo de depresión con que esta señorita observa al barco es de 5º, ¿cuál es la distancia que los separa? Expresen su respuesta con aproximación al entero.

2 Se está construyendo un nuevo tramo de la ruta 75 y esta tiene una pendiente natural. Los ingenieros conversan acerca de algunos detalles técnicos.

–Germán, la carretera debe ascender 120 m porcada 1000 m de distancia horizontal.–Sí, Braulio, y la primera parte de la carreteraconstruida será de 2,8 km y lo tenemos quetener listo para marzo del 2013.

Según los datos,a. ¿cuál es el ángulo de elevación, aproximado

al grado más próximo? b. determinen el avance horizontal de la primera

parte de la carretera usando el ángulo de elevación obtenido en (a.). Expresen su respuesta sin uso de decimales.

3 “No les haga caso, vecina. Son peleas de niños. ¡Qué importa que nuestros pequeños discutan cuál de nuestras casas es más alta que la otra! Todas las casas de esta villa tienen la misma altura. Hasta el momento, nadie del vecindario ha hecho ampliaciones. Un día, le escuché decir a mi hijo mayor, el que está en tercero medio, que cuando el sol está a 30º con respecto al suelo, la sombra de la casa es de 15 m, y por allí hizo el cálculo de la altura...” Con la información dada en el enunciado, encuentren aproximadamente la altura de las casas aludidas. Expresen su respuesta con aproximación a la centésima.

4 “Lo vimos descender rápidamente desde el cielo. Con nuestros instrumentos, empezamos a notar la falla en sus sensores. Y así nuestro módulo espacial, que estando a una altura de 1450 m, dio su trayecto final por el aire, trayecto rectilíneo

oblicuo, y con un ángulo constante de 20º con respecto a la horizontal, chocó con el pavimento. Se desintegró con el impacto. Nuevamente este accidente pone en evidencia que no hemos logrado nuestro objetivo en la carrera espacial”.

Abril, 1959

Respondan, según la información dada, ¿cuál fue la distancia recorrida en el descenso de la nave? Expresen su respuesta con aproximación a la centésima.

5 La profesora del Taller de Física al cual voy consiguió que asistiéramos al lanzamiento de un globo. Llevamos binoculares y nos ubicamos a una distancia de 200 m del punto donde empezó a elevarse verticalmente. Con nuestros goniómetros fabricados en el taller, vimos que un minuto después del lanzamiento el ángulo de elevación era de 20º y a los dos minutos, 35º. Con esta información, encuentren:

a. la rapidez media en m/s, en los dos primeros minutos.

b. la distancia recorrida entre el primer y el segundo minuto.

6 Matías y María Ignacia han tenido que refugiarse en un faro, ya que en el borde costero por el cual viajaban se ha desatado una fuerte tormenta de viento y lluvia. Ismael es el guardafaro, quien les presta refugio.–Don Ismael, nunca habíamos estado en un faro. ¿A qué que altura estamos?–A unos 70 m sobre el nivel del mar.–Y con esta escasa visibilidad, poca es laobservación que puede hacer. –Se equivocan. Miren, lo que se ve allá en elcielo es un avión. Ángulo de elevación 25º exactos. Compruébenlo ustedes mismos.–¿Y qué es ese punto, que parece estar justodebajo del avión?–Es una barca. La puedo observar con unángulo de depresión de 24º.

De acuerdo al diálogo, contesten las siguientes preguntas, aproximando a la centésima sus respuestas.a. ¿A qué distancia se encuentra el barco con

respecto al pie del faro?b. ¿Cuál es la altura del avión sobre el agua?

U4 MAT 3M (216-289).indd 259 2/11/11 15:39:35

Page 260: 003000.000 grou

260

7 “He tenido que subir a la cima de la colina y conseguir señal en mi celular para poder comunicarme contigo. Estoy a una altura de 60 m sobre el camino. ¿El paisaje? Un poco agreste. Todo muy solitario. Veo un lago donde hay dos botes en la misma línea recta. Nada interesante que contarte”. Si los ángulos de depresión con los que la persona observa los botes son de 10º y 20º, encuentren la distancia, aproximada a la centésima, entre los botes.

8 “Después de algunos minutos transcurridos del terremoto del 2010, muchos vimos luces que se movían en el cielo. Me llamó la atención una que se mantuvo fija dando destellos naranjas y verdes, con elevación de 20º y mirando hacia el sur. Marcial también observó lo mismo, a igual hora, pero con elevación de 25º, dirección norte. Vivimos a 150 km de distancia en línea recta”. ¿Será posible estimar la altura de esta luz?

9 “Al parecer, el disparo provino desde la ventana del quinto piso, del departamento 506, que queda más abajo del piso de la víctima, en el edificio frente a nosotros. Estos edificios son gemelos y están distanciados por 70 m. En estos momentos estoy en la ventana del departamento por donde la víctima cayó al vacío y miro hacia la ventana por donde estuvo el agresor, bajo un ángulo de 30º, aproximadamente. Me pregunto: ¿qué distancia pudo haber recorrido la bala?” Respondan ustedes la pregunta.

10 Tulio está entrenando a Mauro para que participe en la próxima cicletada del pueblo. Llama a cuatro amigos que le permitan hacer unas mediciones y les muestra un papel, en el cual hizo el siguiente dibujo: Luego agregó:

M P R N

O

–Entonces, para mejorar la marca de velocidaden bicicleta de Mauro, vamos a elegir un tramoque yo dibujé como MN , por donde va a pasarMauro, y que después dividí en tres tramosmenores: MP , PR y RN. Vean, yo me ubico enO, a 100 m de M, y ustedes cuatro, en los otrospuntos. Como elegí un ángulo de 30º en estepunto, al cual dividí en ángulos iguales, estome garantiza que lo tramos menoresanteriores sean iguales.–Espere un momento –dijo Mauro–. ¿Es estorealmente cierto?Respondan ustedes la pregunta y den lasmedidas de los trazos señalados.

11 Marcia es una fanática de las películas de ciencia ficción. Ayer fue a ver una de esas al cine y hoy les contaba a todos en el curso... “Los protagonistas estaban en una misma línea, uno antes que el otro. Uno de los protagonistas vio el objeto en la coordenada (3, 4) con una elevación de 35º y el otro lo miró con elevación de 53º aproximadamente. Después, ambos, desde el suelo, levitaron y los absorbió el objeto. Iban hipnotizados...“ .

De pronto, José echó a reír y le dijo a Marcia... “¿Me puedes decir también cuál era la distancia que separaba a tus protagonistas?” Marcia, enojada, le respondió. “No, calcúlala tú... ya aprendiste trigonometría”. Ahora resuelvan el problema planteado por José.

12 Hernaldo encontró un cuaderno extraviado en uno de los paraderos del Transantiago. Empezó a hojearlo y en una de sus páginas había un ejercicio escrito y sin desarrollo que decía:

“Una aplicación a la física de partículas:

Tres partículas p1, p

2 y p

3 chocan

simultáneamente, de tal modo que salen expulsadas en distintas direcciones.

Experimentalmente, se ha detectado que al cabo de siete segundos se encuentran momentáneamente situadas en los vértices de un triángulo rectángulo.

Las más cercanas son p1 y p

3, las que distan 19

unidades entre sí.

La última de estas se ubica en uno de los vértices, donde se halla un ángulo no recto.

El ángulo agudo mayor mide 67º

U4 MAT 3M (216-289).indd 260 2/11/11 15:39:36

Page 261: 003000.000 grou

UN

IDA

D 4

261

Punto de choque

En la figura, indica la ubicación correcta de p

1, p

2

y p3, los ángulos interiores y sus medidas, como

también las distancias respectivas.

Vio la pregunta en el globillo e hizo el desarrollo correcto en este cuaderno ajeno. Llamó al celular indicado en caso de pérdida. La voz de una joven respondió: “Muchas gracias...”. ¿Cuál fue la respuesta escrita en el cuaderno?

13 En general, para la construcción de rampas para discapacitados, la pendiente máxima no debe exceder de 7º. Fabián salió a revisar aquella que hay en el cruce de la esquina próxima, pues su hermano, que es discapacitado, la usa diariamente. La rampa cumplía las normas de ancho, pero encontró para una longitud de 120 cm un avance de 119 cm.

altura

avance

ángulo

longitud

Según esta situación, ¿Fabián debiera encontrar alguna irregularidad para hacerla saber a la autoridad correspondiente? ¿Por qué?

14 En mi zona van a construir un puente sobre uno de los ríos. La radio local dice que el río tiene 10 m de ancho, que el puente debe quedar a 2,10 m sobre el agua y que las rampas de acceso tendrán una inclinación de 20º, a ambos lados del río de manera simétrica. De esta forma se va a remplazar el antiguo, que ya estaba en desuso y prácticamente en el suelo:

a. ¿Cuál deberá ser la longitud l de la baranda?

b. ¿A qué distancia “d” del cauce comenzará la rampa?

l

d2,10 m20°

U4 MAT 3M (216-289).indd 261 2/11/11 15:39:37

Page 262: 003000.000 grou

262

Otros temas de trigonometría–Este trabajo de investigación me va a costar al menos una de mis neuronas.–Jorge, no seas exagerado –le respondió Amelia.–Pero ¿te fijaste lo largo que es?–Bueno, pero con el papá de Amelia lo terminaremos pronto –dijo Mario.–Lo mejor es que puedo trabajar con ustedes.–Jorge, tú eres muy buen alumno también y entre los tres hacemosun gran equipo.–Sí, eso es cierto.

•Primerapregunta:¿sonseno,cosenoytangentelasúnicasrazonestrigonométricas?

–No, mi papá me explicó ayer lo siguiente:

Existen otras tres razones trigonométricas que se relacionan con las

primeras; estas son: cosecante, secante y cotangente, y se puede

escribir que:

seccos

αα

= 1, cosecα

α= 1

sen y cotg α

α= 1

tg

–Bien, ya lo anoté.

•Segundapregunta:¿Quésonlasidentidadestrigonométricas?y¿cuáles son las identidades básicas?

Mario lo encuentra y dice:

Una identidad es una igualdad que se satisface para cualquier valor de la(s) variable(s) involucrada(s). Si ésta es trigonométrica relacionará razones trigonométricas. Las más conocidas son:

•sen cosec 1α α⋅ =•cos sec 1α α⋅ =•tg cotg 1α α⋅ =• 2 2sen cos 1α α+ =• 2 2sec tg 1α α= +• 2 2cosec cotg 1α α= +

–Las tres primeras las entiendo –dijo Jorge–. Basta tomar las

definiciones que dimos anteriormente. Por ejemplo, si tomamos que:

1cosec / sen

senα α

α= ⋅

cosec sen 1α α⋅ =

Que existen otras razones trigonométricas y que se las puede considerar como funciones.Desarrollaráslassiguienteshabilidades:• Identificar• Calcular• Comprender• Resolver• Relacionar• Aplicar• InterpretarygenerarideasHabilidadesporactividad:• Identificarycalcular:1,1• Comprenderyresolver:2,5,8,2• Relacionaryaplicar:3,7,9,10,3,4,5• Interpretarygenerarideas:4,6

Trabaja más...

Habilidadesporactividad:• Relacionaryaplicar:1

En esta sección aprenderás

Nota que 2sen sen senα α α= ⋅

y lo mismo sucede para todas

las razones trigonométricas.

Toma nota

U4 MAT 3M (216-289).indd 262 2/11/11 15:39:39

Page 263: 003000.000 grou

UN

IDA

D 4

263

–Y ya está, lo mismo con las otras razones. Pero ¿por qué son ciertaslas últimas tres?–¡Papá! –gritó Amelia.

Su papá escuchó atentamente lo que le preguntaron... Pensó uninstante y dijo: “Escriban cada razón según su definición” y volvió asentarse frente al televisor.–¡Ahh! –suspiró Amelia –siempre hace lo mismo... Veamos a qué llegamos:

AC

B

ac

b

sen ac

α =

cos bc

α =

α

Entonces:2 2sen cosα α+

2 2 2 2 2 2

2 2 2

a b a b a bc c c c c

+ = + = + =

Pero, 2 2 2+ =a b c (por teorema de Pitágoras); por lo tanto:2 2 2

2 22 2sen cos 1a b c

c cα α ++ = = =

–Eso estuvo genial –dijo Jorge–, no es muy difícil; sigamos con las otras:2 2sec tg 1α α= +

2

1 = + ab recuerda que tg cateto opuesto

cateto adyacenteα =

(Recuerden que debemos igualar denominadores)

2

2

11

= +ab

2 2

2

+= a bb

22

2 = =

c cbb

=

=

=1 1

2

2

2

bc

cossec

αα

–Ufff... Esto estuvo un poco más complicado, pero lo entendí.–¿Se han dado cuenta de que están demostrando identidadestrigonométricas? –dijo el papá de Amelia.

U4 MAT 3M (216-289).indd 263 2/11/11 15:39:39

Page 264: 003000.000 grou

264

–Ejem... Eso suena importante –rió Jorge.Y una última. Seguro que tú puedes demostrarla, inténtalo aquí.

2 2cosec cotg 1α α= +

–Esto va muy bien.–La próxima pregunta dice: Demuestra que 2 12 4 4sen sen cosα α α− = −–¿Qué hacemos aquí? El padre de Amelia le sugirió que comenzaradel lado derecho de la identidad y usara las identidades que yahabía demostrado.

sen cos sen cos sen cos2 24 4 2 2α α α α α α− = +( ) −( )sen cos sen cos sen cos2 24 4 2 2α α α α α α− = +( ) −( ) (Factorizando)

= ⋅ −( )1 2sen cos2 α α (Recuerda que 2 2sen cos 12 2sen cos 12 2α αsen cos 1α αsen cos 12 2sen cos 12 2α α2 2sen cos 12 2sen cos 1+ =sen cos 12 2sen cos 12 2+ =2 2sen cos 12 2sen cos 1α αsen cos 1+ =sen cos 1α αsen cos 12 2sen cos 12 2α α2 2sen cos 12 2+ =2 2sen cos 12 2α α2 2sen cos 12 2 )

= sen cos sen sen2 α α α α− = − −( )2 2 21 ( )Si( )Si se( )sen c( )n c co( )cos s( )s s2 2( )2 2n c2 2n c( )n c2 2n cα α( )α αn cα αn c( )n cα αn cosα αos( )osα αos2 2α α2 2( )2 2α α2 2n c2 2n cα αn c2 2n c( )n c2 2n cα αn c2 2n c α α( )α αs sα αs s( )s sα αs senα αen( )enα αen+ =( )+ =2 2+ =2 2( )2 2+ =2 2α α+ =α α( )α α+ =α αn cα αn c+ =n cα αn c( )n cα αn c+ =n cα αn cosα αos+ =osα αos( )osα αos+ =osα αos2 2α α2 2+ =2 2α α2 2( )2 2α α2 2+ =2 2α α2 2n c2 2n cα αn c2 2n c+ =n c2 2n cα αn c2 2n c( )n c2 2n cα αn c2 2n c+ =n c2 2n cα αn c2 2n cos2 2osα αos2 2os+ =os2 2osα αos2 2os( )os2 2osα αos2 2os+ =os2 2osα αos2 2os s sα αs s= −s sα αs s( )s sα αs s= −s sα αs s( )2 2( )2 2( )2 22 22 2( )2 2 α α( )α α2 2α α( )α αs sα αs s( )s sα αs s2 2s sα αs s( )s sα αs senα αen( )enα αen2 2enα αen( )enα αen2 2+ =2 2( )2 2+ =2 22 22 2+ =2 2( )2 2+ =2 22 2α α2 2+ =2 2α α2 2( )2 2α α2 2+ =2 2α α2 22 22 2α α2 2+ =2 2α α2 2( )2 2α α2 2+ =2 2α α2 2( )1 1( )co( )co1 1co( )cos s( )s s1 1s s( )s ss sα αs s( )s sα αs s1 1s sα αs s( )s sα αs ss sα αs s= −s sα αs s( )s sα αs s= −s sα αs s1 1s sα αs s= −s sα αs s( )s sα αs s= −s sα αs s( )1 1( )( )2 2( )1 1( )2 2( )s s( )s s2 2s s( )s s1 1s s( )s s2 2s s( )s s2 2( )2 22 22 2( )2 21 12 2( )2 22 22 2( )2 2co2 2co( )co2 2co2 2co2 2co( )co2 2co1 1co2 2co( )co2 2co2 2co2 2co( )co2 2cos s2 2s s( )s s2 2s s2 2s s2 2s s( )s s2 2s s1 1s s2 2s s( )s s2 2s s2 2s s2 2s s( )s s2 2s sα α( )α α2 2α α( )α α1 1α α( )α α2 2α α( )α αs sα αs s( )s sα αs s2 2s sα αs s( )s sα αs s1 1s sα αs s( )s sα αs s2 2s sα αs s( )s sα αs s( )fi( )( )1 1( )fi( )1 1( )2 2( )2 22 22 2( )2 21 12 2( )2 22 22 2( )2 2fi2 2( )2 22 22 2( )2 21 12 2( )2 22 22 2( )2 2

sen cos sen sen2 α α α α− = − −( )2 2 212 2sen 1 senα α= − +

22sen 1α= −

–¡Genial!, esto de demostrar identidades me está gustando, papá.¿Qué pregunta viene ahora?¿Se cumplirá siempre que sen cosα α= −( )90 ?, ¿qué otrasidentidades de este tipo existen?–Mmmm... –dijo Mario–, déjame dibujar un triángulo rectángulonuevamente:

C

B

a

b

c

90–α

A

Recuerda que ambos ángulos deben sumar 90°.

α

Entonces:

sen ± catetoa opuestohipotenusa

c ± catetoao

=

−( ) =

ac

ac

os 90 ddyacentehipotenusa

Por lo tanto, se cumple la igualdad sen cosα α= −( )90

Las otras igualdades de este tipo son:

cos senα α= −( )90 , tg cotgα α= −( )90 , sec cosecα α= −( )90 ,

cosec secα α= −( )90 y cotg tgα α= −( )90

¿Puedes tú demostrar estas igualdades?

U4 MAT 3M (216-289).indd 264 2/11/11 15:39:44

Page 265: 003000.000 grou

UN

IDA

D 4

265

–¿Falta mucho? –preguntó Jorge–. La idea es alcanzar a terminarlo hoy.–No, solo faltan 3 preguntas, la que viene es:“¿Son funciones las razones trigonométricas?”–Funciones... funciones... ¡¿Cuándo vimos eso?!–¡Ay Jorge!, recuerda que una función es una relación entre dosconjuntos, de manera que cada elemento del conjunto de partidatenga una sola imagen en el conjunto de llegada.–¿Cómo te acuerdas de todo eso?–Es que me gusta la matemática y esa materia la aprendí bien.–¿Y qué tiene que ver eso con las razones trigonométricas?

–Supongo que si miramos las razones como la siguiente relación,entonces serán funciones... Por ejemplo:

Ángulos

30°

0,5

SenoR

–A cada ángulo le corresponde un solo valor en R (sen 30º esúnicamente 0,5 y no otro valor); por lo tanto, es una función.–Entiendo –dijo Jorge–. Pero ¿qué ángulos se pueden colocar en elconjunto de partida? y ¿se relacionan todos los valores de R conalgún ángulo?–No lo sé... Pensémoslo. Los valores de los ángulos debieran estarentre 1º y 89º, ¿no?, porque son ángulos de un triángulo.–Bien pensado, hija – acotó su papá - pero míralo de la siguiente manera.–Supongamos que dibujamos un plano cartesiano y en él un círculode radio 1 unidad (a este círculo se le llama círculo goniométrico o circunferencia unitaria), observa:

–1 1

1B

x

y

CA

–1

–0,5 0,5

0,5

0

–0,5

α

Los ángulos se pueden medir

usando diferentes unidades. Los

grados son la medida usual que

ya conoces, pero también existen

los radianes.

La medida del α, en radianes

(rad), corresponde a la medida de

la longitud del arco que

subtiende en una circunferencia.

Esta medida es independiente del

radio de la circunferencia. Para

realizar la conversión de grados a

rad tomemos la circunferencia

goneométrica (de radio 1) y

establezcamos una proporción:

Grados

360°α

Rad

2πx

(recuerda que la longitud de una

circunferencia es 2 rπ )

45 2 rad360

xπ⋅=

Por ejemplo: Si 45α =

, entonces

expresado en radianes será:

45 2360

xπ⋅=

90360 4

x x radπ π⇒ = ⇒ =

(nota que todos los ángulos medidos

en radianes quedan expresados en

función de π)

Así se pueden anotar los ángulos

más usados:

Grados Radianes

30º 6π

45º 4π

60º 3π

90º 2π

180º π

Recordar y archivar

U4 MAT 3M (216-289).indd 265 2/11/11 15:39:44

Page 266: 003000.000 grou

266

–Si te fijas bien, a medida que el punto B se mueve a lo largo de la circunferencia, el α va tomando valores desde los 0º a los 360º si B da una vuelta completa. Pero B puede dar más de una vuelta, con lo que tendríamos ángulos mayores a 360º. Además, si movemos el punto B en sentido horario, tendremos ángulos negativos.–Entiendo, papá. Entonces, el conjunto de partida son todos los reales, pues el valor de un ángulo no tiene por qué ser solo un número natural, ¿no?–Bien, Amelia, entonces, ¿puedes escribir el dominio de las funciones trigonométricas?–Creo que sí. Dom = R, lo es igual para todas las funciones trigonométricas–¡No, no, no. Ten cuidado! Como ya sabes que son funciones, las podemos graficar. Si usamos el programa Graphmatica (o el graph), tendremos lo siguiente:

y

1,5

1

0,5

0–0,5

–1

–1,5

–2

x

3 /2− π /2−π−π /2π 3 /2π−π

sen x y=

1,5

1

0,5

–0,5

–1

–1,5

–2

0

y

x3 /2− π /2−π−π −π/2π 3 /2π

cos x y=

¿Podrías graficar las funciones cotangente, secante y cosecante? Recuerda que puedes usar el programa Graphmatica o graph.

Si es necesario, chequea tus respuestas en el siguiente link: http://docentes.uacj.mx/sterraza/matematicas_en_movimiento/f unctrig/trig_graf.html

Para saber más

7+¡$

><

2? = %

Para seno de x se tiene que:

Dom sen x( ) =RRec sen x( ) = −[ ]1 1,(Nota que pueden existir ángulos

negativos y que estos son

aquellos que se miden en la

misma dirección en que avanzan

los punteros del reloj).

Toma nota

Para coseno de x se tiene que:

Dom cos x( ) =RRec cos x( ) = −[ ]1 1,

Toma nota

U4 MAT 3M (216-289).indd 266 2/11/11 15:39:47

Page 267: 003000.000 grou

UN

IDA

D 4

267

tg x = y

3

2

1

–1

–2

–3

–4

y

x−π–−π3 2π− 2π− 2π 3 2π

–Pero, ¿por qué la tangente se indefine en 90º?

–Si miras nuevamente el círculo goniométrico o circunferencia unitaria, y mueves el punto B hasta hacerlo coincidir con el eje y, tendremos que el cateto adyacente se hace 0 (o ya no existe triángulo). Observa:

y

–1 –0,5 0,5 1 x

1

0,5

–0,5

–1

1tg0

α = Entonces la fracción se indefine.

Esto pasa cada vez que B coincide con el eje y, es decir, en 90º, 270º, etc.

–Ya entendí; gracias, papá.–Y tú, Jorge ¿entendiste?–Sí, la verdad, creo que sí... Nunca pensé que se podían relacionarambas cosas.–¿Ves como esto sí es entretenido?–Mmm... no lo sé. Mejor veamos la próxima pregunta:“¿Qué relación puedes establecer entre la función tangente y lapendiente de una recta?”–¡La profesora siempre saca relaciones extrañas!

Para tangente de x se tiene que:

Dom tg x x x n n( ) = − ∈ = = − − −{ }R R/ , , , , , , ...90 1 1 3 5 5Dom tg x x x n n( ) = − ∈ = = − − −{ }R R/ , , , , , , ...90 1 1 3 5 5

Dom tg x x x n n( ) = − ∈ = = − − −{ }R R/ , , , , , , ...90 1 1 3 5 5(es decir, en 90º, 270º, 450º, etc.

se indefine).

Rec tg x( ) =R

Toma nota

U4 MAT 3M (216-289).indd 267 2/11/11 15:39:48

Page 268: 003000.000 grou

268

–Bueno, dibujemos una recta cualquiera –dijo Mario– Tu papá dice que un buen dibujo ayuda a pensar, ¿cierto?

y

B(a,b)

A(c,0)

b

a

Entonces, la pendiente de esta recta era: m

y yx x

=−−

2 1

2 1

(La razón entre la diferencia de las ordenadas con la diferencia

de las abscisas de un par de puntos cualquiera de ella).

En este dibujo 00

−⇒ = =−

b bm

a am

ba c

ba c

= −−

=−

0, entonces...

–¡Ah! mira, 00

−⇒ = =−

b bm

a a

cateto opuesto a tgcateto adyacente a

m mα αα

= ⇒ =

–¡Perfecto!–Muy bien, entonces escribiremos que la pendiente de una recta es la tangente del ángulo que forma la recta con el eje x.–Estoy un poco cansado... ¿les digo la última pregunta?–Sí, dale.

“Encuentra el ángulo que forma la recta 2 3 5 0x y− + = con el eje x”.Calculemos la pendiente de la recta 2 3 5 0x y− + = . Para ellodebemos despejar y, entonces tenemos que:⇒ + =2 5 3x y

2 53 3

⇒ + =x y

Por lo tanto, la pendiente de la recta es: m 23

=mPor otro lado, sabemos que tgm α= (donde α es el ángulo que la

recta forma con el eje x), entonces podemos escribir que:

(Usamos calculadora)

33,69⇒α≈ °

/tg–12tg3

α =

1 2tg3

α − =

Entonces, la recta 2 3 5 0x y− + = forma un ángulo de,aproximadamente, 34º con el eje x.–¿Terminamos?–Sí... hemos cumplido. Entonces, ¡vamos a ver una película!

U4 MAT 3M (216-289).indd 268 2/11/11 15:39:50

Page 269: 003000.000 grou

UN

IDA

D 4

269

En la siguiente página

encontrarás una presentación en

PowerPoint que resume la unidad

con demostraciones basadas en

construcciones geométricas. Te

invitamos a buscarlo.

http://www.campvscolle ge.cl/

Alumnos/Material %20de%20

Estudio/Mate matica/Mat-07.

pps#306,48,Diapositiva 48

Links de interés

Resumiendo:

•Existenseisrazonestrigonométricas:seno,coseno,tangente,cosecante, secante y cotangente.

•Lasidentidadestrigonométricassonigualdadesquepuedenser demostradas y que establecen relaciones entre las razones trigonométricas.

•Lasrazonestrigonométricaspuedenserconsideradas como funciones.

•Lasrazonestrigonométricasayudanaresolverproblemasdecampos como la física, matemática, topografía, etc.

TrabajaResponde en tu cuaderno los siguientes ejercicios; no olvides revisar tus respuestas.

1 Verifica que sec 37º = cosec 53º

2 Entre los ángulos comprendidos entre 0º y 180º, ¿cuáles son los que tienen 0,5 como valor para seno? Observa el gráfico para ayudarte.

3 Demuestra que: a. sec cos 1β β⋅ = b. tg cotg 1x x⋅ =

4 Se sabe que 2 21 cotg cosecα α+ = . Indica por lo menos un valor para α donde esta igualdad no sea válida.

5 ¿Qué obtienes al simplificar las razones: a. sec

cosecββ

y b. tg

cotgββ

?

6 La función coseno disminuye su valor en 0 90o o, ) ¿Qué debiera ocurrir con la función secante en este mismo intervalo? ¿Por qué se debe excluir el valor 90º en esta comparación?

7 Si la cotangente del ángulo de inclinación de una recta está entre 0 y 1, ambos incluidos, ¿se puede decir que dicho ángulo está entre 45º y 90º? Justifica tu respuesta.

8 La ecuación de una recta es y x= −6 3 9, ¿Cuál es su ángulo de inclinación con respecto al eje x?

9 ¿Cuáles son los ángulos de inclinación de las rectas coloreadas?, ¿las rectas son perpendiculares?

–1 2 3 4 5–2 10–1

1

2

3

4

5

–3

–2

–4

–5

10 En un gráfico se ven tres rectas concurrentes en (4, 2). Una tiene pendiente igual a 0. Para la otra, el valor de la pendiente es –3 y la última tiene pendiente indeterminada. Grafícalas e indica los ángulos de inclinación. ¿Cuál es la que tiene mayor ángulo de inclinación?

U4 MAT 3M (216-289).indd 269 2/11/11 15:39:51

Page 270: 003000.000 grou

270

TrabajaResuelvan en grupo los siguientes problemas. Respondan en sus cuadernos y no olviden revisar sus respuestas.

1 Alonso miró varias veces a su alrededor y se sentó a comer las papas fritas que venían incluidas en el combo que había pedido. Jacinta le pidió permiso para sentarse en la misma mesa. Al ver que Alonso continuó leyendo sus apuntes de trigonometría, se atrevió a solicitarle ayuda al respecto, pues tenía una duda. Alonso accedió y ella preguntó: “Si conocemos que el valor de la tangente de un ángulo es 2,36, ¿cómo se pueden saber los valores de las otras funciones?” Entreguen la respuesta a Jacinta.

2 Joel, alumno de 3º medio, después de mirar que cos x x= −( )sen o90 y que s cosen ox x= −( )90 , demostró que tg tg ox x= −( )co 90 . Háganlo ustedes también.

3 No puedo salir hoy porque estoy estudiando identidades trigonométricas. Sí, yo sé que me quieres, pero,

entonces, ayúdame y veamos cómo demostrar la siguiente identidad trigonométrica: 2

22

1 tg tg1 cotg

β ββ

+ =+

4 Magdalena tiene que encontrar el ángulo de inclinación de este segmento con respecto al eje x ¿A qué resultado debe llegar?

–1 5–2 4–3 3–4 2–5 10

1

2

3

4

5

6

7

5 Faustino y Roberta no pueden creer lo rápido y sencillo que es escribir ecuaciones de rectas aplicando los recursos trigonométricos. Ahora, el desafío es que solo con mirar este gráfico calculen la rapidez (pendiente) de dos automóviles que parten al mismo tiempo por un camino rectilíneo y con rapidez constante cada uno. Para esto van a medir los ángulos de inclinación y de allí el trabajo está listo: para el rojo, 40º y para el azul 60º. Tema concluido: 50,4 km/h y 103,8 km/h.

y

distancia (km)

tiempo (min) x

a. ¿Qué ángulo debiera graficarse en este dibujo para un tercer auto que vaya a 90 km/h?b. El segmento en verde es paralelo al eje x. Si representa la realidad de otro auto, ¿cómo interpretan

las intersecciones con las otras rectas?

U4 MAT 3M (216-289).indd 270 2/11/11 15:39:52

Page 271: 003000.000 grou

UN

IDA

D 4

271

Es momento de revisar lo que has aprendido en esta sección.

Marca con una cruz el casillero correspondiente según la siguiente rúbrica:Totalmente

logradoPor lograr

Aún queda bastante por revisar

Indicador MB B S I

Entendílosconceptosdecosecante,secanteycotangente.Entendíelconceptodeidentidadtrigonométrica.Entendíporquélasrazonestrigonométricassontambiénfunciones.Entendílosejerciciosdesarrolladosenestasección.Resolvícorrectamentelosejerciciospropuestos.Participéactivamenteenmigrupoalmomentodetrabajarjuntos.

Recuerda que si no has logrado entender claramente los contenidos, debes revisarlos con alguien que te pueda explicar. Puede ser un compañero o compañera o tu profesor o profesora.

Revisemos lo aprendido

Mis apuntes

U4 MAT 3M (216-289).indd 271 2/11/11 15:39:53

Page 272: 003000.000 grou

272

Trabaja más...Trabaja en forma individual

1 Demuestra las siguientes identidades trigonométricas (usa las ya estudiadas).

a. cos cosec cotgx x x⋅ =

b. tg sensec

xx

x=

c. cotg sen secα α α⋅ ⋅( ) =2 1

d. 2

22

1 sen cotg1 cos

δ δδ

− =−

e. 2cossen cosec

senx

x xx

+ =

f. sen cos 1cosec sec

x xx x+ =

g. 1 2 2 2= ⋅ +tg cos cosy y y

h. 1 1 2+( ) −( )

=cos cos

costg x2

x x

x

i. 2 3sen cos sen senx x x x⋅ = −

j. 2

22

1 tg cosectg

β ββ

+ =

k. 2sen cosec tgcosx x

xx

⋅ =

l. ( ) ( )2 2sen cos sen cos 2x x x x+ + − =

Mis apuntes

U4 MAT 3M (216-289).indd 272 2/11/11 15:39:55

Page 273: 003000.000 grou

Muchas veces pensamos en lo díficil que pueden ser los cálculos que ingenieros y arquitectos deben hacer para diseñar o construir las estructuras que están en nuestra ciudad. Algunas veces lo son, pero otras, las mediciones resultan muy sencillas con los conocimientos que ya tienes. El objetivo de este taller es aplicar lo aprendido de trigonometría en la medición de edificios de tu barrio.

Materiales:Un transportadorUna escuadraPapel y lápizCalculadora

Actividad:En pareja, elijan un edificio, casa, torre, etc. que puedan medir. Coloquen el transportador en el suelo y miren, a través de él, el techo. Ayúdense con la escuadra para medir el ángulo de elevación, como lo indica la figura. Luego, midan la distancia desde el punto donde están midiendo hasta el borde del edificio. Por último, contesten las siguientes preguntas:

α

1. ¿Cuánto mide el ángulo de elevación?

2. ¿Cuál es la distancia entre el punto de medición y la base del edificio?

3. ¿Cómo puedes calcular la altura del edificio usando los datos anteriores?

4. Determina la altura del edificio.

5. ¿Es exacta tu medición? Justifica tu respuesta.

6. Comenta tus resultados con tu curso.

UN

IDA

D 4

273

TallerTrabaja

Explorando mi barrio

U4 MAT 3M (216-289).indd 273 2/11/11 15:39:57

Page 274: 003000.000 grou

274

Evaluación Unidad 4

Síntesis conceptual de la unidad

I. En la siguiente sopa de letras, busca los conceptos definidos a continuación:

•Razónentreelcatetoopuestoylahipotenusaenuntriángulorectángulo.

•Inversomultiplicativodelcoseno.

•Razónentreelproductodeloscatetosylahipotenusaenuntriángulorectángulo.

•Igualdadquerelacionarazonestrigonométricasyqueseverificaparacualquierángulo.

•Razónentreelsenoyelcosenodeunángulo.

Y A U K N D Z U J V V U W O DA K Z V C A H X K Q E V E O MX G Q V H R M T C T Y P D O VY M E Z H U Y A O E E H L D IK B Q A D T H N N N P O F K UR N L Y A L X G E T A W I N KV T S A D A D E S H F Y P Y YM H E K I P U N A Q D V P D UF N C F T G J T O G K T Z I SQ I A M N U W E K W Q V H U QT U N M E B Z K L W S W S R IY V T S D X C T O B C N O L ES T E F I Q D Y R U P C M M KP U R T E E N O Y H E R T Y HF B W G Z H P J M V B G Y J L

II. Responde V (verdadero) o F (falso) según corresponda. Justifica aquellas afirmaciones falsas.

1 ____ En un triángulo rectángulo, basta conocer un cateto y su proyección sobre la hipotenusa para determinar cuánto vale esta última.

2 ____ La función inversa de seno es coseno.

3 ____ Cuando el valor de seno crece, entonces el de coseno decrece y viceversa.

4 ____ 2 2cos sen 1α α+ =

5 ____ Basta multiplicar las proyecciones de los catetos para saber directamente el valor de la altura implicada.

6 ____ sen 150º = 5 sen 30º

7 ____ Si a > b, ambos son naturales; luego, en general, 3 3a b+ no es cubo de un natural.

8 ____ Los valores de la función sen y cos están en el intervalo 1,1− .

9 ____ La suma por diferencia entre la hipotenusa y uno de los catetos no es igual al cuadrado del otro cateto.

10 ____ El teorema de Fermat, en general, indica que la potencia enésima de un natural no se puede descomponer en dos sumandos también elevados a la potencia n, con n natural mayor que dos.

U4 MAT 3M (216-289).indd 274 2/11/11 15:39:57

Page 275: 003000.000 grou

UN

IDA

D 4

275

III. Desarrolla con tu grupo los siguientes ejercicios. No olvides revisar las respuestas en el solucionario.

1 Los catetos de un triángulo rectángulo están en la razón 3:4. Si la hipotenusa mide 20 cm, ¿cuánto mide la altura sobre ella y las proyecciones de los catetos?

2 p y q son proyecciones de los catetos sobre la hipotenusa de un triángulo; p es la proyección del cateto de 60 cm y q es la proyección del cateto de 11 cm. ¿Cuál es el valor de p q pq2 2 2+ + ?

3 Determina el área del cuadrado construido sobre uno de los catetos del triángulo rectángulo.

x90°

2 m

x

x

xx

4 A partir de la figura, verifica que el área (A) y el perímetro (P) están dados por las siguientes fórmulas:

Apq p q

=⋅ +( )2

y P c c p q= + +( )

A B

C

D

b

q

a

p

c

hc

5 El triángulo rojo que está sobre el plano dibujado es isósceles de lado 4 cm. ¿Cuánto vale la altura perpendicular a la hipotenusa?

A E

C

6 Las medidas a, b y c son tríos pitagóricos. Se ha dibujado la diagonal en rojo. La arista mayor mide c. ¿Por qué basta considerar solo esta última para conocer la medida de la diagonal?

a

bc

7 Las vigas de un techo son iguales y forman un ángulo de 90º. Además, el ancho del techo es de 4 m. ¿Qué altura tiene el techo? ¿Cuánto deben medir las vigas?

4 m

x xh

8 El radio del cono mide 7 cm y la generatriz 18 cm más. ¿Cuánto mide el ángulo formado por g y r?, ¿y la altura (h)?

hg

r

U4 MAT 3M (216-289).indd 275 2/11/11 15:39:58

Page 276: 003000.000 grou

276

9 Un barco navega 620 km con rumbo de 70º. ¿A qué distancia en dirección norte está respecto de su posición inicial?

10 Usando los valores de seno, coseno y tangente vistos, completa la siguiente tabla:

30º 45º 60º

cotg

sec

cosec

Los ejercicios 11 al 18 están referidos a la siguiente figura, y se sabe que la pendiente de la recta azul es 2:

y

x

6

5

4

3

2

1

–1

–2

–3

–3 –2 –1 1 2 3 4 5 6 7 8 90

11 Encuentra los ángulos de inclinación de cada recta.

12 Escribe las ecuaciones de las rectas haciendo uso de dicho ángulo.

13 Determina trigonométricamente los catetos del triángulo naranja.

14 ¿Cuál es el valor de la altura perpendicular a la hipotenusa del triángulo naranja?

15 ¿Cuál es el valor de la altura con respecto a la hipotenusa para los dos triángulos restantes?

16 ¿Cuáles son los valores de las proyecciones de los catetos sobre la hipotenusa en el triángulo naranja?

17 ¿Cuáles son los valores de las proyecciones de los catetos sobre la hipotenusa para el triángulo mayor?

18 Usando el teorema de Euclides, muestra que el triángulo naranja es rectángulo.

19 De un triángulo rectángulo se sabe que un cateto mide 15 cm y que el ángulo opuesto a dicho cateto tiene por coseno a 0,4848. Calcula los lados que faltan y sus ángulos interiores.

20 Remplazando x igual a 30º, decide si se

cumple que sen cossen tgx x

x x+ = 1

21 Dado el triángulo rectángulo de la figura, calcula el área del triángulo sombreado.

C

A D B

E

8 u

6 u

22 Si los siguientes son lados de un triángulo rectángulo: a n b n n c n n= + = +( ) = +( )+2 1 2 1 2 1 1, y, a n b n n c n n= + = +( ) = +( )+2 1 2 1 2 1 1, y y

a n b n n c n n= + = +( ) = +( )+2 1 2 1 2 1 1, y . Determina los tríos pitagóricos y comprueba que ellos lo son para:

a. n = 7 b. n = a + b

23 Si 5cos7

α = , calcula el valor de:

a. senα b. tgα

IV. Resuelve los siguientes problemas junto a tu grupo. Revisa tus resultados.

1 “Este es mi sueño, exclama Pablo: participar en algún programa espacial. Por ejemplo, orbitar alrededor de la Tierra, fotografiarla, viajar a otros planetas, etc. Por ahora me conformo con imaginarme que estoy en esa nave espacial, que la veo con ángulo de 20° y que puedo calcular a qué distancia estoy de ella. Me falta un dato... Lo voy a buscar... estoy a 29760,74 km”. “¡Correcto, Pablo!”, le comenta su monitor de Ciencias. ¿Qué dato buscó Pablo? ¿Cuál es el valor que usó?

U4 MAT 3M (216-289).indd 276 2/11/11 15:39:59

Page 277: 003000.000 grou

UN

IDA

D 4

277

20° Nave espacial

2 Se acercan los cumpleaños de Blanca y Hugo y su padre está construyendo un teatro de títeres iluminado, que es un tronco de cono. Siguiendo las instrucciones de una revista, necesita que el radio menor sea de 10 cm y el mayor de 12 cm. Por desgracia y una falla de la impresión, la altura no aparece mencionada y su generatriz debe medir 15 cm. ¡Qué difícil instalar el foco para este teatro!... ¿Cuánto deberá medir la altura?

3 En un libro de Geometría analítica, Monserrat leyó que la pendiente de la recta estaba relacionada con su ángulo de inclinación. Allí se planteaba el siguiente problema:

“Una escalera de 13,5 m de longitud llega hasta la parte superior de un muro. Si la escalera forma un ángulo de 60º con el muro, halla la altura de este y la distancia a él desde el pie de la escalera.”

¿Puedes solucionarlo?

x

y

60°

4 ¿El teorema de quién?... de Fermat... ¡Ah! eso lo vi en la universidad cuando joven... ¿Pero recuerda algo?... ¡Nada, solo recuerdo que aún no lo demostraban hasta que en la década de los 90... Entonces ¡no recuerda nada del teorema de Fermat!.... ¡Nada, esta cabeza mía ya no funciona bien .... ¿ y por qué tanto asombro porque no recuerdo ese teorema?... ¿Quiere que yo se lo recuerde?

Escribe el enunciado del teorema y explícalo dando ejemplos.

5 En un triángulo rectángulo, la suma de las áreas de las semicircunferencias construidas sobre cada cateto es igual al área de la semicircunferencia construida sobre la hipotenusa. Verifica este teorema usando el trío pitagórico 6, 8 y 10 (Nota: Averigua con tu profesor cómo se demuestra dicho teorema e investiga si funciona con otras figuras, aparte de cuadrado o semicircunferencias).

6 César y Fernanda acostumbran ir al mirador de la azotea de su edifico a observar la ciudad. De súbito, se encuentran con un

U4 MAT 3M (216-289).indd 277 2/11/11 15:40:00

Page 278: 003000.000 grou

278

técnico haciendo algunas mediciones en uno de los bordes del edificio. –“No se preocupen, me marcho enseguida. Me faltan solo algunas observaciones y listo... Van a instalar en ese tremendo edificio de enfrente un letrero luminoso de bienvenida al 2013. Mmm... veamos, ya he chequeado que el ángulo de elevación al borde del techo de ese edificio sea 41º, que la distancia de aquí al edificio del frente sea, efectivamente, 85 m y que este edificio mida 115 m de altura. Ahora los dejo tranquilos– . –Espere –grita Fernanda–. ¿Sabe qué tan alto es el edificio del frente? –No sé, porque no he hecho los cálculos aún...Con los datos proporcionados, dinos tú. ¿Cuál es la altura?

“Martita, tengo una duda con respecto

a esta identidad. Parece que la anoté

mal y tengo que demostrarla en clases.

Por favor, verifícala usando dos

valores. No necesito que la demuestres.

Gracias eternas.

Tu amiga Millie”.

7

Ambas personas son estudiantes de Pedagogía en Matemática y excelentes amigas. Te pedimos que colabores, chequeando con algún par de valores y nos digas si está correcta la siguiente expresión:

sen sensen sen

x y

x y

x y

x y

++

+ −−

=cos cos

cos cos 0

8 María Antonieta les propuso el siguiente juego: miren bien la tabla amarilla, que será su referencia:

12 22 32 42

52 62 72 82

92 102 112 122

132 142 152 162

172 182 192 202

Ahora, sin sumar todos los números de las tablas para saber el total, sino aplicando lo aprendido en esta unidad, digan cuál de las

siguientes tablas sumaría más que la amarilla. ¿Cuál es tu respuesta? (Ayúdate buscando tríos pitagóricos y comparando las tablas).

02 12 22 52 12 22 32 42 02 12 22 52

52 62 72 82 02 62 72 82 02 02 72 92

92 102 112 122 92 102 112 132 102 102 112 132

132 142 152 162 132 142 152 162 132 142 152 162

172 182 192 202 172 182 192 202 172 182 192 202

9 Mi hermana me indicó que esta es una forma particular de conocer un ángulo inscrito en una circunferencia. Con hipotenusa 10 unidades y radio 4 unidades tenemos un ángulo inscrito. ¿Cuánto mide?

x

10 “Todo se puede lograr, no hay nada imposible para el que sabe luchar”. ¿Cómo puedo calcular el área del polígono amarillo? Tú puedes hacerlo... inténtalo.

2 u 2 u

2 u

11 A Lucía le ha surgido una duda mientras

estudia para su prueba. Ella sabe que 6, 8 y 10

forman un trío pitagórico y que sus múltiplos

también lo son. Sin embargo, se ha

preguntado qué sucederá si los multiplica a

todos ellos por 25

o si les extrae raíz cuadrada.

¿Seguirán siendo tríos pitagóricos?

Responde tú también estas preguntas. Justifica tu respuesta.

U4 MAT 3M (216-289).indd 278 2/11/11 15:40:03

Page 279: 003000.000 grou

UN

IDA

D 4

279

12 Ismael debe argumentar en una disertación para la clase de Matemática que no se pueden encontrar números naturales: a, b y c, con a b c≤ < y c = 7, tales

que 5 5 5a b c+ = . ¿Puedes tú también dar un argumento para ello? Escribe todo tu desarrollo en tu cuaderno.

13 Úrsula necesita medir la altura del edificio en el que vive para su tarea de Matemática. Entonces, se ubica a 3 m de la base del edificio y con su transportador estima que el ángulo de elevación desde el suelo a la parte más alta del edificio es 78º. ¿Cuánto mide el edificio? (Usa calculadora).

14 Catalina y Samuel están estudiando Matemática. Samuel se para en la ventana de la pieza y le dice a Catalina: “Estando a 8 m del edificio del frente, puedo ver la punta de la antena que está sobre la azotea de él con un ángulo de 36º”. Catalina se acercó a Samuel y le preguntó: “Si yo soy 10 cm más baja que tú, ¿con que ángulo la veré?” (Usa calculadora).

15 En el huerto de don Floridor hay un árbol que tiene muchos años. Mientras ha ido creciendo lo han apuntalado con tutores, como se muestra en la figura, donde el tutor más pequeño mide 8 m. Un día su nieta Matilde le pregunta cuánto mide ese hermoso árbol, pero su abuelo solo le responde que el trozo de tronco desde el suelo hasta el tutor más cerca del suelo mide un tercio de la medida del árbol y que forma con el árbol un ángulo de 52º. ¿Puedes determinar la altura del árbol?

52°

V. Marca la alternativa correcta:

1 Con respecto al triángulo rectángulo ABC de la figura, ¿cuál de las siguientes opciones es verdadera?

β

α

B

CA a

bc

a. sen bc

α =

b. cos ca

α =

c. cos ac

β =

d. sen bc

β =

e. tg ab

α =

DemRe

2 En la figura, ¿cuál(es) de las siguientes relaciones es(son) verdadera(s)?

C

A Ba

2a

β

α

I. tg 2α =

II. 4 5sen cos

5α β+ =

III. tg tg 1β α+ =

a. Solo Ib. Solo IIc. Solo I y II

d. Solo I y IIIe. I, II y III

DemRe

3 Los catetos de un triángulo rectángulo miden 5 cm y 12 cm; entonces el coseno del ángulo menor es:

a. 5

13

b. 1213

c. 5

12

d. 125

e. 1312

DemRe

U4 MAT 3M (216-289).indd 279 2/11/11 15:40:06

Page 280: 003000.000 grou

280

4 En la figura, si el ∆ ABC es rectángulo en C, y

AC BC= =6 2 cm, entonces CD es:

B

C A

D

a. 3 2 cm

b. 6 2 cm

c. 3 cm

d. 6 cm

e. 12 cm

DemRe

5 La longitud de un cable que tiene sus extremos fijos en un poste y en la tierra es de 20 3 m. El cable forma un ángulo de 60º con la tierra. ¿A cuántos metros de la tierra está fijo el cable en el poste?

a. A 10 3 m

b. A 10 6 m

c. A 30 m

d. A 40 m

e. A 60 m

DemRe

6 A partir de los datos de la figura, se puede afirmar que son verdaderas:

C

ab

cq p

h

A BD

I. =b hc a

II. ⋅ = ⋅a q b h III. 2 = ⋅h b q

a. Solo Ib. Solo IIc. Solo III

d. Solo I y IIe. I, II y III

7 ¿Cuál(es) de los siguientes triángulos es (son) rectángulo(s)?

2 u 8 u

10 uI.

36 u

4 u12 uIII.

4 u

16 u8 u

II.

a. Solo Ib. Solo I y IIc. Solo II y III

d. Solo I y IIIe. I, II y III

8 En el ∆ ABC de la figura, rectángulo en A,

AD es altura. Entonces CD mide:

C

A B

D

12 u

13 u

a. 2512

u

b. 6512

u

c. 25 u

d. 60 u

e. 144 u

9 En la figura, 10=BC cm y 6=DC cm,

entonces AD mide:

B

CA

D6 cm 10 cm

a. 4 cmb. 4,5 cm

c. 5 cmd. 6 cm

e. 8 cm

10 sen cos2 22 2α α( )+ ( ) es igual a:

a. 1b. 2c. 4

d. 2 24 sen cosα αe. 2 28 sen cosα α

DemRe

U4 MAT 3M (216-289).indd 280 2/11/11 15:40:09

Page 281: 003000.000 grou

UN

IDA

D 4

281

11 Si x = 15°, entonces ¿cuál(es) de las siguientes igualdades es (son) verdadera(s)?

I. sen 4 32

x( ) =

II. cos 4 12

x( ) =

III. sen sen2 2x x( ) =a. Solo Ib. Solo IIc. Solo III

d. Solo I y IIe. I, II y III

12 En la figura, el ∆ PQR es rectángulo en R. Si 3,6=PS cm y 4,8=RS cm, entonces PQ mide:

R

P S Q

a. 6 cmb. 6,4 cm

c. 8 cmd. 10 cm

e. 12 cm

13 En el triángulo de la figura, se puede determinar su perímetro si:

A C

B

β

α

(1) 1sen2

α =

(2) AB =24 u

a. (1) por sí solab. (2) por sí solac. Ambas juntas, (1) y (2)d. Cada una por sí sola, (1) o (2)e. Se requiere información adicional

14 Una viga de contención se encuentra apoyada contra un muro. Si la distancia entre el pie de la viga y el muro es de 1,2 m y el ángulo que forma con el suelo mide 60º, ¿cuánto mide la viga?

a. 65

3 m

b. 2 m

c. 125

m

d. 2 4 3, m

e. 6 3 m

15 En el gráfico de la figura, el ∆ PQR es rectángulo en Q. Entonces, el valor del seno del ángulo PRQ es:

7

6

5

4

3

2

1

0

R Q

P

1 2 3 4 5 6 7

a. 53

b. 34

c. 43

d. 45

e. 35

16 ¿Cuál de los siguientes valores puede corresponder al coseno de un ángulo?a. 1,35

b. 87

c. 119

d. 0,29

e. –1,35

17 La expresión sentg

g senαα

α α+ ⋅cot es

equivalente a:

a. 2senαb. 2cosαc. 2 tgα

d. 2cotgαe. 2cosecα

18 ¿Cuál es la altura de un edificio, aproximadamente, si el ángulo de elevación de su extremo aumenta de 45º a 60º cuando un observador avanza 40 m hacia él?

U4 MAT 3M (216-289).indd 281 2/11/11 15:40:12

Page 282: 003000.000 grou

282

a. 68,17 mb. 75,13 mc. 80,25 m

d. 82,09 me. 94,79 m

19 Dos caminos rectos se intersectan formando un ángulo de 45°. En uno de ellos, y a 100 metros del cruce, hay un colegio. ¿Cuál es la distancia menor, aproximada, entre el colegio y el otro camino?

a. 50 mb. 68 mc. 71 m

d. 100 me. 121 m

20 Jaime está en el gimnasio ejercitando en una máquina trotadora que ha ajustado de manera que la pendiente esté dada por un ángulo de 20º. La cinta de la trotadora mide 1,20 m. ¿A qué altura del suelo se encuentra, aproximadamente, el extremo superior de la cinta? (Considera que sen 20º es aproximadamente 0,34).

a. 20 cmb. 30 cmc. 41 cm

d. 45 cme. No se puede

calcular.

21 ¿Cuál(es) de los siguientes tríos de números es(son) trío(s) pitagórico(s)?

I. 45, 28 y 53II. 19, 180 y 181III. 35, 40 y 85a. Solo Ib. Solo IIIc. Solo I y II

d. Solo II y IIIe. I, II y III

22 Si a b c, , ∈, tales que ellos son no nulos, la igualdad n n na b c+ = se cumple si n toma el(los) valor(es):

I. 2II. 3III. 4

a. Solo Ib. Solo IIc. Solo III

d. Solo I y IIe. Solo I y III

23 En un triángulo rectángulo los catetos miden 8 y 7 cm. Entonces, la altura trazada con respecto a la hipotenusa mide, en cm:

a. 8 113

113

b. 15 113

113

c. 7 113113

d. 113

113

e. 56 113

113

24 Si los catetos de un triángulo rectángulo ABC, rectángulo en A, miden 10 y 24 cm, ¿cuánto mide la proyección del cateto mayor sobre la hipotenusa?

a. 5013

cm

b. 7013

cm

c. 12013

cm

d. 28813

cm

e. 26 cm

25 En un triángulo rectángulo se traza la altura con respecto a la hipotenusa, determinando segmentos que miden 16 y 9 cm. ¿Cuánto mide el área del triángulo?

a. 1728 cm2

b. 864 cm2

c. 300 cm2

d. 150 cm2

e. 75 cm2

26 En el rectángulo de la figura 3

AEEC = .

Si 5cmEB = , ¿cuál es el área del rectángulo ABCD?

D

A B

CE

a. 20 33

2cm

b. 50 33

2cm

c. 100 33

2cm

d. 200 33

2cm

e. No se puede determinar

U4 MAT 3M (216-289).indd 282 2/11/11 15:40:17

Page 283: 003000.000 grou

UN

IDA

D 4

283

27 En la figura adjunta, ABCD es un trapecio. ¿Cuál es el valor del área sombreada?

D C

BA

80 cm

12 cm13 cm

a. 232,8 cm2

b. 312,8 cm2

c. 480,0 cm2

d. 712,8 cm2

e. 1425,6 cm2

28 La figura muestra una semicircunferencia de radio 12 cm, en la que se ha trazado la altura del triángulo inscrito con respecto a

la hipotenusa. Si 10AC cm= cm, ¿a cuántos centímetros del centro (O) se encuentra el pie de la altura señalada (D)?

C

A D O B

a. 256

b. 476

c. 576

d. 656

e. 119

6

29 ABC es un triángulo rectángulo en C. Según

los datos en la figura, la razón entre los

catetos, AC

CB, es:

C

A D B18 u8 u

a. 2 : 3b. 3 : 2c. 5 : 3

d. 3 : 5e. 3 : 8

30 En un triángulo rectángulo, la hipotenusa mide 30 cm y uno de sus catetos es la mitad del otro aumentado en 6 cm. ¿Cuál es la medida de la altura trazada desde el vértice donde se encuentra el ángulo recto?

a. 10,8 cmb. 14,4 cmc. 18 cm

d. 19,2 cme. 24 cm

31 El valor de la expresión sen 45 3 60 2 30 + +cos tg es:

a. 2 3 1+ +

b. 7 5 96+

c. 12 6 96+

d. 2 3 22

+ +

e. 3 2 4 3 96

+ +

32 La expresión tg otg sec cosecα + α α αc( ) ⋅ ⋅ es igual a:

a. sec cosecα α⋅( )−1

b. sen cosα α⋅( )−2

c. 2sec αd. 2cosec αe. 2 2sen cosα α⋅

33 Uno de los ángulos interiores de un triángulo rectángulo mide 60º. Si la hipotenusa mide 64 cm, ¿cuál es la medida de la superficie del triángulo?

a. 224 3 cm cm2

b. 232 3 cm cm2

c. 264 3 cm cm2

d. 2512 3 cm cm2

e. 1024 21.024 3 cm cm2

34 Una persona mira desde su ventana a otra que va pasando por la calle con un ángulo de depresión de 30º. Si la persona en la calle se encuentra a 3 m de la base del edificio, ¿a qué altura se encuentra la persona en la ventana?

a. 1,5 m

b. 3 m

c. 6 m

d. 3 mm

e. 3 3 mm

U4 MAT 3M (216-289).indd 283 2/11/11 15:40:19

Page 284: 003000.000 grou

284

35 Según los datos de la figura para el triángulo rectángulo en C, la medida del segmento DB es:

C

E10 cm

BA D

30º

a. 3cm

b. 10 3 cm

c. 20 3 cm

d. 30 3 cm

e. 20 cm

36 En la figura se ha dibujado el triángulo rectángulo ABC. El valor de x es:

C

BDA

x

15 cm30° 45°

a. 10 2 cm

b. 10 3 cm

c. 15 22

cm

d. 15 32

cm

e. 30 cm

37 ¿Cuál(es) de las siguientes afirmaciones es(son) falsa(s) para un ángulo α?

I. 0 cotg <1α<

II. 2sen 1 cosα α= −

III. cos 1 senα α= −a. Solo Ib. Solo IIc. Solo I y II

d. Solo I y IIIe. Solo II y III

38 Si para uno de los ángulos agudos α( ) de

un triángulo rectángulo se tiene que 2sen

5α = , entonces, el valor de

cos 90 −( )α es igual a:

a. 2

5

b. 5

5

c. 215

d. 235

e. 1

39 Dado el triángulo rectángulo de la figura, la diferencia entre el valor numérico de su área y su perímetro es:

C

A B30°

25 u

a. 575 3 75−

b. 575 3

275−

c. 675 3 752−

d. 575 3 75

2+

e. 675 3 75

2+

40 En la circunferencia de centro O y radio 6

cm de la figura, 6BC cm= cm. El valor del área sombreada en cm2 es:

C

BAO

a. 18 2 3π−( )b. 18 2 3π+( )c. 18 2 3π−( )

d. 18 2 3π+( )e. 18 3 2 3π−( )

U4 MAT 3M (216-289).indd 284 2/11/11 15:40:21

Page 285: 003000.000 grou

UN

IDA

D 4

285

Criterios para autoevaluar tu aprendizaje

Marca con una 8 según la evaluación de tu trabajo en esta unidad. Recuerda que hacer esta evaluación responsablemente te entregará información sobre tu proceso de aprendizaje.

Indicadores +++ ++– +––

Pudecompletarelmapaconceptualdelasíntesissinnecesidaddemirarmilibro.

Hicelasopadeletrasdelasíntesisconceptualsindificultad.

Colaboréconmiscompañerosenlarealizacióndelasactividadespropuestas.

Anotéloquemásmecuestaparaluegorepasaryvolverarevisarestoscontenidos.

Soycapazdeexplicaraotrosloscontenidosylosprocedimientospararesolverlosejerciciosdeestaunidad.

Entiendoeltipodeproblemascotidianosquesepuedenresolverconestoscontenidos.

Mesientosegurodemisconocimientossobrelotratadoenestaunidadycreoquepodríaresolvercualquierejercicioquesemeplanteara.

Calcula el porcentaje de logro que obtuviste en el ítem III.

Porcentaje de logro

PL = . 100Nº de respuestas correctas

2040100

Porcentaje de logro

Nota obtenida

Nivel de mi aprendizaje

Cómo mejorar

29%a0% 1,0a2,5 AlertaLoscontenidosnohansidocomprendidos.Debesrepasarlosnuevamenteyrehacerlosejercicios.Fíjatemuybienenlosejerciciosresueltos.Debespedirayuda.¡Ánimo!contrabajoyestudiosepuede.

49%a30% 2,6a3,5 MuybajoLamayoríadeloscontenidosnohansidocomprendidos.Debesvolverarepasarlosyrehacerlosejerciciosincorrectos.Pídeleayudaatuscompañerosocompañeras.Vuelveaestudiar;seguroquelolograrás.

59%a50% 3,6a3,9 BajoUnagranpartedeloscontenidosnohansidocomprendidosessutotalidad. Rehazaquellosejerciciosincorrectos,peroantes,vuelveaestudiarloscontenidos.Tratanuevamente.

69%a60% 4,0a4,7 MediobajoAdquiristeunapartedeloscontenidos,peroaúnfaltan.Debescorregiraquellosejerciciosincorrectosyrevisarloscontenidosdelostemasenquefallaste.Bien,hasavanzado,aunqueaúnquedacaminoporandar.

79%a70% 4,8a5,4 MedioHaslogradoentenderunabuenapartedeloscontenidos;sinembargo,aúnfaltanotrosyafianzarlosprimeros.Corrigelasrespuestaserróneas;puedespedirayudasilodeseas.Revisaloscontenidos.¡Puedeshacerlomuchomejor!

89%a80% 5,5a6,2 MedioaltoHaslogradoadquirirgranpartedeloscontenidos.Revisalosejerciciosenlosquefallasteyrepasaaquelloscontenidos.¡Lohashechobien!

100%a90% 6,3a7,0 AltoHaslogradoaprendertodosocasitodosloscontenidostratados.¡Muybien!,haslogradolosobjetivospropuestos.Sigueasí.

U4 MAT 3M (216-289).indd 285 2/11/11 15:40:21

Page 286: 003000.000 grou

286

I. Completa cada afirmación, según corresponda, de modo que ella sea correcta:

1 a b ab3 3 3⋅( ) : es igual a

:

2 El punto de intersección de la parábola y x x= − + −2 3 5 con el eje y es

:

3 El conjunto solución de la inecuación 3x− > es

:

4 Si 1x < , entonces x pertenece al conjunto

:

5 En el triángulo de la figura, la cosecante de α es igual a

:

α

ca

b

II. Resuelve los siguientes ejercicios:

1 Calcula el valor de:

a. 7 3 7 3

2− ⋅ +

b. La diagonal de un cuadrado de lado a b+

2 Resuelve las siguientes ecuaciones:

a. 1 1 02

xx x+ − =

−b. 6 1 1x x+ − =

3 Resuelve las siguientes inecuaciones:

a. 2 1 3 2 5 6x x+( )− −( ) ≤

b. x x x+ − − > −63

4 15

2 76

c. xx+−8

2 12<

d. − + −x x2 6 5 0≥

e. 3 11 8x − <

f.

2 55 9 71

56 3

10

x x

x x

+ −+ −

4 En el triángulo rectángulo ABC de la figura,

35AC = cm y 28CD = cm. Determina:

C

DA B

a. AD b. DB c. CB

Evaluación de síntesis 3 (Unidades 1 a 4)

U4 MAT 3M (216-289).indd 286 2/11/11 15:40:25

Page 287: 003000.000 grou

EV

AL

UA

CIÓ

N

DE

SÍN

TE

SIS

287

5 Una persona mira la punta de un poste de luz con un ángulo de elevación de 18º y la base del poste con un ángulo de depresión de 28º. Si la persona está a 3 m del poste, determina, aproximando a la décima.

a. la altura de la persona.b. la altura del poste.

III. Resuelve los siguientes problemas:

1 Diego molestaba siempre a sus compañeros porque cada vez que ellos le preguntaban acerca de algo que tuviera respuesta numérica, él les planteaba un problema. Ayer Norma le preguntó cuántos días iría de vacaciones y él le respondió: “ Si a la raíz cuadrada del doble de los días que iré, disminuidos en 3, le agregas 9 días, obtendrás exactamente los días que iré”. Enojada, Norma se dio media vuelta y se fue. ¿Puedes tú averiguar cuántos días irá de vacaciones Diego?

2 Emilio ha estado averiguando algunos datos para decidir si abrirá la fábrica de productos para cóctel que le ha aconsejado un amigo. En estas averiguaciones ha determinado que el capital de una empresa del rubro se comporta, en función del tiempo, bajo C t t t( ) = − +3 6 152 , donde C está medido en millones y t en años. Según esto, ¿cuál llegará a ser el capital mínimo que tenga su empresa?

3 Sofía debe construir un rectángulo para su clase de Tecnología. Sin embargo, su profesor se lo ha hecho difícil. El rectángulo debe ser tal que la medida de su ancho sea 1 cm menor que la de su largo y, además, su largo y ancho deben estar en una razón igual al doble de su largo. ¿Cuáles son las medidas del rectángulo que debe construir Sofía?

4 Fernando está participando en un concurso y con el dinero que gane, arreglará su casa. En él debe contestar la siguiente pregunta: ¿Cuál es el número que cumple que su doble aumentado en 3 unidades se encuentra entre 12 y 18?

5 Mónica es reportera gráfica y hoy ha salido en helicóptero a cubrir el incendio de bosques nativos que se ha producido en las afueras de su ciudad. Mientras vuelan, ella divisa el incendio bajo un ángulo de 20º. Al hablar con el piloto este le dice que la diagonal entre el incendio y el punto donde se encuentran es de aproximadamente 1200 m. ¿A qué altura vuela el helicóptero?

6 La pasión de Marco es elevar volantines y desde hace algunos años lo practica en forma profesional e incluso ha participado en competencias. Hoy ha elevado un volantín precioso y ha ocupado 5000 m de hilo. Si él puede divisar su volantín con un ángulo de elevación de 12º, ¿a qué altura se encuentra el volantín?

7 Felipe está haciendo una excursión. A él le gusta mucho hacer trekking. Mientras camina mira la cima de un cerro con un ángulo de 38º. Al acercarse 100 m al cerro lo ve con un ángulo de 53º. Si él mide 1,7 m, ¿cuál es la altura del cerro? (Aproxima a la centésima).

8 Desde el suelo y a 20 m de la base de un poste se ha amarrado un cable tensor que une el suelo con la punta del poste. Si el cable forma un ángulo de 46º con el suelo, ¿cuál es el alto del poste y cuál la longitud del cable tensor?

IV. Marca la alternativa correcta:

1 El resultado de 50 182

−( ) es:

a. 8b. 32c. 38

d. 98e. 128

2 Al dividir 27 4 75+ por 108 12− se obtiene como resultado:

a. 23 34

b. 10932

c. 234

d. 109 332

e. 238

U4 MAT 3M (216-289).indd 287 2/11/11 15:40:27

Page 288: 003000.000 grou

288

3 Con respecto a la ecuación xx

xx

+−

=−

+31 2 3

4 y a sus soluciones, se

puede afirmar que:

a. sus soluciones son números naturales.b. sus soluciones son números reales.c. tiene solo una solución.d. no tiene solución en los números reales.e. nada se puede asegurar con respecto a

sus soluciones.

4 El punto mínimo de la parábola y x x= − −3 142 es:

a. 7 ,23

b. 72,3

c. 1 169,6 12

d. 169 1,12 6

e. 1 169,6 6

5 La inecuación 2 3 1 5 8x x+( )− > + NO es equivalente a la inecuación:

a. 2 5 5 8x x+ > +

b. 3 3x < −

c. 1 x− >

d. 5 8

3x

−<

e. 5 8

3x

−>

6 La solución del sistema de inecuaciones x x

x x

+( ) ≥+ ≤ +

2 0

5 32

8 73

5 32

8 73

x x+ ≤ + es:

a. −∞ −] ]∪ ∞[ [, ,2 0

b. −∞ −] ]∪[ [, ,2 0 7

c. −∞] ],7

d. −∞] ]∪ − ∞[ [, ,7 2

e. −∞] ],0

7 En un triángulo ABC rectángulo en C se ha trazado la altura con respecto a la hipotenusa, de modo que las proyecciones de los catetos miden 9 y 12 cm. La suma de las medidas de sus catetos es:

a. 21 cm

b. 6 3 cm

c. 21 3 7 6+ cm

d. 3 21 6 7+ cm

e. 9 28 cm

8 Tres números, x, y, z, forman un trío pitagórico, de modo que x y z< < . Si x = 36 y z = 85, entonces el valor de y es:

a. 7b. 17c. 37d. 57e. 77

U4 MAT 3M (216-289).indd 288 2/11/11 15:40:32

Page 289: 003000.000 grou

EV

AL

UA

CIÓ

N

DE

SÍN

TE

SIS

289

9 El triángulo de la figura es obtusángulo. La medida de x es:

C

D

x

A B50°

100°16 cm

a. 8 cm

b. 16 3

3cm

c. 8 3 cm

d. 32 cm

e. 32 3 cm

10 En un triángulo rectángulo se tiene que, 8sen

13α = , con a uno de sus ángulos

agudos, entonces, el valor de cotg 90 −( )α

es igual a:

a. 138

b. 10513

c. 13105

d. 8

105

e. 1058

Mis apuntes

U4 MAT 3M (216-289).indd 289 2/11/11 15:40:34

Page 290: 003000.000 grou

U N I D A D 5

Probabilidades...un paso más

PROBaBiLiDaD

Variable aleatoria.Frecuencia de una variable aleatoria.

Probabilidad experimental.

Ley de los grandes números.

cálculo de probabilidades y aplicación a problemas cotidianos.

290

U5 MAT 3M (290-359).indd 290 2/11/11 15:50:26

Page 291: 003000.000 grou

O B J E T I V O S F U N D A M E N T A L E SY T R A N S V E R S A L E S

En esta unidad:

Conocerás y utilizarás conceptos matemáticos asociados al estudio de variable aleatoria, mejorando en rigor y precisión la capacidad de análisis, de formulación, verificación o refutación de conjeturas.

Analizarás información cuantitativa presente en los medios de comunicación y establecerás relaciones entre estadística y probabilidades.

Aplicarás y ajustarás modelos matemáticos para la resolución de problemas y el análisis de situaciones concretas.

Resolverás desafíos con grado de dificultad creciente, valorando tus propias capacidades.

Percibirás la matemática como una disciplina que recoge y busca respuestas a desafíos propios o que provienen de otros ámbitos.

291

U5 MAT 3M (290-359).indd 291 2/11/11 15:50:27

Page 292: 003000.000 grou

C O N T E N I D O S

En esta unidad se espera que:

1 Reconozcas variables aleatorias y las interpretes de acuerdo a los contextos en que se presentan.

2 Conozcas empíricamente la ley de los grandes números y relaciones la frecuencia relativa con la probabilidad de un suceso.

3 Resuelvas problemas que involucran el cálculo de probabilidad condicionada en situaciones sencillas.

4 Distingas entre sucesos equiprobables y no equiprobables.

Variable aleatoria: estudio y experimentación en casos concretos.

Gráfico de frecuencia de una variable aleatoria a partir de un experimento estadístico.

Relación entre la probabilidad y la frecuencia relativa.

Ley de los grandes números.

Uso de programas computacionales para la simulación de experimentos aleatorios.

Resolución de problemas sencillos que involucren suma o producto de probabilidades.

Probabilidad condicionada.

A P R E N D I Z A J E S E S P E R A D O S

292

U5 MAT 3M (290-359).indd 292 2/11/11 15:50:28

Page 293: 003000.000 grou

¿cómo armamos el equipo para

el concurso?

¡ah, no sé!

Preguntémosle a Lulú ¡muchas

gracias!

Esa noche...

Al día siguiente... Al final del día...

Debe ser bruja...

¿me puedes ayudar? Quiero participar en el concurso. ¿tengo posibilidades de clasificar?

claro, déjame

pensarlo.

¿cómo lo hace que casi siempre acierta?

¡GRaciaS!

P-pero... ¿por qué no quedé en el equipo?

Yo te dije que tenías solo el 60% de probabilidades

de clasificar.

Pero...

cF=PcT

cF=PcT

¿Qué puede pasar?Una historia acerca del futuro probable

UN

IDA

D 5

293

U5 MAT 3M (290-359).indd 293 2/11/11 15:50:32

Page 294: 003000.000 grou

294

Conocimientos previosEn años anteriores ya estudiaste algo sobre probabilidad clásica.

¿Qué se entiende por probabilidad? Según el Diccionario de la Real Academia Española, probabilidad es: “Cualidad de probable, que puede suceder”. Por lo tanto, diremos que la probabilidad de que ocurra algo es la posibilidad de que esto suceda.

Decimos, por ejemplo, que es más probable que mañana llueva si estamos en invierno que en verano, ya que hay más posibilidades de que esto ocurra.

Pero ¿podemos asignar un número que represente la posibilidad de que llueva? Y si es así, ¿cómo entenderemos o interpretaremos dicho número?

Matemáticamente decimos que dado un suceso A, la probabilidad de que este ocurra está dada por la razón entre el número de los casos favorables (posibilidades en que el caso A suceda) y el número de los casos totales (posibilidades del evento mismo).

Por ejemplo. Se lanzan dos dados. ¿Cuál es la probabilidad de que la suma de los números obtenidos sea 9?

Además, la probabilidad de que no salga un nueve está dada por

P P Pno salir no salir salir9 3236

89

9 1 9( ) = = ⇒ ( ) = − ( ).

En este caso, el evento es “lanzar dos dados”. Aquí, el número de posibilidades de que esto pueda ocurrir corresponde a todas las combinaciones de resultados posibles (ver registro en la tabla) y el número de casos favorables (que la suma de los números obtenidos sea 9) se ha escrito de color azul, así tenemos que:

Resultado de los dados 1 2 3 4 5 61 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)2 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)3 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)4 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)5 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)6 (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

Por lo tanto, podemos decir que:

P P Psalir salir salir9 436

19

9 0 1 9 11( ) = = ( ) = ( )fi fi ª, % .

(Recuerda que para escribir un decimal como porcentaje, debes multiplicarlo por 100).

U5 MAT 3M (290-359).indd 294 2/11/11 15:50:33

Page 295: 003000.000 grou

UN

IDA

D 5

295

Hagamos juntos otro ejemplo. Pedro está jugando Lotería y aquí está el cartón que eligió: ¿Cuál es la probabilidad de que obtenga cartón lleno con los 15 primeros números cantados?

Como el cartón tiene 15 números, estos deben salir todos (uno tras otro) en los 15 primeros números que se extraigan de la urna que contiene los 99 números de la Lotería. Esto se traduce en que el número de casos totales sea 99 y el número de casos favorables sea 15.

En consecuencia, la probabilidad buscada es:

P Pganar ganar( ) = = = ( )1599

533

0 15 15, %fi ª

P Pganar ganar( ) = = = ( )1599

533

0 15 15, %fi ª .

Esta forma de calcular probabilidades, de la forma

P suceso casos favorablescasos totales

( ) = se llama regla de Laplace.

Trabaja

Resuelvan en grupo los siguientes ejercicios de probabilidades. Revisen sus respuestas en el solucionario.

1 La probabilidad de que Jaime obtenga una nota superior a cuatro en el examen final de Química es de un 85%. Cuál es la probabilidad de que:

a. tenga una nota de cuatro hacia abajo.b. apruebe la asignatura.

2 En el diagrama, los números corresponden a la cantidad de alumnos que participaron en el taller de Música (M) y/o el taller de Teatro (T) durante el segundo semestre de 2010.

M

T4520 35

Al elegir un alumno al azar, encuentra la probabilidad de que haya asistido a:

a. ambos talleres.b. solo a uno de ellos.

3 En un sorteo de 200 números, ¿cuántos hay que comprar para tener un 8% de probabilidad para ganarlo?

4 En una urna hay 30 bolas numeradas del 1 al 30. ¿Cuál es la probabilidad de sacar un número primo?

Evaluación1. ¿Entendí los conceptos revisados en esta sección?

2. ¿Pude resolver correctamente los ejercicios propuestos?

UN

IDA

D 5

295

U5 MAT 3M (290-359).indd 295 2/11/11 15:50:35

Page 296: 003000.000 grou

296

Variable aleatoria: ¿qué es?

Qué es una variable aleatoria y qué relación existe entre ella y la frecuencia relativa.Desarrollarás las siguientes habilidades:• Identificar•calcular•comprender•Resolver•Relacionar•aplicar• interpretar y generar ideasHabilidades por actividad:• Identificarycalcular:1, 2, 3, 9, 1, 2•comprender y resolver: 4, 5, 6, 7, 8, 10,

11, 12, 3, 4a• interpretar y generar ideas: 4b

Trabaja más...

Habilidades por actividad:• Identificarycalcular:1, 2, 1, 2, 3, 4•comprender y resolver: 3• interpretar y generar ideas: 5, 6

En esta sección aprenderás Esta era una de aquellas tardes en las que Valentina, inevitablemente, se aburría. Además, estaba muy decepcionada porque no había sido elegida para representar a su curso en la tele. Después de recorrer su pieza, recostarse y pararse de su cama un sinnúmero de veces, pensando por qué habían fallado los cálculos de Lulú, tomó su cuaderno de Matemática y comenzó a estudiar lo que habían repasado de probabilidades.

–¿Qué haces, Vale? –preguntó Manuel, su hermano gemelo.

–Trato de llegar al resultado de Lulú, 60% y por qué no me eligieron.

–Bah, creo que fue porque había que elegir 6 niñas de 10 y eso es6

10, o sea, 0,6, lo que es 60%.

–Pero que no te hayan elegido no es problema solo de los números

–siguió diciendo Manuel–, es problema de las probabilidades, las

variables aleatorias y esas cosas.

–Cierto, esta materia es tan ¿relativa?

–Mira, Vale, Diego viene ahora a estudiar conmigo. Si quieres, puedes

unirte a nuestro grupo y tal vez entiendas que lo probable no es lo

que necesariamente ocurrirá, aunque así lo queramos –rio Manuel.

–Está bien, vamos –dijo Valentina, no de muy buena gana.

Diego, Florencia, Fernanda y Francisca llegaron para estudiar y hacer

la tarea de Matemática. Manuel les abrió la puerta y se instalaron en

el comedor.

–Veamos. Aquí dice que una variable aleatoria es una magnitud

susceptible de variar azarosamente y cuyos valores dependen de los

resultados de un experimento.

–Sí, como lanzar una moneda, tirar dados, sacar una bolita de una

caja, elegir una carta del naipe o escoger a alguien del curso para

interrogarlo diciendo el número de lista.

–Bien. Dice también que lancemos una moneda 30 veces y

anotemos los resultados obtenidos. Florencia, empieza tú.Florencia lo hizo y obtuvo lo siguiente. Anotó c para las caras y s para los sellos.

Nº de lanzamiento 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Resultado c s c c c c s s s c c c c c c

Nº de lanzamiento 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Resultado c s s s c c c s c s c s s c c

–¿Cuántas caras y cuántos sellos obtuviste?–Mmm, espera. 19 caras y 11 sellos.–Ahora hay que hacerlo 30 veces más y agregarlas al resultadoanterior.–Fernanda, hazlo tú.

Te invitamos a conocer un poco más de la historia de las probabilidades en el sitio web: http://www.estadisticaparatodos.es/historia/histo_proba.html

Para saber más

7+¡$

><

2? = %

U5 MAT 3M (290-359).indd 296 2/11/11 15:50:35

Page 297: 003000.000 grou

UN

IDA

D 5

297

Fernanda lo hizo y obtuvo:

Nº de lanzamiento 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Resultado c c c s c s c s s c s s s s c

Nº de lanzamiento 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Resultado s c c s s c s s c c s s c c s

–14 caras y 16 sellos –dijo Fernanda. En total, 33 caras y 27 sellos. Entonces, ¿cuál es la probabilidad decada uno en los 60 lanzamientos?

P c P c P s P s( ) = = ⇒ ( ) = ( ) = = ⇒ ( ) =3360

0 55 55 2760

0 45 45, % , %y y P c P c P s P s( ) = = ⇒ ( ) = ( ) = = ⇒ ( ) =3360

0 55 55 2760

0 45 45, % , %y

–Bien, ahora hay que ir a la página:

http://www.emathematics.net/es/simulacionmoneda.php en internet.

–Aquí dice que es un simulador de lanzamientos de monedas.Para que no lo tengas que hacer mil veces tú, simula 500, 1000,2000, 5000 y 10000 lanzamientos y anota las probabilidadesexperimentales obtenidas. Francisca, hazlo tú.Francisca lo hizo y obtuvo lo siguiente:

Número de lanzamientos 500 1000 2000 5000 10000

P c( ) 0,49 0,484 0,4985 0,5128 0,4989

P s( ) 0,51 0,516 0,5015 0,4872 0,5011

–Dice así: “Si miramos los resultados obtenidos como razones entre el número de veces en que se obtuvo un resultado y el número total de lanzamientos, ¿podríamos considerarlo como la frecuencia relativa del resultado en cuestión?”–Para, para –dijo Manuel–. ¿Frecuencia relativa? ¿Estadística?–Sí, claro. Recuerda que la frecuencia relativa se definía así: número de veces que se repite el valor de la variable dada en los datos,dividida por el total de datos.

–En el caso de los 500 lanzamientos, entiendo que si lo que hemos

obtenido es la frecuencia relativa, entonces 0,49 es igual a 49

100, pero

esto debe estar simplificado, porque el denominador debiera ser 500.

–Entonces, si amplificamos la razón por 5, tendremos que la

frecuencia relativa de las caras es 245500

. Esto quiere decir que de los

500 lanzamientos, 245 fueron caras.

–Ya entiendo, pero ¿no debiera resultar que cara y sello tienen la

misma frecuencia relativa y la misma probabilidad de salir?

–Yo entendí que al lanzar una moneda había una cara entre dos

posibles resultados y entonces la probabilidad de una cara era 12

, o

sea, el 50%. ¿Estará mala esta moneda?

Aquí encontrarás simuladores

de ruletas y lanzamiento de

dos dados.

Experimenta con ellos.

http://www.eduteka.org/

MI/master/interactiv ate/

activities/Prob/Index.html

Links de interés

U5 MAT 3M (290-359).indd 297 2/11/11 15:50:36

Page 298: 003000.000 grou

298

–No, no creo que esté mala. Además, recuerda que el profe tambiéndijo que las conclusiones las íbamos a hacer en la clase mañana.Terminemos esto primero y luego pensemos lo que concluiríamosacerca de todo ¿ya?

–Dice: ahora simule el lanzamiento de un dado el mismo número delanzamientos anteriores, con el siguiente programa de la página:http://www.ematematicas.net/simulaciondado.php y anote susresultados. ¿Lo haces tú, Manuel?

Manuel lo hizo y obtuvo:

Número de lanzamientos 500 1000 2000 5000 10000P(1) 0,164 0,182 0,157 0,154 0,170P(2) 0,164 0,151 0,168 0,178 0,167P(3) 0,160 0,159 0,173 0,171 0,163P(4) 0,170 0,165 0,147 0,168 0,170P(5) 0,182 0,161 0,183 0,162 0,165P(6) 0,160 0,182 0,172 0,167 0,166

–Ya, esto está mejor. Si pensamos que cada número del dado tiene una

posibilidad entre 6, tendríamos 16

, que es igual a 0,16, o sea, 0,166666,

que es bastante cercano a lo que tenemos en las tablas, ¿no?

–Es cierto. ¿Les parece que esa sea nuestra conclusión para mañana? –Sí, nos parece –dijeron todos.–Pero ¿qué pasaría si el dado estuviera cargado? –dijo Florencia.–Mmm, ¿pensando en hacer trampa? –dijo Diego.–Hagamos una prueba con un dado y le ponemos un poco de plasticinaal número dos. ¿Veamos qué pasa si lanzamos 30 veces?–Ya, juguemos un rato –dijo Manuel.–Lo hicieron y esto fue lo que obtuvieron:

Número del dado Frecuencia Frecuencia relativa

1 5 0,1662 3 0,13 4 0,1334 3 0,15 0 06 15 0,5

–Mira, ya no se distribuye equitativamente; los sucesos ya no sonigualmente probables, ¿ves?

Recuerda que la suma de las

frecuencias relativas es siempre

igual a 1.

Recordar y archivar

U5 MAT 3M (290-359).indd 298 2/11/11 15:50:36

Page 299: 003000.000 grou

•Llamamosvariablealeatoriaatodamagnitudquepuedecambiar azarosamente.

•Llamamossucesosequiprobablesalosquetienenigualposibilidad de ocurrir. Por lo tanto, serán no equiprobables los que, por alguna razón, no tienen la misma posibilidad de ocurrir.

•Cuandorealizamosexperimentos,comolanzarundadoouna moneda, la probabilidad que obtenemos se llama probabilidad experimental.

•Lafrecuenciarelativadeunsucesodeterminalaprobabilidadexperimental de este.

–Sí, yo creo que a eso se refería el profe cuando hablaba de sucesosno equiprobables; al cargar uno de los números, varía la probabilidadde todos los demás. En cambio, en el caso de un dado no cargado,todos los números tienen la misma probabilidad de salir.–Muy bien. Ahora resumamos aquí lo que obtuvimos:

TrabajaResuelve en tu cuaderno los siguientes ejercicios; no olvides chequear tus respuestas en el solucionario.

1 Los resultados de un juego de cartas, entre 5 jugadores, se presentan en la tabla siguiente:

Jugador Número de juegos ganados/ Total jugados

a 0,10B 0,25c 0,20D 0,15e x

a. Encuentra el valor de x.

b. ¿Cuál es el posible ganador? ¿Por qué?

c. ¿Por qué nadie obtuvo 1,00 en la segunda columna?

2 Cada color de la siguiente imagen representa un auto de una misma marca y modelo que un comprador desea adquirir en una recomendada automotora.

a. Escribe la frecuencia relativa de cada color.

b. Finalmente, se quedó con uno celeste. Basado en lo respondido anteriormente, ¿era este color el que tenía mayor chance de salir elegido? ¿Por qué?

UN

IDA

D 5

299

U5 MAT 3M (290-359).indd 299 2/11/11 15:50:37

Page 300: 003000.000 grou

300

3 P está realizando lanzamientos al aire de una moneda. M apuesta a cara y N lo hace por sello. Los resultados son:

Número acumulado de lanzamientos

Número acumulado de aciertos de M

Número acumulado de aciertos de N

10 7 3 0,700020 11 9 0,550035 16 19 0,457155 22 33 0,400075 37 38 0,493390 44 46 0,4889

120 59 61 0,4917150 76 74 0,5067180 91 89 0,5056200 102 98 0,5100

a. Coloca el nombre a la columna sin encabezamiento, de manera que describa los valores que representa y verifica cada uno de ellos.

b. Indica los números acumulados de lanzamientos que favorecen a N y aquellos que no.c. Si siguen lanzando y viendo sus resultados uno por uno, a partir del lanzamiento 201, ¿cuántos

lanzamientos más, como mínimo, deben hacerse para que M siga siendo ganador en sus aciertos?d. Interpretando adecuadamente los valores de la última columna, ¿es posible que la moneda esté cargada?

4 La posibilidad de que un arquero haga blanco con sus flechas es 35

, valor proveniente de la frecuencia relativa de aciertos en un total de 20 disparos.

a. ¿Qué significa en esta situación la expresión 315

− ?

b. ¿Por qué aparece el valor 1 en dicha expresión?

5 Al lanzar 180 veces un dado, la frecuencia relativa del 3 fue de 718

, la del 5 fue 49

y 736

para el 4.

Si este lanzamiento de 180 veces se repitiera y los resultados fueran similares, ¿cuál de los tres

números mencionados tendría más posibilidad de volver a aparecer más veces? ¿Por qué?

6 Diariamente y en promedio, en el primer local de venta de huevos de la Vega Central, de cada 100 que se venden, 70 son blancos. En cambio, en el segundo local, de cada 75 huevos vendidos solo 45 son blancos. ¿En cuál de los locales es más probable no hallar un huevo blanco al final de la venta del día? ¿Por qué?

7 En general, el equipo A pierde 5 de cada 8 partidos frente al equipo D. Sin embargo, el equipo B gana 6 de cada 16 jugados ante el equipo C. ¿Por qué se dice que el equipo A tiene la misma posibilidad de ganar que el equipo B frente a los adversarios mencionados en cada caso?

8 En un control de calidad se han detectado n artefactos eléctricos con fallas y 21 sin ellas.

a. Escribe las frecuencias relativas correspondientes.b. ¿Cuál debe ser el número de artículos para que la frecuencia relativa de los artículos sin fallas y de

los defectuosos sean numéricamente iguales?c. ¿Cuáles deben ser las frecuencias relativas de los artículos sin fallas para tener mayor posibilidad

que uno fallado?

U5 MAT 3M (290-359).indd 300 2/11/11 15:50:37

Page 301: 003000.000 grou

UN

IDA

D 5

301

9 Se lanzan al aire dos dados y se multiplican los números que resultan al caer. Se anotan en un cuaderno los valores obtenidos.

a. ¿Cuál es la variable aleatoria?b. Si se quiere saber la posibilidad de que aparezca un producto mayor a 29, ¿qué se debe hacer para

responder esto?

10 El siguiente dibujo contiene esferas de colores:

LA

LA

LA

LA LA

LA

TETE

TE

TE

TETE

TETE

TE

TE

a. Halla la frecuencia relativa de cada tipo de esfera.b. Aleatoriamente se escoge una de ellas. ¿Cuál es la sílaba que tiene más posibilidad de salir?c. ¿Cuáles son las esferas que tienen la misma posibilidad de ser escogidas?d. Completa las esferas blancas con color y sílaba asociada, de tal modo que queden solo azules y

amarillas, teniendo la misma posibilidad de ser escogidas en una elección al azar. ¿Cuántas blancas pintadas de amarillo se requieren? ¿Cuántas blancas pintadas de azul se necesitan?

e. De acuerdo a lo contestado en (d.), responde: Las esferas han sido colocadas en una bolsa. Se ha escogido una de las esferas y ha aparecido la sílaba LA. Sin devolverla, se ha extraído una segunda para formar una palabra con la anterior. Considerando las palabras “LATE y LALA”, ¿cuál de ellas es más posible formar? ¿Por qué?

11 En un juego de video se gana, se pierde o se empata. La posibilidad de ganar es 0,36 y la de perder es 15 veces la posibilidad de empatar. ¿Cuáles son las posibilidades de ganar y empatar, respectivamente?

12 En una ciudad interior de la Sexta Región se hicieron las siguientes mediciones de temperatura mínima durante 20 días en el mes de mayo y se completó la siguiente tabla. Además, se estimó que el promedio de ellas fue de 3,5º. Si los días que restan se siguen comportando de la misma forma, responde:

Temperatura (ºC) Número de días

2 63 44 65 3X 1

a. ¿Cuál es la temperatura mínima más baja que debiera esperarse? ¿Qué tan posible es que ocurra?b. ¿Cuál(es) sería(n) la(s) temperatura(s) más frecuente(s)? ¿Qué posibilidad de ocurrencia tiene(n)?c. ¿Cuál es la temperatura mínima que no tendría posibilidad de ocurrencia en el intervalo 2 7,[ ]?

U5 MAT 3M (290-359).indd 301 2/11/11 15:50:37

Page 302: 003000.000 grou

302

TrabajaResuelvan en grupo los siguientes problemas de planteo. Revisen los resultados para chequear que estén correctos.

1 Nelly, la enfermera del colegio, da a conocer el informe que le han solicitado.

“Informe de la campaña de donación de sangre”(Colegio Arlequín)

“La mayoría de los donantes son del grupo sanguíneo A; en segundo lugar están los del grupo O, con una unidad menos que los del grupo A; hay 7 donantes del grupo B, 5 del AB, y en total, hay 75 donantes”.

Expresen la posibilidad, como frecuencia relativa, de que la sangre de un donante elegido al azar sea del grupo O si se mantiene lo escrito por Nelly.

2 –Si no es indiscreción, ¿qué va a hacer después que yo termine su retrato Srta. Amelie?–Una dama como yo puede ir a tomar un té con panecillos o ir al salón de belleza de Beatriz Lumièreo a aquel de la Séptima Avenida. Aunque creo que podría ir a jugar a las cartas; todo puede ser.–¿Puedo ir por usted a las seis y treinta esta tarde?–Sí, Omar, puede ir. Pero deberá adivinar dónde estoy, y si no llega a la hora, no lo esperaré más alláde tres minutos.Esa tarde, Omar, muy intuitivo, va firme y confiado en la búsqueda de Amelie.¿Cuál es la posibilidad de que Omar la encuentre de inmediato?

3 Por fin conseguimos que pusieran un lomo de toro frente a la entrada del colegio.

Los autos corrían como locos y no respetaban tampoco el signo PARE, menos el paso de cebra. Usted sabe que la velocidad máxima permitida es de 20 km/h. Acá le puedo mostrar la grave situación en que estábamos. Saque sus propias conclusiones.

U5 MAT 3M (290-359).indd 302 2/11/11 15:50:39

Page 303: 003000.000 grou

UN

IDA

D 5

303

Revisemos lo aprendido

20 40 60 80 100

Nº de vehículos

0

5

18

56

81

32

4

2

1

1

Velocidad (km/h)

90 – 100

80 – 90

70 – 80

60 – 70

50 – 60

40 – 50

30 – 40

20 – 30

10 – 20

0 – 10

¿Cuál es la frecuencia relativa de los autos que cumplen con la norma?

4 En la fiesta anual del colegio, al curso de Luciana le ha tocado el stand de juegos. Tienen, entre otros, una ruleta como la de la figura. Como ella está un poco aburrida, decide contar los resultados que los participantes han obtenido y los ha puesto en el panel adjunto.

Resultados por color

8

3

9

10

a. ¿Cuál es la frecuencia relativa del color rojo?b. Si miramos la tómbola, pareciera que el amarillo y el rojo son más posibles de salir. Entonces,

¿puedes explicar por qué la frecuencia mayor corresponde al color verde?

Contesta las siguientes preguntas y revisa lo que has aprendido.

1. ¿Puedo explicar qué es una variable aleatoria? ¿Puedo dar un ejemplo?2. ¿Puedo explicar qué es la probabilidad experimental de un suceso?3. ¿Puedo distinguir dos sucesos equiprobables de aquellos que no lo son?4. ¿Puedo explicar cuál es la relación entre frecuencia relativa y probabilidad?5. ¿Entendí los ejercicios resueltos?6. ¿Pude resolver correctamente los ejercicios planteados?7. ¿Fui un aporte para mi grupo cuando nos tocó trabajar juntos?

U5 MAT 3M (290-359).indd 303 2/11/11 15:50:39

Page 304: 003000.000 grou

304

Trabaja en forma individual

1 Se está completando un equipo de básquetbol y se han preseleccionado 10 postulantes, quienes a continuación deben ser sometidos a una entrevista. Parte de la información está contenida en el siguiente cuadro.

Número de postulante Altura en m Edad

1 1,91 222 1,95 203 1,95 194 1,97 205 1,90 216 1,95 197 1,97 208 1,91 199 1,95 21

10 1,95 19

Si se escoge una de estas personas al azar para ser entrevistada, ¿cuál es la posibilidad de que:

a. tenga 19 años?b. mida 1,95 m?c. tenga una altura superior a 1,95 m?d. su edad supere los 20 años?e. sea el más bajo de todos?

2 Los siguientes son los diámetros, en cm, de varias circunferencias que se desea construir.

80 60 90 50 7060 90 70 60 90

100 100 70 80 9070 70 100 100 9050 70 60 100 70

Para iniciar este trabajo de construcción, se elige azarosamente uno de ellos. Determina:a. ¿Cuál es la posibilidad para 60 cm?b. ¿Cuál es el que tiene mayor posibilidad de

ser elegido? ¿Por qué?c. ¿Cuáles son los que tienen menor posibilidad

de ser elegidos? Justifica tu respuesta.d. Indica aquellos que tienen la misma

posibilidad de ser elegidos.

e. ¿Cuál es el que tiene más de un quinto de posibilidad para ser elegido? ¿Por qué?

f. ¿En cuánto aumenta la posibilidad para 60 cm, si no se considera la medida 100 cm?

3 Se han contado las pelotas de colores que una empresa tiene en stock. Hay cinco rojas, seis amarillas y cuatro verdes. Hoy un cliente ha devuelto una pelota de cada color que se ha ingresado al stock existente. Confecciona una tabla de frecuencia para el color de pelotas y luego determina:

a. ¿Cuál es el color de la pelota que mantiene su posibilidad de ser elegida al azar? ¿Cuál es esta posibilidad?

b. ¿Cuál es el color de la pelota que es desfavorecido en su posibilidad de ser seleccionada al azar? Justifica matemáticamente tu respuesta.

Trabaja en grupo

1 “¡Póker! dijo y mostró sus cuatro reyes. Ya se habían repartido 5 cartas a cada uno de los 5 jugadores. ¿Cuál fue la frecuencia relativa de los reyes?”

2 “Ayer fui a la casa de mi vecino y jugamos tirando tres dados; sumábamos los números obtenidos en sus caras y ganaba quien obtenía sumas más altas. Tú puedes jugar también con tu grupo. Lancen los tres dados 20 veces cada vez, construyan las tablas de frecuencia correspondientes, calculen las frecuencias relativas y establezcan quién es el ganador según dichas frecuencias”.

3 “Micaela, nunca imaginé que tu hermano fuera a estar tan cerca de ganar la copa del campeonato de ajedrez. Comenzó a ganar los doce juegos que debía jugar, sin perder ninguno, y de pronto comenzó a perder y así siguió hasta terminar. Las estadísticas finales dijeron que tuvo un 75% de posibilidades de ganar”. ¿En qué juego comenzó a perder? Responde tú la pregunta.

Trabaja más...

U5 MAT 3M (290-359).indd 304 2/11/11 15:50:39

Page 305: 003000.000 grou

UN

IDA

D 5

305

4 “–Blanquita, no te preocupes por mí; estoy solicitando mi almuerzo de lunes a sábado, al local Los Andes. Me lo vienen a entregar los empleados de allí: Orlando, Pedro y Francisco. El primero que te he nombrado ha venido 5 días; el siguiente, 3 días y Francisco, 4. En estos 12 días no han tenido un día fijo para venir. Blanquita, si mañana lunes aparece Pedro le voy dar tu recado. ¿Que si estoy segura que él vendrá mañana? ¡No sé Blanquita, no tengo una bolita de cristal para saberlo!” Supongamos que la entrega del almuerzo a esta persona se hiciera de manera aleatoria y se mantuviera la frecuencia con que cada empleado acudió a la entrega durante los 12 días. ¿Cuál es la posibilidad de que Pedro aparezca dicho día?

5 Maritza está estudiando para uno de los exámenes de su carrera de medicina. Le han dado los siguientes datos sobre las causas de defunciones en Chile el año 2005, en un universo de 1000 personas.

Causas de muerte Frecuencia

Sistema circulatorio 282Sistema respiratorio 93Sistema digestivo 71enfermedades mal definidas 28tumores 248causas externas 87endocrinas, nutricionales y metabólicas 49Otras causas 142

De acuerdo a esta información, ella debe estimar algunas posibilidades de muerte para una persona cualquiera. Responde tú ¿cuál es la probabilidad de que la persona haya muerto por:

a. problemas en el sistema digestivo?b. tener tumores?c. cualquier otra enfermedad, pero sin

comprometer el sistema respiratorio?

Además, responde: d. ¿Cuál es la causa más probable por la que

ella haya muerto?e. ¿Y la menos posible?

6 Don Gregorio, dueño de un local de venta de vestuario ubicado en el centro comercial, terminó sacando buenas cuentas en la venta de pantalones masculinos durante la quincena previa al Día del Padre. El siguiente cuadro muestra la situación descrita:

Talla Precio unidad Nº unidades vendidas

Subtotal

38 $5000 6 $3000040 $5500 5 $2750042 $5500 8 $4400044 $6000 9 $5400046 $6000 13 $7800048 $6000 14 $8400050 $5500 12 $6600052 $5500 9 $4950054 $5000 4 $20000

Don Gregorio miró una y otra vez el total vendido y empezó a proyectar estos resultados para el mes de diciembre, esperando que, en el peor de los casos, fueran similares. De acuerdo al contexto de este problema, responde, expresando tus respuestas porcentualmente y con dos decimales, ¿qué tan posible es que el número de unidades vendidas sea:

a. de la talla 46? b. de las tallas 44 y 48?

U5 MAT 3M (290-359).indd 305 2/11/11 15:50:39

Page 306: 003000.000 grou

306

Probabilidad experimental y teórica...¿se relacionan?

Manuel y sus amigos jugaban al cachipún al salir del colegio; lo hacían casi como una cábala.–Papel –dijo Fernanda–, 33% de probabilidad.–Tijera –respondió Florencia–. Te gané y no importan tusprobabilidades.–Esto es lo que pasa con la probabilidad teórica versus laexperimental –dijo, riéndose, Manuel.–Bien –dijo Diego–. Sí que has estado atento en clases. ¿Vamos a ir alos juegos cerca de tu casa hoy en la noche?–Sí –contestaron casi al unísono.–¿A las 5 en mi casa? Hacemos la tarea y vamos.–Perfecto, nos vemos; hasta las 5, entonces.

Se juntaron en casa de Manuel. Francisca necesitaba algunas explicaciones porque estuvo en reunión del centro de alumnos a la hora de la clase de Matemática.–¿Qué es eso de probabilidad experimental y teórica? No entendí labroma que le hiciste a Fernanda cuando salimos del colegio.–¿Te acuerdas que llevamos la tarea de los dados y monedas y quellevamos una conclusión al respecto?–Sí, claro. Lo que encontramos fue que las probabilidades de lassimulaciones eran parecidas a las que nos enseñaron a calcular elaño pasado.–Bien, entonces a la probabilidad encontrada en las simulaciones lallamaremos probabilidad experimental, ya que se obtiene de losresultados de un experimento, y a la que calculamos como casosfavorables divididos por casos totales la llamaremos probabilidadteórica, ya que así deberían comportarse teóricamente los sucesos.–Ya, pero son distintas, ¿no?–Aquí viene lo interesante. Existe una ley llamada ley de losgrandes números, que dice que la probabilidad experimentaltiende al valor de la probabilidad teórica, a medida que aumenta elnúmero de repeticiones del experimento.–Ah, por eso es bueno el uso de simuladores; con ellos puedescomprobar esto, ¿no? Entonces, una no se contrapone con la otra.Está bien que nos diera valores aproximados. Pero ¿con cuántoslanzamientos llegaremos al valor teórico?–Con muchísimos. En clases probamos con 9999999, que eran loslanzamientos máximos que podíamos hacer con el simulador, y aúnno llegábamos.

En este link encontrarás más

información sobre la ley de los

grandes números y además un

simulador interesante. Te

invitamos a revisarla.

http://www.terra.es/pe

rsonal2/jpb00000/ttcent

rallimite.htm

Links de interés

Cómo se relaciona la probabilidad teórica con la experimental y qué es la ley de los grandes números.Desarrollarás las siguientes habilidades:• Identificar•calcular•comprender•Resolver•Relacionar•aplicar• interpretar y generar ideasHabilidades por actividad:•comprender y resolver: 4, 1•Relacionar y aplicar: 2• interpretar y generar ideas: 1, 3, 2

Trabaja más...

Habilidades por actividad:• Identificarycalcular:2, 3a, 3b, 3c, 4, 5, 1•comprender y resolver: 2•Relacionar y aplicar: 1, 3d

En esta sección aprenderás

U5 MAT 3M (290-359).indd 306 2/11/11 15:50:40

Page 307: 003000.000 grou

UN

IDA

D 5

307

–Ah, pero entonces no se llegará nunca. ¿Ves?, la teoría no refleja la realidad.–Pero Francisca, recuerda que siempre puedes hacer máslanzamientos que esos. Lo importante es que mientras más hagas,más cercanos serán tus resultados a lo calculado.–Bien, aunque no experimentaré más, al menos con esto. ¿Y quépasó con los dados?–Lo hicimos con 9999999 y nos dio casi lo teórico: 0,166 o 0,167,en todos.–Ah, eso está mejor, suena razonable. Te voy a creer.–¿Y eso fue todo?–No, también hicimos los siguientes ejercicios. Mira:

1. En una encuesta sobre los hábitos televisivos (número de horas diarias que se ve televisión) de ciertas familias se obtuvo la siguiente información:

Nº de horasTipo de personas

1 2 3 4 Total

Niños 13 5 1 1 20adolescentes 5 2 3 10 20adultos 15 3 2 0 20tercera edad 7 4 6 3 20

Determina:

a. La probabilidad de que, al elegir una persona de la muestra, este sea un niño que vea más de 2 horas de televisión diarias.

P A P A( ) = = = ⇒ ( ) =2

801

400 025 2 5, , %

b. La probabilidad de que una persona vea más de dos horas de televisión si pertenece a la tercera edad.

P A P A( ) = = ⇒ ( ) =9

200 45 45, %

c. La probabilidad de que las personas de una familia vean 1 o 4 horas de televisión al día.

P A( ) = = = ⇒54

802740

0 675 67 5, , %

1. Podemos llamar A al suceso

pedido.

2. Calculamos una probabilidad

como los casos favorables

(aquellos que cumplen la

condición pedida) divididos por

casos totales (total de personas).

3. Para transformar el decimal

obtenido a porcentaje, debemos

multiplicarlo por 100.

Recordar y archivar

U5 MAT 3M (290-359).indd 307 2/11/11 15:50:41

Page 308: 003000.000 grou

308

2. La siguiente tabla muestra la distribución de la población mundial por continente.

Continente Población

américa 723942000 habitanteseuropa 498837100 habitantesasia 3112695000 habitantesáfrica 642111000 habitantesOceanía 26481000 habitantes

Determina:

a. La probabilidad de que al escoger una persona del mundo, esta sea de Asia.

P Pasi· tico asi· tico( ) = ( )3112695000

5004 0661000 622 62ª fi ª, %asiático asiático

Recuerda que estamos utilizando aquí la frecuencia relativa; por lo tanto, 5044066100 representa el total de habitantes del mundo.

b. Estima qué es más probable al escoger a una persona al azar: que sea americana o que sea africana. Estima cuánto más probable es un evento que el otro. Será más probable que sea americana, pues hay mayor población en América que en África. Por otro lado, tenemos que la diferencia de las poblaciones es de 81831000 habitantes; entonces, podemos escribir que:

P Ppedida pedida( ) = ( )81 831000

5004 0661000 016 1 6ª fi ª, , %

Por lo tanto, es un 1,6% más probable escoger a un americano que a un africano.

También podemos pensar de la siguiente manera. Calcularemos ambas probabilidades y, entonces, para saber cuánto más probable es un suceso que otro, determinaremos la diferencia de las probabilidades. Nuestro resultado, por este camino, debiera coincidir con el que acabamos de obtener. Hagámoslo.

P americana( ) = 723942000

5004 0661000 145 14 5ª ª, , %

P africana( ) = 642111000

5004 0661000 128 12 8ª ª, , %

Por lo tanto, la diferencia pedida será 14,5% – 12,8% = 1,7% (nota que la diferencia que se produce en las décimas se debe a las aproximaciones realizadas en ambos casos).

Después de explicarle a Francisca, los cinco amigos fueron a los juegos cerca de la casa de Manuel. Allí se subieron a todo: montañas rusas, tacitas, pulpo y tagadá. De pronto Florencia vio una ruleta.

El uso de la estadística y de la probabilidad, como apoyo en la investigación de una gran variedad de disciplinas, ha tenido un gran auge en el mundo en las últimas décadas. La estadística es necesaria en casi todas las ciencias experimentales. Por ejemplo:

En las ciencias naturales: se emplea con profusión en la descripción de modelos termodinámicos complejos (mecánica estadística), en física cuántica, en mecánica de fluidos o en la teoría cinética de los gases, entre otros muchos campos.

En las ciencias sociales y económicas: es un pilar básico del desarrollo de la demografía y la sociología aplicada.

En economía: suministra los valores que ayudan a descubrir interrelaciones entre múltiples parámetros macro y microeconómicos.

En las ciencias médicas: permite establecer pautas sobre la evolución de las enfermedades y los enfermos, los índices de mortalidad asociados a procesos morbosos, el grado de eficacia de un medicamento, etcétera.

Fuente: http://www.hiru.com/matematicas/aplicaciones-de-la-estadistica

Para saber más

7+¡$

><

2? = %

U5 MAT 3M (290-359).indd 308 2/11/11 15:50:42

Page 309: 003000.000 grou

TrabajaResuelve en tu cuaderno los siguientes ejercicios. Corrige tus respuestas en el solucionario.

1 La tabla resume los resultados de 100 lanzamientos de un dado amarillo:

Número Frecuencia1 92 203 204 215 196 11

Responde según esta información:

a. ¿A qué corresponden los valores 0,09; 0,20, 0,20; 0,21; 0,19 y 0,11? ¿Qué te pueden indicar estos valores respecto a la probabilidad de aparición de cada número?

b. Seguramente habrás descubierto que 4 es el número que tiene mayor probabilidad de aparición en una tirada cualquiera. Esto significa que en la tirada 101 aparece 4. ¿Estás de acuerdo con esta reflexión? ¿Por qué?

c. ¿Cuáles son los 2 números que se alejan más de la probabilidad teórica 16

?

d. ¿Qué debiera ocurrir, respecto a las probabilidades respectivas, si el número de lanzamientos aumenta en 900 tiradas?

•Elvalordelaprobabilidadexperimental(queseobtienederealizar un determinado experimento una cierta cantidad de veces) tiende al valor de la probabilidad teórica de dicho evento mientras más veces se repita. Esta ley es conocida como ley de los grandes números.

•Cuandoanalicemostablasdefrecuencia,ocuparemoslafrecuencia relativa para calcular probabilidades de sucesos relacionados con ellas.

–¡Fernanda! –gritó–, vamos, quiero jugar a la ruleta.–Bueno, bueno, pero ¿con qué número ganas algo?–Son 32 números y uno gana si te sale el 2, el 8 o el 12.–Francisca –dijo Florencia–, ¿me puedes decir qué probabilidad teórica tengo de ganar?–Mmm. Veamos. 3 números de 32, es decir:

P Pganar ganar( ) = ( )332

0 094 9 4ª fi ª, , %

La verdad es que no es muy alta.–¿Vas a apostar a la probabilidad experimental?–No, creo que no, solo jugaré una vez y veremos si tengo suerte.Desafortunadamente, Florencia perdió. U

NID

AD

5

309

U5 MAT 3M (290-359).indd 309 2/11/11 15:50:43

Page 310: 003000.000 grou

310

2 En la página web: http://www.estadisticaparatodos.es/taller/aleatorios/alea_juegos_js.html encontrarás un simulador de lanzamiento de 5 dados. Efectúa 10 lanzamientos y:

a. Completa la siguiente tabla:

FRECUENCIAS1 2 3 4 5 6

Dado 1Dado 2Dado 3Dado 4Dado 5

b. Para cada dado, escribe la probabilidad del número con mayor frecuencia y compáralos. ¿Cuál es el

número que sugiere ser más probable, si es que lo hay? ¿Es su probabilidad aproximada a 16

?

c. Considera que todos los valores de la frecuencia escritos en la tabla se hubieran logrado por el lanzamiento de un dado. Escribe la probabilidad experimental obtenida de cada número y compárala con la probabilidad teórica.

3 Una moneda, de la cual se sabe que está cargada, presenta una probabilidad de cara de 0,25. Si se lanzara 1000, 10000 veces y se aumentara el número de veces, ¿debiera incrementar la probabilidad de que aparezca cara y tender a 0,5? ¿Por qué?

4 La tabla siguiente nos entrega información sobre la población de algunos países de América del Sur. Con ella, responde las preguntas formuladas.

PoblaciónCenso disponible más reciente

Fecha Total Hombres Mujeres Estimación actualargentina 18 noviembre 2001 36260130 17659072 18601058 39745613chile 24 abril 2002 15116435 7447695 7668740 16763470ecuador 25 noviembre 2001 12156608 6018353 6138255 13805092Paraguay 28 agosto 2002 5163198 2603242 2559956 6230143Venezuela 30 octubre 2001 23054210 11402869 11651341 27932992

* Nota: para mayor información, acude a la versión actualizada del 19 de enero del 2010 proporcionada por la ONU en: http://unstats.un.org/unsd/demographic/products/vitstats/serATab2.pdf

a. ¿En cuál de estos países es mayor la probabilidad de que sea mujer una persona elegida al azar?b. ¿En cuál de estos países es mayor la probabilidad de que sea hombre una persona elegida al azar?c. ¿En cuál de estos países es más factible que la probabilidad de elegir un hombre y una mujer sean

las más cercanas numéricamente?d. Usando la estimación actual de población y eligiendo una persona al azar, ¿de qué nacionalidad es la

que resulta más probable?

U5 MAT 3M (290-359).indd 310 2/11/11 15:50:43

Page 311: 003000.000 grou

UN

IDA

D 5

311

Resuelvan en grupo los siguientes problemas. No olviden revisar sus respuestas.

1 Pamela es de Iquique y lleva 8 meses estudiando Auditoría en una universidad de Concepción. Con mucho esfuerzo, sus padres le envían la mensualidad y por tanto ella es muy rigurosa con sus gastos. He aquí cómo los organizó durante los tres primeros meses. Ellos contemplan alimentación, fotocopias, locomoción y varios ocasionales. En la siguiente tabla de frecuencias consta el número de veces en que gastó el monto g en pesos.

GASTOS $ 0≤g < 2000 2000≤g < 4000 4000≤g < 6000 6000≤g < 8000 8000≤g < 10000Número de ocasiones en que gastó ese monto.

12 32 27 22 14

Conforme a esto datos, y haciendo los análisis de probabilidades pertinentes:a. Estimen la probabilidad de que Pamela haya gastado más de $4000 y menos de $6000.b. ¿Qué rango de gasto tiene menor probabilidad de haber ocurrido?c. ¿Qué es más probable, que haya gastado menos de $6000 o de $6000 a $10000?

Justifiquen su respuesta.

2 Aquella tarde Memo estaba mirando por la ventana cómo las primeras gotas de lluvia empezaban a caer y vio que dos baldosines cerámicos de la galería se iban mojando, lentamente. Empezó contando “una gota al baldosín de la izquierda y otra al de la derecha”. De repente se mojaba más uno que el otro, y después volvían a estar igualmente mojados. Pensó: “Parece que cada baldosín se va bañando con el mismo número de gotas”.

¿Pasará lo mismo con el resto de los baldosines? ¿Eso se deberá a que la lluvia los moja a todos por igual?

a. ¿Estás de acuerdo con Memo?b. La posibilidad que Memo calcula intuitivamente, ¿es algo factible?c. ¿Cuál debería ser la probabilidad teórica?

Revisemos lo aprendido

Marca con una 8 el casillero correspondiente según la evaluación que hagas de tu trabajo.

MB: Muy bien (7,0 - 6,0)

B: Bien (5,9 - 5,0)

S: Suficiente (4,9 - 4,0)

I: Insuficiente (3,9 - 1,0)

Indicador MB B S I

Soy capaz de explicar el concepto de probabilidad.Soy capaz de explicar la ley de los grandes números.entendí los ejercicios propuestos.Fui capaz de resolver correctamente los ejercicios propuestos.trabajé con mi grupo, aportando cuando fue necesario.

Si has marcado 3 o más cruces en las columnas de suficiente (S) o Insuficiente (I), debes repasar lo visto y volver a hacer los ejercicios que fueron más difíciles de resolver.

Trabaja

U5 MAT 3M (290-359).indd 311 2/11/11 15:50:44

Page 312: 003000.000 grou

312

Trabaja en forma individual

1 Revisa cuidadosamente la información entregada en el siguiente cuadro referido a habitantes de nuestro país.

Personas mayores de 60 años que viven solas, por tramo de edad y región

RegiónTotal 3ª

Edad60 a 69

años70 a 79

años80 o más

añostotal país 200399 87336 77405 35658Región de tarapacá 4669 2329 1694 644

Región de antofagasta 4681 2238 1820 623

Región de atacama 3562 1818 1292 452

Región de coquimbo 9476 4293 3635 1548

Región de Valparaíso 27315 11398 10971 4946

Región del Libertador Bernardo O’Higgins

10273 4499 4039 1735

Región del maule 12581 5649 4837 2095

Región del Biobío 21984 10026 8307 3651

Región de La araucanía 12143 5424 4548 2171

Región de Los Lagos 13198 6110 4850 2238

Región de aysén del Gral. carlos ibáñez del campo

1265 639 445 181

Región de magallanes y la antártica chilena

2232 1004 844 384

Región metropolitana 77020 31909 30121 14990

* La información que se proporciona corresponde al año 2003 y es lo más actualizado de lo que existe registro.http://www.senama.cl/Archivos/712.pdf

¿Nos garantiza esta tabla que la probabilidad de escoger a una persona mayor, cuya edad fluctúe entre los 60 y 69 años, en la XI Región, será aproximadamente del 51%?

2 Recorta 12 cuadrados de cartón de igual tamaño y pinta 4 de ellos rojos, 4 azules y 4 negros. Colócalos en una bolsa o caja no transparente. Extrae uno, sin mirar, y anota su color, vuelve a introducir en la caja el cuadrado y repite la extracción 30 veces. Luego resuelve los siguientes ejercicios:

a. Completa la tabla:

Color FrecuenciaFrecuencia

relativaProbabilidad experimental

RojoazulNegro

b. ¿Cuál es la probabilidad teórica de obtener cada color?

c. ¿Son distintos los valores obtenidos en (a.) y (b.)? ¿Por qué?

3 En una encuesta sobre los litros de leche consumidos semanalmente por los integrantes de algunas familias, se obtuvieron los datos de la tabla adjunta. A base de ellos determina qué probabilidad hay de que al elegir una de las familias encuestadas tome:

a. entre 6 y 10 litros.b. entre 11 y 20 litros.c. de 1 a 5 litros o de 26 a 30 litros.

Litros de leche consumida Nº de familias

De 1 a 5 litros 33De 6 a 10 litros 42De 11 a 15 litros 28De 16 a 20 litros 21De 21 a 25 litros 17De 26 a 30 litros 9

d. ¿Se puede inferir que los resultados obtenidos determinan el comportamiento de consumo de leche en el país?

Trabaja más...

U5 MAT 3M (290-359).indd 312 2/11/11 15:50:44

Page 313: 003000.000 grou

UN

IDA

D 5

313

4 En grupos de 5, construyan una ruleta como la de la figura y láncenla 50 veces, anotando los resultados obtenidos. Luego, usando los datos obtenidos, respondan: ¿Cuál es la probabilidad de que al lanzarla salga:

a. pierde turno?b. gana?c. pierde?d. tira de nuevo?e. no pierde turno?

Pierde turno

Pierde 1

Tira de nuevo

Pierde 8

Pierde 9

Gana 10

Gana 9

Gana 20

5 Con tu grupo, construyan un dado de 8 caras, usando la red de construcción adjunta. Enumeren sus caras del 1 al 8. Láncenlo 50 veces y anoten los resultados obtenidos. Luego respondan las siguientes preguntas:

a. ¿Cuál es la probabilidad de que salga un número par?

b. ¿Cuál es la probabilidad de que salga un número impar?

c. ¿Cuál es la probabilidad de que salga un número par múltiplo de 4?

d. ¿Cuál es la probabilidad de que salga un número impar múltiplo de 3?

e. ¿Qué tan cercano están sus resultados de los que daría la probabilidad teórica en esta situación? Justifiquen su respuesta.

Trabaja en grupo

1 Amparo está jugando ludo con su hermana y ha notado que en los lanzamientos que ha hecho de los dos dados ha obtenido los siguientes resultados:

Suma de las caras Nº de veces obtenida2 23 44 65 46 77 28 19 0

10 011 312 1

A base de los datos determinen la probabilidad experimental de:a. que la suma de las caras obtenida sea 4.b. que pueda avanzar 11 lugares.c. obtener una suma menor que 6.d. obtener una suma mayor que 9.

2 Juan tiene que completar la tabla de resultados de probabilidad en el experimento de lanzar un dado. Completen la tabla y luego responden las preguntas:

Sucesos Experimentales Probabilidad experimental

Salir un 1 58Salir un 2 0,155Salir un 3 72Salir un 4 81Salir un 5 63Salir un 6 0,160total lanzamientos 400

a. ¿Qué probabilidad tiene de ganar si para ello necesita que le salga un 5 o un 6?

b. ¿Qué probabilidad tiene de lanzar y obtener un múltiplo de 3?

c. ¿En cuánto difiere cada una de estas probabilidades con las probabilidades teóricas en cada caso? Considera el valor absoluto de la diferencia pedida.

U5 MAT 3M (290-359).indd 313 2/11/11 15:50:44

Page 314: 003000.000 grou

314

Algunas consideraciones de sucesos y probabilidades

A definir la relación entre dos o más sucesos.Desarrollarás las siguientes habilidades:• Identificar•calcular•comprender•Resolver•Relacionar•aplicar• interpretar y generar ideasHabilidades por actividad:• Identificarycalcular:3, 4, 5, 1, 2, 3•comprender y resolver: 2•Relacionar y aplicar: 1, 6

Trabaja más...

Habilidades por actividad:• Identificarycalcular:2, 3, 4, 5, 8, 12, 13•comprender y resolver: 6, 7, 9, 10, 11•Relacionar y aplicar: 1

En esta sección aprenderás –¡Estos consejos de curso me desesperan! ¡Nadie se pone deacuerdo! ¡Nunca logramos hacer nada sin tener que discutir! –Calma, Florencia –dijo Fernanda–, no es para tanto. –Pero piensa, si no somos capaces de ponernos de acuerdo en cómosería mejor organizarnos para ayudar a los que saben menos para laprueba de Matemática, ¿qué podemos esperar en otras cosas?–Ya, calma. Y al final ¿qué vas a hacer?–Ayudar a Iván a estudiar; debe sacarse buena nota, si no le va adar rojo.–Ya, pero sin rabia. No sacas nada con enojarte así.–Bueno, ya se me pasará. Nos vemos.Iván y Florencia se quedaron ese día estudiando en la biblioteca,después de clases. Florencia hizo un resumen de la materia queentraba y comenzó a explicarle así:–Lo primero que hay que recordar es que una probabilidad secalcula como la razón o división entre los casos favorables y loscasos totales de ocurrencia de un suceso. Entonces, podemos decirque la probabilidad tomará valores entre 0 y 1 y, escrito enporcentaje, entre 0% y 100%.–Por ejemplo, si quieres calcular la probabilidad de que al elegir unalumno o alumna de nuestro curso este tenga menos de 10 años,es imposible, porque todos tenemos entre 16 y 17 años;por lo tanto, los casos favorables serán 0 y eso hace que nuestrocálculo sea,

P pedidatotal de alumnos del curso

( ) = =0 0

–Y, por otro lado, si pedimos que tengan entre 15 y 18 años,tendremos que:

P pedida total de alumnos del cursototal de alumnos del curso

( ) = =1

–Además, podemos decir que si la probabilidad de que ocurra un

suceso es p, entonces la probabilidad de que no ocurra es

1 – p. Por ejemplo, si la probabilidad de que salga un 3 al tirar un

dado es 16

(porque hay un número 3 entre los seis del dado),

entonces la probabilidad de que no salga 3 será 56

(ya que hay 5

números que no son 3, entre los seis) y esto es equivalente a

decir 1 516 6

− = .

U5 MAT 3M (290-359).indd 314 2/11/11 15:50:45

Page 315: 003000.000 grou

UN

IDA

D 5

315

–En consecuencia, podemos resumir lo siguiente:

–Lo segundo que debes saber es que existen sucesos que son

independientes y otros que son dependientes.

Por ejemplo:

–Un juego consiste en sacar una carta de un naipe y tirar un dado.Ganas si en las cartas te sale un as y en el dado, un 6. Debes extraerla carta y lanzar el dado. Estos son sucesos independientes porqueuno no influye en la elección del otro; la carta que salga no influiráen lo que salga en el dado.

–En cambio, supón ahora que jugamos a lanzar dos dados y que ganaaquel que obtiene un 5 en el segundo lanzamiento, siempre y cuandoen el primero haya obtenido un número par. Estos sucesosson dependientes, ya que, para ganar, el segundo suceso depende delresultado del primer suceso.

Entonces, resumamos...

Luego, estos amigos hicieron una serie de ejercicios. Te invitamos a realizarlos para que revises lo aprendido.

Fernando, mi hermano menor, pertenece a un club. Anteayer estaban eligiendo la directiva y decidieron hacer grupos de tres personas y luego repartir los puestos entre la terna elegida. Los integrantes del club son: Marcelo, Pedro, Juan, Tomás, Fernando y Damián. ¿Cuál es la probabilidad de que en la directiva esté Fernando?

Nota que, en este caso, necesitamos formar “grupos”. Cuando esto sucede, debemos ser cuidadosos en cómo contamos los grupos que se pueden formar, ya que un grupo es un conjunto; por lo tanto, el grupo formado por Fernando Pedro JuanF P J( ) ( ) ( ){ }, , será el mismo que el formado por J P F, ,{ }. Así, los grupos que pueden formarse con los integrantes del club son:

Resuelve el siguiente problema:

Un estudiante pasa al pizarrón a colocar un punto en el segmento de línea mostrado abajo. Calcular la probabilidad de que lo coloque entre B y C.

Para entretenerse

15

A 10 B C

Un sitio donde puedes revisar

estos contenidos es:

http://ciberconta.unizar. es/

LECCION/probabil/INICIO.

HTML

Te invitamos a revisarlo.

Links de interés

•SiP es la probabilidad de que un evento o suceso ocurra, entonces tendremos que 0 1≤ ≤P , o bien 0% 100%≤ ≤P .

•Alsucesodeprobabilidadcerolollamaremossucesoimposibleyal suceso de probabilidad 1 lo llamaremos suceso seguro.

•Sip es la probabilidad de que ocurra un suceso, entonces 1 – p es la probabilidad de que no ocurra.

•Dossucesossonindependientessilaocurrenciadeunodeellos no incide en la ocurrencia del otro.

•Dossucesossondependientessilaocurrenciadeunodeellosdepende de lo que haya ocurrido con el otro.

U5 MAT 3M (290-359).indd 315 2/11/11 15:50:46

Page 316: 003000.000 grou

316

TrabajaResuelve en tu cuaderno los siguientes ejercicios. Revisa tus respuestas.

1 Al resolver 2 4 0− >x , ¿cuál es la probabilidad de que exista por lo menos algún número en 2,2− que sea solución de la inecuación?

2 Se sabe que en un dado cargado la posibilidad de que salga un número par en una tirada es 74%. Entonces, ¿cuál es la probabilidad de que aparezca 1, 3 o 5?

3 Bernardo le dijo a su mamá que había reunión de apoderados el día jueves por la tarde. Su madre hizo un gesto de preocupación y le dijo: “Me es imposible asistir a esa reunión”. El muchacho le comentó a su profesor esta situación y éste pensó: “La mamá de Bernardo tiene un 90% de asistencia a las reuniones de apoderados, según mis registros, y siempre ha sido lo mismo”. En referencia al enunciado de este problema, responde: ¿Cuál es la probabilidad de que la mamá de Bernardo:

a. asista a la reunión, conforme a sus propias palabras?b. no asista a la reunión, de acuerdo a lo que pensó el profesor?

4 Un cálculo astronómico señala que de acuerdo a sus proyecciones, para el año 2013, la probabilidad de que caiga un determinado meteorito de tamaño medio en la superficie lunar antes de septiembre de ese año es 40% y que caiga durante ese mes es del 55%. ¿Cuál es la probabilidad de que caiga después de esa fecha?

5 Si Octavio no alcanzara a tener 15 años en el 2012, ¿cuál es la probabilidad de que:

a. tenga más de siete años si actualmente ya pasó la enseñanza preescolar?b. haya nacido en 1996 o en 1997?

6 A Aladino se le ha solicitado que dibuje un rectángulo de área menor a 3 cm², cuyas medidas sean x y 4yx xx

+ cm, respectivamente. ¿Cuál es la probabilidad de que realmente pueda existir dicho rectángulo?

Justifica tu respuesta.

P M J P M T P M F P M D P J T

P F D P T F P T D P

, , , , , , , , , ,

, , , , , , ,

{ } { } { } { } { }

{ } { } { } JJ F P J D

M J T M J F M J D M T F M T D

M F D J T

, , ,

, , , , , , , , , ,

, , ,

{ } { }

{ } { } { } { } { }

{ } ,, , , , , , ,F J T D J F D T D F{ } { } { } { }

Entonces, los tríos que cumplen con que Fernando esté incluido son aquellos subrayados con rojo, es decir, 10.

Como existen 20 tríos en total, la probabilidad de que Fernando

integre la directiva del club es: 1020

12

0 5 50= = ⇒, %¿Y qué pasará con Damián?

Los tríos donde Damián está son 10; por lo tanto, también su probabilidad es 50%.

¿Y con Marcelo?

Hay 10 tríos donde está Marcelo; 50% de probabilidades de que sea parte de la directiva. Sorprendente, ¿no?

U5 MAT 3M (290-359).indd 316 2/11/11 15:50:47

Page 317: 003000.000 grou

UN

IDA

D 5

317

TrabajaResuelvan en grupo los siguientes problemas. No olviden revisar sus respuestas.

1 “Te repito: no me insistas, no iré a casa de Noemí porque estoy enojada con ella. No daré mi brazo a torcer ante ella en esta oportunidad. No te olvides de que me llamó Naomi y a mucha honra”.

De acuerdo al contexto del relato:a. ¿Cuál es la probabilidad de que Naomi vaya a casa de Noemí?b. ¿Qué tan probable es que Naomi no dé su brazo a torcer en esta oportunidad?c. ¿Por qué el suceso “estar enojada”podría convertirse en imposible?

2 Junto con tu grupo, construye dos rosas cromáticas como muestran las figuras:

Hagan girar muy rápidamente cada una de las rosas cromáticas en torno a su centro y anoten lo que observan. Luego respondan:

a. ¿Cuál es la probabilidad de que haya aparecido un anillo rojo cuando usaron la figura con fondo negro?

b. ¿Cuál es la probabilidad de que en la figura con fondo blanco la rosa cromática haya desaparecido?

3 Bernardo le dijo a su mamá que había reunión de apoderados el día jueves por la tarde. Su madre hizo un gesto de preocupación. “Tengo cero probabilidad de ir a esa reunión”, le dijo. ¿Puedes dar una razón por la que su mamá hubiera dicho esto? ¿En qué caso se daría esta situación?

U5 MAT 3M (290-359).indd 317 2/11/11 15:50:48

Page 318: 003000.000 grou

318

Trabaja en forma individual

1 Una urna contiene cuatro bolas blancas, cinco azules y siete rojas. Para aumentar la probabilidad de la elección de una bola roja al azar, se han retirado dos blancas, dos azules y aumentado las rojas en cuatro unidades. Con este cambio, ¿qué tan probable es el hecho de que la elección de una bola roja haya:a. aumentado en un 25% su probabilidad?b. quedado con una probabilidad de 25%?

2 En un año no bisiesto, ¿cuál es la probabilidad de que la fecha de cumpleaños de una persona: a. sea el 5 de abril?b. esté en el mes de diciembre?c. se produzca entre marzo y noviembre,

ambos inclusive?d. sea el 31 de septiembre?

3 En una elección, para cierta presidencia, todos los convocados a votar lo hicieron. No hubo votos nulos ni blancos. El candidato A obtuvo 75 votos, el B 84, y el C 72 votos. Si de manera azarosa se escogiera uno de estos votos, ¿cuál es la probabilidad de que:a. sea del candidato B?b. no sea del candidato C?c. sea de un elector que se haya abstenido?

Ahora bien, ¿cuál es la probabilidad de que:

d. el candidato A haya obtenido más de un 30% del total de votos? Justifica tu respuesta.

e. el candidato B haya obtenido la mayoría absoluta? Justifica tu respuesta.

4 Si al lanzar un dado cargado, la probabilidad de que aparezca un número par es 0,25: a. halla la probabilidad de que en un

lanzamiento aparezca un número impar.b. establece la desigualdad entre p p1 5( ) + ( ) y

p 2( ), pero calculando previamente los valores de las probabilidades implicadas.

5 En una caja de 12 tacitas para café hay tres que tienen fallas. Mientras Gilda la transportaba, se extravió una de ellas sin saberse de qué tipo era. Encuentra la probabilidad de que la pieza extraviada haya estado: a. con fallas.b. sin fallas.

Ahora bien, supongamos que Gilda no supo que inicialmente de la caja se habían retirado dos tacitas sin fallas y una fallada:

c. ¿Cuál es la probabilidad de que no se haya perdido ninguna fallada?

6 ¿De cuántas maneras se puede sentar doña Carlota con sus tres amigas en un sofá antiguo? ¿Cuál es la probabilidad de que ninguna vez Carlota quede en los extremos?

7 En una repisa hay cuatro libros ordenados de la siguiente manera. Se decide reordenarlos. ¿Cuál es la probabilidad de que los rojos queden en los extremos?

8 Luis Alberto es tecnólogo médico y trabaja en un centro radiológico. Ahora está analizando el siguiente cuadro de su rendimiento, para solicitar un mejoramiento en los equipos.

Atención radiológica

2011Número de exámenes

Rayos X Ultrasonido Escáner

Septiembre 40 9 2Octubre 55 6 7Noviembre 45 4 6Diciembre 39 5 5

Suponiendo que los mismos meses del 2012 se comportan de manera similar, te pedimos que hagas los cálculos necesarios para que respondas las siguientes preguntas, dando el valor porcentual de las probabilidades pedidas:a. ¿En qué mes es menos probable que Luis

Alberto tome exámenes de rayos X? b. ¿Cuál es el mes en que es más probable

que haga el mayor número de exámenes de escáner?

c. ¿Qué es más probable que ocurra: tomar exámenes de ultrasonido o exámenes de escáner?

Trabaja más...

U5 MAT 3M (290-359).indd 318 2/11/11 15:50:49

Page 319: 003000.000 grou

UN

IDA

D 5

319

9 El reportero encuentra a un niño limpiando una fuente de agua visitada por algunos transeúntes y le pregunta:

–¿Y cuántas monedas de $100 reúnescomúnmente limpiando la fuente?–Es variable, el lunes pasado encontré 20monedas, el martes 25, el miércoles eran como35, ayer 23, y hoy espero que sea como elviernes pasado, es decir, 25.–¿Y esto te pasa todos las semanas?–Si, todas las semanas es lo mismo, la misma cantidad.De acuerdo al enunciado, ¿cuál es la probabilidad de que el niño encuentre:

a. 43 monedas a la semana?b. menos de 70 monedas al final de su jornada

del miércoles?c. $12800 al final de una semana?

10 Después de haber realizado muchos trucos, el mago terminó su presentación haciendo un concurso entre los niños que allí asistieron. Colocó en una gran bolsa, bolitas numeradas del 1 al 28. Llamó a Clemente y a mí me señaló con el dedo. Él impuso la siguiente regla: “Gana Clemente si saca una bolita cuyo número sea múltiplo de tres. Ganas tú si sacas una bolita con un número múltiplo de cinco”. ¿Cuál es la probabilidad de que al extraer una bolita gane:

a. Clemente? b. yo?c. que no ganemos ninguno de los dos?

11 –”¡Por favor, esto no se resuelve en una sentada, Sr. Pantoja! Para el papel principal de las hermanas Bronte, tenía diez candidatas, todas muy bien recomendadas. ¿Qué me está diciendo, Sr. Pantoja? ¡Qué yo elegí a Genoveva, Marlene y Marilyn por capricho! Simplemente, de todas las candidatas, elegí al azar tres de las que me convencieron inmediatamente, ¡y eso es todo! ¿Por qué no opté por Nélida, Tracy y Cynthia, habiendo estudiado todos los tríos posibles con estas seis candidatas? ¡Caramba, Sr. Pantoja! ¡Soy director de teatro y no un matemático para estudiar todos los tríos posibles!” Ahora bien, tú que eres un muy buen estudiante, responde: ¿Qué tan probable era haber elegido:

a. a este último trío?b. a un trío en el que Nélida esté presente?

12 A Virginia le entregaron su dictado, en el que por cierto no obtuvo una buena nota. Observa lo que ella escribió:

Fecha: 29 de octubre de 2013DICTADO Nº 7

Nombre: Virginia

1. Provabilidad 8. irrasional 15. Discriminante2. intervalo 9. azar 16. interceccion3. Parábola 10. inecuación 17. máximo4. Preimagen 11. Secante 18. Decigualdad5. Raíses 12. Vértice 19. Suseso6. cordenadas 13. aliatorio 20. Principio7. trigonométrica 14. Simetría 21. condisionada

Su profesora, preocupada, le dice que nuevamente ha fallado en un gran número de palabras. De acuerdo a esta información, responde:

a. ¿Cuáles son las palabras que están incorrectamente escritas? Señala el número que le antecede.

b. ¿Cuál es la probabilidad de que en el dictado siguiente, de seguir la misma tendencia, una palabra cualquiera escrita por ella presente errores? Expresa porcentualmente tu respuesta, con aproximación a entero.

c. Reescribe las palabras con errores ortográficos, de manera que estén correctamente escritas.

13 En el hall de la clínica “Las Margaritas”, el médico jefe conversaba con los padres de una menor accidentada: “Estamos haciendo todo lo posible por lograr que su hija se salve. El accidente fue muy grave. Hay un 20% de probabilidades de que se recupere completamente y un 40% de que quede con algún tipo de secuela”. Los padres se angustiaron, pues la posibilidad de que su hija muriera era muy alta. ¿Cuál era esta?

U5 MAT 3M (290-359).indd 319 2/11/11 15:50:49

Page 320: 003000.000 grou

320

Sucesos independientes... ¿cómo trabajar con ellos?

A calcular probabilidades de sucesos independientes.Desarrollarás las siguientes habilidades:• Identificar•calcular•comprender•Resolver•Relacionar•aplicar• interpretar y generar ideasHabilidades por actividad:• Identificarycalcular:2, 1, 10•comprender y resolver: 1, 5, 7, 8, 2, 3, 4,

6, 7, 8, 9, 11•Relacionar y aplicar: 3, 4, 6

Trabaja más...

Habilidades por actividad:•comprender y resolver: 1, 2, 3, 4, 5

En esta sección aprenderás Florencia continuó explicándole la materia a Iván.

–Analicemos el siguiente problema –le dijo.

1. Una persona debe ir de una ciudad a otra, pasando siempre por una tercera ciudad situada entre las otras dos. Si para ir de la primera a la segunda tiene tres posibilidades (caminos A, B y C) y para ir de la segunda a la tercera tiene cuatro posibilidades (D, E, F, G), ¿cuál es la probabilidad de que el camino escogido sea C – F?

Grafiquemos la situación:D

A

B

C

Ciudad 1

Ciudad 2Ciudad 3

D

D

E

E

E

F

F

F

G

G

G

El hecho de escoger un camino de la ciudad 2 a la 3 es

independiente del que se haya escogido antes. Podemos decir

entonces que:

Las formas totales de llegar son 12:

A - D, A - E, A - F, A - GB - D, B - E, B - F, B - GC - D, C - E, C - F, C - GComo de aquellas 12 solo nos sirve el camino C - F; entonces,

podemos anotar que:

P C F−( ) = 112

Ahora, piénsalo de la siguiente manera:

P C P F( ) = ( ) =13

14

,

⇒ −( ) = ⋅ =P C F13

14

112

Se quieren extraer dos bolitas

desde la urna de la figura en

forma sucesiva, sin reponerlas.

Nota que para calcular la

probabilidad de que, por

ejemplo, se extraiga una roja y

luego una verde, debes

considerar que el espacio

muestral (casos totales) cambia

para la segunda extracción, pues

ya has sacado una de la urna.

Esto sería, entonces:

Recordar y archivar

P P Proja y verde roja verde( ) = ( )⋅ ( ) = ⋅38

27

P P Proja y verde roja verde( ) = ( )⋅ ( ) = ⋅38

27

P P Proja y verde roja verde( ) = ( )⋅ ( ) = ⋅38

27

P P Proja y verde roja verde( ) = ( )⋅ ( ) = ⋅38

27

U5 MAT 3M (290-359).indd 320 2/11/11 15:50:50

Page 321: 003000.000 grou

UN

IDA

D 5

321

2. En uno de los cajones de mi cómoda hay 5 poleras (blanca, roja, amarilla, lila y verde) y en el otro hay 4 pantalones (azul, negro, blanco, rojo). ¿Cuál es la probabilidad de que al sacar una polera y un pantalón, al azar, esta combinación sea mi polera blanca y el pantalón azul?

Los sucesos “sacar una polera y sacar un pantalón” son

independientes. Entonces, si lo pensamos análogamente al

ejercicio anterior, tendremos que:

P P Ppolera pantalÛn blanca-azul( ) = ( ) = ⇒ ( ) = ⋅ =15

14

15

14

120

,( ) ( ) ( )1 1 1 1 1polera , pantalón blanca-azul5 4 5 4 20

P P P= = ⇒ = ⋅ =P P Ppolera pantalÛn blanca-azul( ) = ( ) = ⇒ ( ) = ⋅ =15

14

15

14

120

,

¿Verifiquemos esto a través de un diagrama?Polera

Pantalón

Sí. Está bien, puede haber 20 combinaciones totales; por lo tanto, escogeremos 1 de 20, lo que hace que la probabilidad sea

1 0,05 5%20

= = 5%

Entonces, ¿qué podemos concluir?

No olvides que:

Si dos o más sucesos son independientes, para calcular la probabilidad de la ocurrencia de ellos, todos a la vez, se deben multiplicar las probabilidades de que cada uno ocurra.

Esto también lo podemos anotar así:

Si P A a P B b P a b a b( ) = ( ) = ⇒ ∧( ) = ⋅y y P A a P B b P a b a b( ) = ( ) = ⇒ ∧( ) = ⋅yNota que aquí la clave es que se quiere la probabilidad de A y B a la vez.

Veamos ahora otros ejemplos.

3. “Hoy, mi pololo me ha invitado a celebrar nuestro primer aniversario. Mi papá me dio permiso, pero debo llegar antes de las 22:00, lo que hace que solo podamos escoger una cosa que hacer juntos. Él me ha propuesto varias: 3 películas, 2 obras de teatro, 3 lugares para comer, entre ellos el restaurante en el que me pidió pololeo. Como no sabíamos qué hacer, escribimos cada lugar en papeles y los echamos a una bolsa”. ¿Cuál es la probabilidad de escoger el bello restaurante aquel?

U5 MAT 3M (290-359).indd 321 2/11/11 15:50:51

Page 322: 003000.000 grou

322

Si te fijas bien, el hecho de ir al cine no depende de escoger obras de teatro o restaurantes. El problema aquí es que deben escoger el cine o el restaurante o el teatro. Nota que a diferencia del ejercicio anterior, los sucesos no pueden ocurrir todos a la vez.Si lo representamos gráficamente, tendremos que:

Cine Teatro Restaurantes

En la bolsa habrá, entonces, 8 papeles y escogeremos uno al azar.

Por lo tanto, la probabilidad de escoger el restaurante que se

quiere es 18

. (Nota que aquí hemos puesto “en una misma bolsa”

todas las posibilidades de salidas que se tienen).

4. El papá de Juan le propone un juego. Si gana, hoy no le tocará cortar el pasto. Coloca dos cajas distintas, la primera con fichas numeradas del 1 al 5, y la segunda, con 3 dados: negro, naranjo y amarillo. El desafío es sacar una ficha y un dado y que estos sean la ficha con el número 4 o el dado negro. ¿Cuál es la probabilidad de que Juan no corte el pasto hoy? Nota que en este caso, a diferencia del anterior, se tienen que extraer una ficha y un dado. Además, los sucesos siguen siendo independientes (lo que salga en las fichas no depende de lo que haya salido en los dados ni viceversa).

Si graficamos esta situación, tendremos que:

1 3 5

2 4

1 3 5

2 4

1 3 5

2 4

Si te fijas, las posibilidades totales son 15 y las que cumplen con

ser dado negro o ficha número 4 son 7 (marcadas en rojo); por lo

tanto, la probabilidad pedida será 715

.

U5 MAT 3M (290-359).indd 322 2/11/11 15:50:52

Page 323: 003000.000 grou

UN

IDA

D 5

323

Nota lo siguiente: uno de los errores más frecuentes es la idea de

que en estos ejercicios, donde existen dos sucesos

independientes, se podrían sumar las probabilidades de

sacar un dado negro con la de sacar la ficha con el número 4. Si lo

hacemos, te darás cuenta de que encontrarás un resultado

erróneo, esto es:

dado negro n˙ mero negro o( ) = ( ) = ⇒ ( ) = + =13

4 15

4 13

15

815

, P( ) ( ) ( )1 1 1 1 8dado negro , número 4 negro o 43 5 3 5 15

P= = ⇒ = + =dado negro n˙ mero negro o( ) = ( ) = ⇒ ( ) = + =13

4 15

4 13

15

815

, P

dado negro n˙ mero negro o( ) = ( ) = ⇒ ( ) = + =13

4 15

4 13

15

815

, P

Entonces, ¿qué hacemos?Razonamos de la siguiente manera:Lo contrario de sacar “un dado negro o un número 4” es sacar“un dado que no sea negro y una ficha que no sea número 4” (mira en tu diagrama las posibilidades que no están marcadas con rojo). Pero en este último caso, existen dos sucesos que deben pasar a la vez (recuerda, uno y lo otro). Entonces, sí podemos utilizar la multiplicación de las probabilidades.En consecuencia, tenemos que:

no dado negro no n˙ mero no negro y no( ) = ( ) = ⇒ ( ) = ⋅ =23

4 45

4 23

45

815

, P( ) ( ) ( )1 1 1 1 8dado negro , número 4 negro o 43 5 3 5 15

P= = ⇒ = + =no dado negro no n˙ mero no negro y no( ) = ( ) = ⇒ ( ) = ⋅ =23

4 45

4 23

45

815

, P

no dado negro no n˙ mero no negro y no( ) = ( ) = ⇒ ( ) = ⋅ =23

4 45

4 23

45

815

, P

Ahora bien, ya vimos que el complemento de un suceso o laprobabilidad de que un suceso no ocurra es 1 menos laprobabilidad de que sí ocurra, entonces:

negro on˙ mero 4 no negro y no( ) = − ( ) = − = − =1 4 1 815

1515

815

715

( ) ( ) ( )1 1 1 1 8dado negro , número 4 negro o 43 5 3 5 15

P= = ⇒ = + =negro on˙ mero 4 no negro y no( ) = − ( ) = − = − =1 4 1 815

1515

815

715

Que es justamente el resultado correcto.

Hagamos el siguiente ejercicio: “Mi papá calculó que la

probabilidad de que me deje ir a ver la película que quiero es 38

y

que la probabilidad de que me deje ir al paseo es 3

10. ¿Cuál será

la probabilidad de que mi papá me deje ir al cine o al paseo?”cine o paseo no cine y no paseo( ) = − ( )1

Calculemos... Si P Pcine no cine( ) = ⇒ ( ) = − =38

1 38

58

Si P Ppaseo no paseo( ) = ⇒ ( ) = − =310

1 310

710

Entonces, no cine y no paseo( ) = ⋅ = =58

710

3580

716

Supongamos que para formar

números de 3 cifras puedes

utilizar todos los dígitos y que

estos se pueden repetir.

¿Podemos determinar cuántos

números de tres cifras hay

usando un diagrama de árbol?

Observa.

0123456789

0123456789

123456789

posibles dígitos que pueden ocupar el lugar de las unidades

posibles dígitos que pueden ocupar el lugar de las decenas

posibles dígitos en las centenas = 9 · 10 · 10 = 900O bien, podemos esquematizarlo

así:

9C

posibilidades de colocar un dígito

10D

10U

9 10 10 900= ⋅ ⋅ =

Recuerda que contar es un arte.

(Te recomendamos que leas el

libro El hombre que calculaba, de

Malba Tahan).

•Cuandosequiere“contar”el

número total de formas en que

puede ocurrir uno u otro

suceso, podemos sumar ambas

posibilidades.

•Paracalcularlaprobabilidad

de que ocurra un suceso u otro,

se calcula el complemento de

la probabilidad de que, a la vez,

no ocurra ninguno de ellos;

esto es:

P A o B P A B( ) = − ( )1 no y no

Recordar y archivar

U5 MAT 3M (290-359).indd 323 2/11/11 15:50:55

Page 324: 003000.000 grou

324

Por lo tanto, cine o paseo( ) = − = ⇒1 716

916

56 25, %–Uff! –dijo Florencia. Resumamos:

–Florencia, descansemos por favor –dijo Iván.–Haremos los dos últimos ejercicios y mañana seguimos, ¿te parece?–Muy bien, veamos qué sigue:

5. Macarena está estudiando probabilidades en el preuniversitario al que asiste. Su profesor le ha preguntado: ¿cuál es la probabilidad de contestar la prueba de Matemática, al azar, y obtener puntaje nacional?

Macarena se rio, pensó un momento y respondió:

–La probabilidad de contestar bien una pregunta es 15

(hay una respuesta correcta de 5).

–Como hay 70 preguntas y ellas son sucesos independientes, entonces se puede escribir que:

P pedida( ) = ⋅ ⋅ ⋅ =

≈ ⋅ ≈ ⋅− −15

15

15

15

1 18 10 1 18 1070

49 47... , , %( )70

49 471 1 1 1pedida ... 1,18 10 1,18 10 %5 5 5 5

P − − = ⋅ ⋅ ⋅ = ≈ ⋅ ≈ ⋅ P pedida( ) = ⋅ ⋅ ⋅ =

≈ ⋅ ≈ ⋅− −15

15

15

15

1 18 10 1 18 1070

49 47... , , %( )70

49 471 1 1 1pedida ... 1,18 10 1,18 10 %5 5 5 5

P − − = ⋅ ⋅ ⋅ = ≈ ⋅ ≈ ⋅

{}3,2−70 veces

y eso es prácticamente 0.

–Muy bien, Macarena, ¿qué concluimos?

–Que hay que contestar solo lo que una sabe y de lo que está segura, señor.

Para terminar esta parte del estudio, Florencia le propuso estos ejercicios a Iván. Él los realizó correctamente. ¿Los puedes hacer tú ahora?

•Cuandosequiere“contar”elnúmerototaldemanerasoformas en que puede ocurrir uno u otro suceso, podemos sumar ambas posibilidades.

•Paracalcularlaprobabilidaddequeocurraunsucesouotro,calcula el complemento de la probabilidad de que ambos sucesos ocurran a la vez; esto es: P A B P A Bo no y no( ) = − ( )1

U5 MAT 3M (290-359).indd 324 2/11/11 15:50:57

Page 325: 003000.000 grou

UN

IDA

D 5

325

TrabajaResuelve los siguientes ejercicios; coloca el desarrollo en tu cuaderno y luego revisa tus respuestas.

1 Una urna contiene 9 bolas blancas y 5 negras. Se han extraído dos de ellas de manera sucesiva. ¿Cuál es la probabilidad de que haya aparecido este orden: una negra y una blanca, si la extracción es:

a. con reposición (vuelves a colocar la bolita extraída en la urna).b. sin reposición.

2 Al lanzar un dado y una moneda a la vez, ¿cuál es la probabilidad de que aparezca un número par y sello?

3 De un grupo de cinco personas, al que pertenece Mauro, se deben elegir dos para formar una comisión de evaluación. ¿Cuál es la probabilidad de que Mauro no integre dicha comisión?

4 Una tómbola contiene solo números de cuatro cifras cuyo dígito de las centenas es 8. Después de dar varias vueltas, se extrae al azar un número. ¿Qué tan probable es que sea un número par y que el dígito que siga a 8 sea impar?

5 Mariano ha sido elegido como el presidente de una comisión. Falta completar los cargos de vicepresidente y secretario. Los posibles candidatos son: Marcelo, Ana María, Angélica María y Homero. ¿Qué tan probable es que Angélica María quede como vicepresidenta? Expresa tu respuesta porcentualmente.

6 Se desea escribir, al azar, cifras de cinco dígitos diferentes, utilizando los números 4, 5, 6, 8 y 9. ¿Cuál es la probabilidad de que se inicien con 98 y terminen en 5? ¿Será la misma probabilidad para las cifras que se inicien en 5 y terminen en 89? Justifica tu respuesta.

7 El diagrama muestra las maneras de transitar de D a A por distintas vías de uno o dos sentidos, pero todas igualmente probables de ser transitadas. Los números son simplemente formas de distinguir las vías.

B

6

5

4

7

8

9

1

2

D C A

3

a. Encuentra la probabilidad de elegir cualquier camino que lleve de D a A, y luego haz lo mismo, pero para regresar. Compara tus resultados y responde por qué se produce esta diferencia.

b. ¿Cuál es la probabilidad de las rutas 8 – 4 – 1 y 2 – 4 – 8? ¿Qué adviertes de especial respecto al segundo de los valores obtenidos?

c. Hay que realizar la ruta 2 – 6, detenerse en B y regresar a D. ¿Cuál es la probabilidad de que se regrese por 3 – 2?

d. Elige una ruta que se inicie en A, avance a través de 7, se devuelva en D y considere a 4 al regreso. Anímate y calcula la probabilidad respectiva.

8 ¿Qué es más probable, obtener sello al lanzar una moneda u obtener tres sellos al lanzar cuatro monedas? ¿Cuáles son estas probabilidades?

U5 MAT 3M (290-359).indd 325 2/11/11 15:50:57

Page 326: 003000.000 grou

326

TrabajaResuelvan en grupo los siguientes problemas de planteo. Luego revisen sus respuestas.

1 –El joven empezó trabajando como auxiliar en los buses interprovinciales, esos que están al lado de los grandes almacenes, y con el tiempo llegó a ser uno de sus gerentes. –Espere, oficial, ¿cómo se llamaba? Parece que se llamaba Fernando o Hernando o creo que Hernaldo... ¡Ah, el apellido era poco común! Algo así como, Baggio, Bello, Biggio o Bolla, no sé, no lo recuerdo. –El oficial miró y se dirigió al suboficial: –¿será Hernaldo Bolla o Fernando Baggio? –Es posible, señor.

¿Qué tan probable es que sea cualquiera de los nombres mencionados por el oficial?

2 Y por fin llegó el 17 de agosto del 2012; Helga cumple 17 años. Sus seis amigos más cercanos estarán sentados en la mesa principal; tres a su derecha y tres a su izquierda. En las fotos siempre aparecerá Tommy a su lado izquierdo (sospechoso, ¿no?) Determinen la probabilidad de que en las fotos tomadas hayan aparecido las siguientes personas, con estos órdenes:

marcia elisa Servando Helga tommy marcial moreliamarcial morelia elisa Helga tommy marcia Servandomorelia Servando marcia Helga tommy elisa marcial

3 En la reunión de directorio, Maira se levanta y propone que la resolución a lo tratado se la confíen a los equipos de trabajo A o B. Uno de los miembros le pregunta: –¿Y qué sabe usted de los equipos que menciona? –Después de estudiarlos, sé que la probabilidad de éxito de A es 45% y de B, 60%. La presidenta agrega: –Necesitamos que lo resuelva cualquiera de los dos equipos. Ya no tenemos más tiempo para esperar.

–Maira, ¿qué tan posible es que el problema sea resuelto en estas condiciones? Te solicitamos que te pongas en lugar de Maira y respondas la pregunta.

4 En el censo del 2002 me tocó conocer a don Julio, quien estaba ya jubilado. Me contó que en su trabajo tenía que transmitir mensajes mediante un telégrafo, y que había llegado a tal destreza, que casi no cometía errores en los signos de emisión (un error por cada 10 signos emitidos). Ahora que estudio probabilidades, me pregunto: en un mensaje con cuatro signos, como la palabra AMOR, ¿qué tan posible era que don Julio lo haya enviado sin errores?

5 Pablo y su equipo están preocupados por la buena realización del Congreso de Tecnología del Medio Ambiente 2013, al que están asistiendo 100 personas, de las cuales 40 solo hablan inglés, 25 solo francés, y el resto, ambos idiomas. Además, 45 provienen de Europa, 35 de América y el resto de Asia. Casualmente, al bajar a la cafetería, uno de los asistentes se acerca a él para hacerle una consulta. ¿Cuál es la probabilidad, expresada porcentualmente, de que sea una persona que venga de

a. Asia y hable en inglés?b. Europa o América y hable en cualquiera de los idiomas?

6 Eran tan lindos esos dulces de colores amarillo, rosado, beige y blanco, que Rosita decidió colocarlos en línea en la vitrina de su negocio, uno de cada color, pero tan solo puede colocar tres. ¿Cuál es la probabilidad de que al ubicar tres de ellos, estos sean blanco, beige y rosado? ¿Cuál es la probabilidad de no colocarlos así?

7 “¡Uf, estoy tan cansado de participar! La verdad es que anhelo tener el cargo más alto entre los cinco que quedamos, y que Carlos me secunde (él me confesó que no quería mi opción). ¿Qué tan probable podría ser esto? Todos los que estamos en esta etapa final merecemos ser los primeros. Mamá, papá, pronto nos vemos, chao”.

U5 MAT 3M (290-359).indd 326 2/11/11 15:50:57

Page 327: 003000.000 grou

UN

IDA

D 5

327

Tú podrías estar en esta situación, y como ya sabes de probabilidades, te preguntamos: ¿cuál es la probabilidad de que el deseo de este hijo se cumpla?

8 –Hoy es la semifinal del reality “Mi sueño es cantar”, Lito.–¡Sí, es verdad! Fíjate que de los seis finalistas de hoy, dos se irán para la casa.–¿Eliminados para siempre? A mí me gustaría que quedaran estos dos.–Lo veo difícil, porque la cosa va a estar peleada a muerte.–Yo tengo el presentimiento de que se irán para la casa la cantante que interpretó Nadando contra lacorriente y el cantante de Hago lo imposible por permanecer.–¡Claro que sí! Por lo tanto, esos dos... ¿ya?... ¿completamente de acuerdo?–¡Completamente de acuerdo!Al final del programa, escuchan el nombre de los cuatro clasificados. ¿Cuál es la probabilidad de que Lita y Lito se hayan equivocado completamente?

9 Jackie acudió junto a Telmo, su marido, a comprar una lavadora en una tienda especializada. Los atiende Marco, el vendedor: –Vengan por aquí. Aquí está la línea de Lavadoras W con dos tipos de carga (8 u 11 kilogramos), en cuatro colores diferentes. Continuemos por acá. Esta es la línea E, en dos colores y, ¡ah!, con tres tipos de carga (8, 11 o 15 kilogramos). ¿Qué les parece? –La pareja se mira, mientras Marco les muestra la línea GE: –A diferencia de las anteriores, hay en un solo tipo de carga, que es de 11 kilogramos, y en dos colores diferentes. Y... ¿por cuál se deciden?

A Jackie y Telmo se les hizo difícil, pues todas les llamaron la atención. Ahora bien, ¿cuál es la línea más probable que hubieran elegido y qué porcentaje de probabilidad tiene de ser elegida?

10 En el colegio de Nicanor se hace una gran fiesta familiar de inicio de año, en la que cada curso tiene asignado un puesto de ventas o juegos para recaudar fondos para el año. Al curso de Nicanor le ha tocado el puesto de juegos. Uno de ellos consiste en lanzar una moneda al aire cuatro veces y contar el número de caras. Los premios se dividen de la siguiente manera: si se obtienen 2 caras, se gana un chocolate; con 3 caras, un brazo de reina; y con 4 caras, una torta.

¿Cuál es la probabilidad de

a. ganar una torta?b. ganar un brazo de reina?c. ganar un chocolate?d. no ganar premios?

Da tu respuesta en porcentaje, aproximado a dos decimales:

11 La señora Genoveva les ha dicho a sus hijos que la probabilidad de vender parte de la hacienda familiar es de un 38%. Además, les agregó que la probabilidad de que se la compre don Edmundo es del 24% y que la compre don Faustino es del 18%.

Sus hijos han hecho algunos cálculos para saber las siguientes probabilidades. Tú puedes dar también la respuesta.

a. Que se venda esa parte de la hacienda y que la compre don Edmundo.b. Que se venda y la compre don Faustino.c. Que se venda y no la compre ninguno de ellos.

U5 MAT 3M (290-359).indd 327 2/11/11 15:50:57

Page 328: 003000.000 grou

328

Trabaja en forma individual

1 Un suceso A tiene 23% de probabilidades de

ocurrir; otro suceso B tiene 25

de probabilidades

de no ocurrir, y por último, la probabilidad de

ocurrencia de un suceso C es 0,02. Si los sucesos

son independientes, calcula:

a. la probabilidad de que ocurra A y B, pero no Cb. la probabilidad de que ocurra B y C, pero no Ac. la probabilidad de que ocurran los tres

sucesos a la vezd. la probabilidad de que ninguno de

ellos ocurra. (Da tu respuesta en porcentaje, con

aproximación a la décima).

2 Se tienen dos sucesos independientes A y B,

de modo que la probabilidad de que no

ocurra A es 17

.

a. la probabilidad de que ocurra B, si la probabilidad de que ocurran ambos es 16%

b. la probabilidad de que no ocurra B, si la probabilidad de que no ocurra ninguno de los sucesos a la vez es 0,002.

c. la probabilidad de que no ocurra B, si la probabilidad de que ocurra solo A es 27%.

Da tu respuesta como fracción.

3 A y B son sucesos independientes, de manera

que P A P B( ) = ( ) =17

58

y no y P A P B( ) = ( ) =17

58

y no Determina la

probabilidad de:

a. P A By( )b. P A Bno y( )c. P A By no( )d. P A Bno y no( )

4 En el concurso de televisión en que está participando la mamá de Aurora, hay 3 cajas: una roja, una azul y una verde, frente a cada uno de los autos de igual color. En la caja roja hay 7 llaves; en la azul 8 llaves; y en la verde 6 llaves. Solo una llave de cada caja enciende el auto respectivo, y la mamá de Aurora se llevará todos los autos que enciendan, con la llave que elija de cada una de las cajas. Calcula:

a. la probabilidad de que gane uno de los tres autos.

b. la probabilidad de que gane 2 de los tres autos.

c. la probabilidad de que gane los tres autos.

Da tus respuestas en porcentaje, con aproximación a la décima.

5 El test de preparación para el examen teórico de conducir que dará Felipe tiene 5 preguntas de alternativas con 4 opciones cada una, en la que cada una de ellas es independiente de las otras. Calcula la probabilidad de que Felipe tenga las cinco respuestas buenas si:

a. contestó 2 al azar y las otras sabe que están buenas.

b. contestó 4 al azar y la otra está seguro de que está buena.

c. contestó las 5 al azar.

Trabaja más...

U5 MAT 3M (290-359).indd 328 2/11/11 15:50:59

Page 329: 003000.000 grou

UN

IDA

D 5

329

Sucesos dependientes... probabilidad condicionada

Esa mañana sonó el despertador. Los rayos de sol entraban tenues por la ventana, haciéndole caricias en su cara.–¡Uy, me quedé dormido! –gritó Iván. No llegaré a la hora acordada a lacasa de Florencia. Esto me pasa por quedarme viendo tele hastatarde. Los días sábados no deberían ser para estudiar.Un rato más tarde, Iván ya estaba en casa de Florencia y habían llegado todos; solo lo esperaban a él.–Hola, perdón el atraso, me quedé dormido.–Hola, ¿no les decía yo? Ya, dime Iván, ¿cuál es la probabilidad de quealcancemos a estudiar todo hoy, dado que tú llegaste atrasado?–Perdón, en serio, no fue mi intención.–¡Ja, ja, ja! –rieron todos.–No te preocupes, Iván, era solo una broma. Este es nuestro tema de hoy:–Un suceso depende de otro, entonces, probabilidad condicionada.Dos sucesos son dependientes cuando la ocurrencia de uno influyeen la ocurrencia del otro. En este sentido, el primer suceso entregainformación adicional que influye en el segundo.

Por ejemplo:

1. En un curso hay 35 alumnos y alumnas, de los que 20 son hombres. 5 mujeres y 8 hombres tienen pelo rubio y el resto tiene el pelo castaño. Se elige uno al azar y es hombre. ¿Cuál es la probabilidad de que tenga el pelo rubio? Si hacemos un diagrama, tendremos que:

35 alumnos

20 hombres

8 rubios 5 rubias12 castaños 10 castañas

15 mujeres

Según nuestro diagrama, el número de personas que tienen elpelo castaño y son hombres es 12, y como debemos restringirnuestro espacio muestral solo a los hombres, entonces tenemosque la probabilidad pedida será:

P rubio si es hombre( ) = = = =820

25

0 4 40, % .

Lo anterior se puede entender también como:

PP

Prubio si es hombre

ser rubio y hombrehombre

( ) = =( )

( )

8352035

.

Cómo definir y calcular probabilidades condicionadas.Desarrollarás las siguientes habilidades:• Identificar•calcular•comprender•Resolver•Relacionar•aplicar• interpretar y generar ideasHabilidades por actividad:• Identificarycalcular:1, 2•comprender y resolver: 4, 5, 6, 7, 8, 9, 1,

2, 3, 4, 5•Relacionar y aplicar: 10• interpretar y generar ideas: 3

Trabaja más...

Habilidades por actividad:•comprender y resolver: 2, 3, 4, 7, 1, 2, 3,

4, 5, 6•Relacionar y aplicar: 1, 5, 6, 8

En esta sección aprenderás

U5 MAT 3M (290-359).indd 329 2/11/11 15:51:00

Page 330: 003000.000 grou

330

Ahora bien, esto: PP

Prubio si es hombre

ser rubio y hombrehombre

( ) = ( )( ) ,

es exactamente lo que la teoría de las probabilidades (rama de la

matemática que estudia todo lo relacionado con probabilidades)

nos dice.

Podemos anotar, en general, que:

Hagamos otros ejemplos.

2. Un informe médico sobre la diabetes indica que del total de la población chilena, el 14% señala que no conoce su situación respecto al padecimiento de esta enfermedad. Del resto, solo el 25% dice estar en tratamiento riguroso de su enfermedad. Isaías, estudiante de Medicina de la Universidad de Talca, que está estudiando este tema y debe hacer un trabajo de investigación en su región, toma esta información de referencia y necesita calcular la probabilidad de que al escoger una persona al azar, esta no esté en tratamiento dado que conoce de su enfermedad. (Datos extraídos de: http://escuela.med.puc.cl/deptos/saludpublica/ResultadoENS/CapIV204Diabetes.pdf)

Haciendo un esquema de los datos obtenidos tenemos:

Población total (100%)

sabe 86% no sabe 14%

sin tratamiento 75% con tratamiento 25%

Debes considerar que tenemos porcentajes de porcentajes; por lo tanto, debemos tener mucho cuidado al hacer los cálculos, ya que, por ejemplo, las personas sin tratamiento son el 75% del 86%.Entonces, podemos tomar un universo de 100 personas para simplificar la situación (recuerda que como los porcentajes son razones, será lo mismo si tomamos un universo mayor).

Si dos sucesos, A y B, son dependientes, entonces la

probabilidad de que A suceda dado que B ha ocurrido se puede

calcular por la siguiente fórmula: P A BP A B

P B/( ) = ( )

( )y

U5 MAT 3M (290-359).indd 330 2/11/11 15:51:01

Page 331: 003000.000 grou

UN

IDA

D 5

331

Entonces, reescribamos el esquema:

86 personas saben (86%)

14 personas no saben (14%)

Población total 100 personas

65 personas, aproximadamente, sin

tratamiento (75% de 86)

21 personas, aproximadamente, con

tratamiento (25% de 86)

6565100

86 100100

= = 100⋅ 65 0,76 76%86 86

= ≈ ≈

PP

Psin trat./sabe

sin tratamiento y sabesabe

( ) = ( )( )

3. Nancy está planeando sus vacaciones. Se ha puesto a pensar en los lugares a los que viajó anteriormente y ha hecho el siguiente esquema:

vacaciones

sur 70%

lagos 65%

norte 30%

playas 82%

Si el comportamiento de Nancy se vuelve a repetir, según susestadísticas, ¿cuál es la probabilidad de que vaya a un lugar queno sea playa, dado que ya ha decidido ir al norte?Reescribiendo el diagrama, con un universo de 100 veces,tenemos que:

r

100 veces de vacaciones

70 veces al sur (70%)

46 veces lagos (65% de 70%)

24 veces otros lugares (35% de 70%)

25 veces playas (82% de 30%)

5 veces otros lugares (18% de 30%)

30 veces al norte (30%)

55 1100 0,17 17%

30 30 6100

= = = ≈ ≈

PP

Pno playa/norte

no playa y nortenorte

( ) = ( )( )

U5 MAT 3M (290-359).indd 331 2/11/11 15:51:03

Page 332: 003000.000 grou

332

–¿Verdad que no es tan difícil? –comentó Florencia–. Solo hay que serordenados, pensar un poco y ser positivos en creer que uno es capaz.–A propósito de personas positivas –contestó Fernanda–, ¿qué vas ahacer en el consejo de curso del lunes? ¿Todavía sigues enojada? –Sí, no hablaré. No quiero nada con algunas personas del curso.–Pero Florencia...–No, no insistan.

Llegó el lunes y también la hora de consejo de curso. La señorita Blanca, profesora de Lenguaje y profesora jefe, ya enterada de los conflictos en su curso, les dijo:Jóvenes, ya hemos hablado de estos temas en varias ocasiones,también les he dicho lo que pienso acerca del compañerismo y laamistad entre ustedes, así que hoy solo les daré un regalo ytiempo para pensar y retomaremos el consejo el viernes, luegoque hayan meditado un poco.

Y les leyó el siguiente poema de José Martí (poeta cubano, 1853–1895):

Cultivo una rosa blanca En junio como en enero Para el amigo sincero, Que me da su mano franca.

Y para el cruel que me arranca El corazón con que vivo, Cardo ni ortiga cultivo, Cultivo una rosa blanca.

¿Qué opinas tú acerca de este poema?

Trabaja

Resuelve los siguientes ejercicios en tu cuaderno. No olvides corregir tus respuestas.

1 Si A y B son sucesos tal que P A P A B( ) = ∩( ) =23

15

;

¿Cuánto es P B A/( )?

2 Sean A y B dos sucesos aleatorios con P A P B P A B( ) = ( ) = ∩( ) =0 5 13

0 25, ; ,y; P A P B P A B( ) = ( ) = ∩( ) =0 5 13

0 25, ; ,y y P A P B P A B( ) = ( ) = ∩( ) =0 5 13

0 25, ; ,y Determina:

a. P A B/( ) b. P A B P B A/ /( ) = ( )3 Sean A y B dos sucesos. Si P A B P B A/ /( ) = ( ), ¿qué se puede asegurar de los valores de las

probabilidades de A y B?

4 Los resultados en una encuesta de mi curso, en relación con la utilización de los fondos de nuestra tesorería, arrojaron que de los 40 alumnos, hay 26 que prefieren ir a paseo y el resto quiere un regalo. De los que quieren ir a paseo, 12 prefieren ir la piscina y el resto a otro lugar. Si se escogiera, al azar, una persona dentro del curso, ¿cuál sería la probabilidad de que no quisiera ir a la piscina si desea ir a paseo?

5 Estrella ha estado jugando a lanzar dos dados simultáneamente. Si ha sacado un 10 como suma de las caras, ¿cuál es la probabilidad de que una de ellas sea 4?

U5 MAT 3M (290-359).indd 332 2/11/11 15:51:05

Page 333: 003000.000 grou

UN

IDA

D 5

333

6 Los resultados de una encuesta sobre la actitud religiosa son:

350

300

250

200

150

100

50

0Hombres Mujeres Total

56

90

96

48 152

138No religioso

Religioso

a. Si se elige una persona al azar, ¿cuál es la probabilidad de que sea religiosa sabiendo que es hombre?b. ¿Cuál es la probabilidad de que no siendo religiosa sea mujer?

7 De una urna que contiene 9 bolas rojas y 5 negras, se extraen sucesivamente 2 bolas. Calcular la probabilidad de que la segunda sea roja sabiendo que la primera fue negra.

8 Consideremos el experimento de sacar dos reyes de una baraja española en forma sucesiva. Sabiendo que ya apareció uno en la primera extracción, cuál es la probabilidad de sacar un rey en la segunda extracción, si:

a. no se devuelve la primera carta.b. se extrae con devolución.

(Nota: La baraja española consta de 40 cartas distribuidas en cuatro pintas: Oro, Copa, Basto y Espada. Cada pinta está formada por: As, 2, 3, 4, 5, 6 y 7; Sota, Caballo y Rey).

9 Un vendedor sabe que cada vez que visita a un cliente, tiene 20% de probabilidad de hacer dos ventas, 50% de hacer una y un 30% de no hacer ninguna. ¿Cuál es la probabilidad de que al visitar a un segundo cliente, le haga dos ventas, sabiendo que ya hizo una venta al anterior?

10 En una asamblea internacional, los asistentes se distribuyen de la siguiente manera: 4 hablan inglés, francés y alemán; 12 hablan solo inglés y francés; 9 hablan solo francés y alemán; 9 hablan solo inglés y alemán; 12 hablan solo francés; 10 hablan solo inglés; 6 hablan solo alemán. Si una persona cualquiera hace una intervención, ¿cuál es la probabilidad de que hable francés, dado que su primer idioma es el inglés?

Completa antes el diagrama adjunto con los datos del problema:

Inglés Francés

Alemán

U5 MAT 3M (290-359).indd 333 2/11/11 15:51:06

Page 334: 003000.000 grou

334

Trabaja

Resuelvan en grupo. Corrijan sus respuestas.

1 Don Tulio miró preocupado la pizarra con los resultados de la votación. Se ponía en peligro la construcción de la sede vecinal para los ancianos y otra vez el problema por conseguir auspicio. La consulta era: ¿pedimos auspicio a particulares?

Resultados de la votación

Respuesta a la consulta

Número de años de participación en la junta de vecinosTotal

menos de 1 1 - 3 4 - 10 más de 10Sí 27 54 136 28 245No 15 18 33 3 69No sé 3 2 1 0 6total 45 74 120 31 320

Cuál es la probabilidad de elegir, al azar, un miembro de la junta de vecinos sabiendo que:

a. participa hace menos de 1 año o bien que de uno a tres años, vote por auspicio particular.b. lleve entre 4 y 10 años en la junta de vecinos si se sabe que votó “No”.c. vote no sé si se sabe que lleva más de 10 años de permanencia en la junta de vecinos.

2 –Dicen que casi la mitad de ese pueblo es rubio. –Sí, un 45%. –Sí, pero no son todos por allá de ojos verdes, son pocos. –Poquitos son rubios de ojos verdes, solo un 12%. –Willy, el amigo de mi padre, es nacido allá. ¿Cómo lo reconoceremos? –Dijo que viene de terno azul; nada más sabemos. –¿Qué tan probable es que Willy, suponiendo que es rubio, sea de ojos verdes? Esperamos que tú logres calcular la probabilidad mencionada en la conversación.

3 El informe final que le entregaron a don Agustín acerca de su negocio era muy escueto: hay un 40% de probabilidades de que un auto con problemas eléctricos acuda al turno 1; y otros datos, más incomprensibles para él, están registrados en la siguiente tabla:

Atención de turnoNúmeros promedio de autos con desperfectos

mecánicos eléctricos OtrosNº1 6 2 3Nº2 5 3 2

Nunca encontró o no entendió que en el turno 1 la probabilidad de que acuda un auto con

problemas eléctricos es 2

11. Pero un segundo equipo le aclaró sus dudas y su negocio es, actualmente,

próspero. Te invitamos a que verifiques este valor y propongas más informaciones de la tabla, usando

probabilidad condicionada; por ejemplo: ¿cuál es la probabilidad de que un auto ingrese al taller 2,

dado que el desperfecto es eléctrico? (Da al menos 4 ejemplos).

U5 MAT 3M (290-359).indd 334 2/11/11 15:51:06

Page 335: 003000.000 grou

UN

IDA

D 5

335

4 –”¡Bien! Me gané la beca para ir a estudiar inglés. Adivinen dónde... a Estados Unidos”, les comunica feliz, Américo.

A la llegada al Instituto, uno de los monitores del hall les muestra: “En nuestro instituto, el 90% de las personas aprenden el idioma inglés, en el nivel fundamental, a la perfección. De estos, el 35% provienen de Latinoamérica. Ahora bien, los que no estudian en ese nivel, participan en Mastery. El 45% de estos proviene también de Latinoamérica. Les damos la bienvenida a nuestro año académico 2012”.

Macarena se aproxima a Américo y le sonríe. Él querría que ella también fuera de Latinoamérica, pues está en su grupo de inglés. Suspira. ¿Qué tan probable puede ser esto? Haz tú los cálculos para despejar esta posible incógnita probabilística.

5 –“No creas tan rápidamente lo que te dicen, Fernanda. Ordenemos los hechos: eran varias postulantes al cargo de secretaria presidencial. Respondiste el test de ingreso a la empresa y te fue bien, ¿verdad? Después, pasaste la entrevista y esperaste el resultado para ver si te podían o no contratar. No te fue bien, ¿no es cierto?”

Pero seamos honestas: la persona que les llamó al concurso les dijo a todas las postulantes que siete de cada doce de ellas aprobaban el test de ingreso, y que dos de diez lograban, además de esto, pasar la entrevista. Ahora bien, Fernanda, supongamos que el haber pasado la entrevista dependiera de tu rendimiento en el test, como lo estás pensando; entonces ¿qué tan probable es que habiendo logrado aprobar el test hayas pasado la entrevista? Expresa tu respuesta porcentualmente, aproximando al entero.

Revisemos lo aprendido

Sintetizando

1. Si p es la probabilidad de que un suceso A ocurra; entonces, la probabilidad de que A no ocurra es 1 – p.

2. El valor de la probabilidad de un suceso está siempre en el intervalo 0,1 .3. Si dos sucesos, A y B, son independientes y la probabilidad de que ocurra A es a y de que ocurra

B es b; entonces:

a. la probabilidad de que ocurra A y B a la vez es ⋅a b

b. la probabilidad de que ocurra A o B es 1 1 1− −( ) −( ) a b (el complemento de la probabilidad

de que no ocurra ni A ni B a la vez).

4. Si dos sucesos, A y B, son dependientes; entonces, la probabilidad de que ocurra A, dado que B

ocurre, se calcula como P A BP A B

P B/( ) = ( )

( )y

.

Contesta las siguientes preguntas. Recuerda que esta evaluación te ayudará a conocer el estado de tu aprendizaje. Si no has logrado comprender algún tema o no has podido hacer todos los ejercicios correctamente, debes pedir ayuda y leer nuevamente las secciones de probabilidad en esta unidad.

1. ¿Soy capaz de explicar a mis compañeros y compañeras los conceptos de sucesos independientes?

2. ¿Entendí los ejercicios propuestos sobre el cálculo de probabilidad de uno o más sucesos?

3. ¿Realicé correctamente los ejercicios planteados sobre probabilidad?

4. ¿Trabajé activamente en mi grupo cuando se realizaron trabajos grupales?

5. ¿Pedí ayuda cuando creí no haber entendido algún concepto o ejercicio?

U5 MAT 3M (290-359).indd 335 2/11/11 15:51:07

Page 336: 003000.000 grou

336

Trabaja en forma individual

1 Si A y B son sucesos donde P A B/ %( ) <30 y P B( ) =17 %, ¿cuál es el intervalo de variación de P A B∩( ), si se sabe que por lo menos supera el 2%? Expresa tu respuesta usando porcentajes.

2 Sean C y D sucesos tales que P C D∩( ) =0 13, ,

P D C/ ,( ) <0 78 , y P D P C( ) + ( ) = 1130

. Encuentra:

a. P C( )b. P C D/( )

3 Si T y Q son sucesos de un mismo experimento,

y P T Q/( ) ( ) 3/1

P T Qp

=−

; P Qp

( ) = −1 1;

P T Qp

∩( ) = −1 5, donde p es un natural, halla el

valor de:

a. pb. P T Q/( )c. P T Qno no∪( )d. P Qno( )

4 Sean M, N, R sucesos aleatorios, tales que: P M N/ ,( ) =0 375; P N( ) =0 4, ; P R( ) =0 35, ; P M N P N R∩( ) = ∩( ) . Encuentra el valor de P N R/( ) .

5 Si A y B son sucesos donde P A( ) = 44 % y P B( ) = 40 % y P A B∩( ) =25%, ¿será verdad que: “como P A P B( ) > ( ) , luego P A B P B A/ /( ) > ( )”? Justifica tu respuesta haciendo todos los cálculos respectivos.

6 Considera los naturales comprendidos entre el 6 al 75, ambos inclusive. Se elige uno de ellos al azar y es múltiplo de 3. Haciendo uso de las fórmules de probabilidad condicionada, ¿cuál es la probabilidad de que:

a. sea divisible por 5?b. no sea divisible por 7?

7 En una encuesta a 100 personas acerca de lo que prefieren beber para acompañar su almuerzo diario, el resultado se presenta en el siguiente diagrama. Donde J representa el número de personas que prefieren jugos naturales; B, las personas que prefieren bebidas gaseosas; A, las personas que prefieren el sabor amargo; X e Y el número de personas entrevistadas que prefieren jugos o bebidas con sabor amargo. Sabiendo que p J( ) =0 55, , calcula:

a. p A J/( )b. p A B/( )c. p A Jno /( )d. p A Bno /( )

J B

27

48

Y X

A

8 A Marta le han pedido que dibuje un paralelogramo cualquiera. Para esto, ella ha lanzado un dado rojo cuyo número resultante le dará el largo de la base, y otro azul, cuyo número que aparece le permitirá saber la altura respectiva. Todas estas medidas en cm. ¿Cuál es la probabilidad de que la figura que dibuje

a. tenga la base mayor que la altura, si esta mide más de 2 cm?

b. presente el área de 9 cm2, a lo menos, sabiendo que la base y la altura miden igual?

c. tenga perímetro, a lo máximo de 16 cm, dado que la base sea menor que la altura?

d. posea la base mayor a 3 cm, sabiendo que el área supera o es igual a 20 cm2?

e. tenga como altura 5 cm, sabiendo que su perímetro es mayor a 12 cm y menor a 20 cm?

Trabaja más...

U5 MAT 3M (290-359).indd 336 2/11/11 15:51:20

Page 337: 003000.000 grou

UN

IDA

D 5

337

Trabaja en grupo

1 La señora Sara concurrió a su médico tratante con los resultados de la biopsia que este le solicitara. Conforme a estos, le indicó que había un 75% de probabilidades de que tuviera un tumor. “Ahora bien, si usted tuviera un tumor, la probabilidad de que sea cancerígeno se redujo a un 15%. Esto se debe a que usted detectó a tiempo esta anomalía y vino a verme –le dijo el médico–. En conclusión, la probabilidad de que usted tenga un tumor y sea cancerígeno es...”. De acuerdo a lo anterior, ¿cuál es la probabilidad de que la señora Sara tenga un tumor y sea cancerígeno?

2 “Aló, ¿señora Albertina? Habla Rubén. Estoy viviendo cerca de la estación de metro Pedro de Valdivia. De lunes a viernes, antes de ir al trabajo, desayuno en una cafetería que queda en uno de los pasillos de esa estación. Fíjese que por $1900 puedo elegir entre una taza de café, té o leche; un sándwich triangular de palta/queso o jamón/queso. ¡Y no solo eso!, sino que además un pastelillo de manjar, manzana o chocolate. Escriba, por favor, el número del local, para que le cuente a Mónica y a Pedro”. Conforme a lo leído anteriormente, encuentra la probabilidad de que Rubén:

a. habiendo elegido un pastelillo de manjar, haya optado por un sándwich de palta/queso.

b. haya escogido un sándwich con queso, sabiendo que decidió beber leche.

c. haya elegido tomar café, sabiendo que entre los sándwiches optó por jamón/ queso, y entre los pastelillos, por chocolate.

d. habiendo optado por té o leche, haya decidido por un sándwich de palta/queso y un pastelillo de manzana.

3 Benito es el nuevo gerente del restaurante Don Evaristo. Aquí solo se da servicio mediante reservas. Benito se ha informado de que el 20% de las personas que reservan una mesa no asistirán. Ahora bien, el 40% de los asistentes prefieren hacer reservas antes de arriesgarse a no tener mesas. ¿Cuál es la probabilidad porcentual de que una persona haga la reserva y asista?

4 –Como te iba diciendo, Pamela, estaba en mi casa escuchando por la radio Cosmos 77, el

ranking de los 25 temas musicales mejores del mes y participando en el premio sorpresa. El DJ consideró finalmente las 10 primeras canciones que obtuvieron las preferencias máximas en votación directa. Mi canción favorita estaba en el quinto lugar; por lo tanto, quedé para optar al premio. Entonces fue cuando el DJ dice textualmente: “El premio sorpresa va a quedar en cualquiera de las siguientes regiones, con igual opción de ganar: la Octava, la Decimoquinta y la Undécima Región”. Me latió el corazón muy rápido porque estaba la nuestra. En ese momento, mi pololo, que estaba conmigo escuchando, me dijo una de esas cosas que no le entiendo para nada: “Mariana, el programa está arreglado. La probabilidad de que una persona sea escogida como ganadora es de un 35% si dicha persona es de la Octava Región, y aumenta a 45% si es de la Decimoquinta. Entonces, no te ilusiones mucho en ganar”. Cinco minutos más tarde me llamaron de la radio anunciándome que era la ganadora. Basándote en lo leído en el enunciado de este problema, contesta: ¿cuál es la probabilidad de que Mariana sea la ganadora y:

a. sea de la Octava Región? b. viva en la Decimoquinta Región? c. Tenga domicilio en la Undécima Región?

5 “Silvita, hazme caso. Yo, como procuradora, que estoy trabajando en este medio judicial, te propongo que acudas a don Fermín por si acaso, le cuentes tu caso; y vas a tener mucha oportunidad de ganar el juicio. Sé que es un poco difícil llegar a él, ya que es un abogado muy competente y solicitado. A este respecto, hay un 15% de que tome tu caso y gane. Ahora bien, una vez que ha tomado tu caso, la probabilidad de que gane es de un 90%. Te veo muy pensativa, Silvita, seguramente te estarás preguntando qué tan probable es que tome tu caso”. Tomando en referencia la información presente en el párrafo anterior, ¿qué tan probable es que tome el caso de Silvita?

6 Gustavo es un muy buen mecánico automotor. Constantemente se está perfeccionando para optimizar su atención al cliente. Como una forma de acentuar la prevención de accidentes, decidió mirar en internet las estadísticas que se presentan

U5 MAT 3M (290-359).indd 337 2/11/11 15:51:21

Page 338: 003000.000 grou

338

en la página http://www.ine.cl/canales/menu/publicaciones/calendario_de_publicaciones/pdf/040110/carab09_040111.pdf,CARABINEROS•INFORME ANUAL 2.009. De allí, se detuvo en la página 256, específicamente en FALLAS MECÁNICAS con un total de 829.

ACCIDENTES EN EL TRÁNSITO, SEGÚN CAUSA QUE LO ORIGINA, 2009

CAUSA

ACCIDENTES

Tipo de Accidente

TOTA

L

Atro

pello

/1

Caíd

a/1

Colis

ión/2

Choq

ue/3

Volca

dura

/1

Otro

stOtaLeS 56330 8174 1602 29042 13783 3112 617FaLLaS mecáNicaS 829 21 16 188 338 245 21

Frenos 394 16 8 138 174 55 3Dirección 97 1 0 11 49 34 2eléctrico 9 1 0 4 3 1 0Suspensión 7 0 0 0 2 5 0Neumáticos 282 2 5 22 99 139 15motor 18 0 1 5 5 6 1carrocería 22 1 2 8 6 5 0

Se hizo muchas preguntas con respecto a los vehículos. Te invitamos a que tú las respondas. ¿Cuál es la probabilidad de que

a. sabiendo que se produjo un atropello, haya sido por una falla en neumáticos?

b. se hayan producido una falla en el motor y un choque?

c. ocurra una colisión, habiéndose producido un desperfecto eléctrico?

d. haya acontecido una volcadura, resultado de una falla de suspensión o de carrocería?

e. haya pasado otro tipo de accidente, sabiendo que no hubo fallas ni en los frenos ni en la dirección ni en los neumáticos?

Mis apuntes

U5 MAT 3M (290-359).indd 338 2/11/11 15:51:22

Page 339: 003000.000 grou

TallerTrabaja

La mesa redonda del rey Arturo

¿Sabes quién fue el rey Arturo? ¿Has escuchado alguna vez de la espada Excalibur, el Santo Grial o la Mesa Redonda?

El rey Arturo decidió que en su mesa se sentarían sus mejores caballeros, y que para poder hacerlo tendrían que efectuar un juramento especial de fidelidad al reino de Camelot, a la Iglesia y a las más nobles costumbres. Ningún caballero que fuera miembro de esta Orden podría hacer actos ilegales, deshonestos y mucho menos criminales.

En la Mesa Redonda se dio una relación de horizontalidad, compañerismo y trabajo en equipo como pocas veces se ha dado en la historia. Todas las opiniones eran respetadas por igual, no existía ningún líder, ni siquiera el rey. Todos los participantes compartían el honor y el privilegio de discutir los asuntos más relevantes para el reino en un clima de debate, pero también de completa paz y armonía. (Extracto de la página http://www.educarchile.cl/Portal.Base/Web/VerContenido.aspx?ID=204346)

Coloquemos ahora una mirada un poco más matemática del asunto. ¿Podrías calcular de cuántas maneras distintas se podrían haber sentado los caballeros del rey Arturo?

Este taller tiene por objetivo que descubras qué sucede con las ordenaciones que pueden hacerse de las personas al sentarse en una mesa redonda. Te invitamos a jugar y aprender con este taller.

Materiales:Sillas (1 por estudiante)PapelLápizCalculadora

Instrucciones:1. Formar grupos de 6 o 7 estudiantes.2. Colocar las sillas de manera circular.3. Actividad:

a. Diseñen un método para calcular todas las posibles ordenaciones distintas en las que pueden sentarse de manera circular. ¿Serán las mismas que si se ubican en una fila?

b. Determinen una fórmula para ordenaciones de n elementos de manera circular.

c. Comparen sus resultados con el de los otros grupos, luego hagan una puesta en común y revisen con su profesor o profesora lo obtenido.

UN

IDA

D 5

339

U5 MAT 3M (290-359).indd 339 2/11/11 15:51:22

Page 340: 003000.000 grou

340

Evaluación Unidad 5

Síntesis conceptual de la unidad

I. Completa el siguiente mapa conceptual:

Probabilidades

experimental es aquella que

teórica es aquella que

Se relaciona con la frecuencia absoluta porque

Para un suceso, la probabilidad se calcula como

Para sucesos independientes que suceden a la vez se calcula como

Para sucesos dependientes donde ocurre a dado que B aconteció se calcula como

II. Ítem de completación.

Completa cada oración con el concepto o número que corresponda.

1 Si se lanza una moneda repetidas veces al aire, la probabilidad de que salga cara es

2 El valor de la probabilidad de un evento se encontrará siempre en el intervalo

3 Si un suceso A tiene probabilidad p de ocurrir, entonces la probabilidad de que no suceda es

4 La ley de los grandes números afirma que

5 La frecuencia relativa de un suceso representa

6 Si p y q representan, respectivamente, las probabilidades de que los sucesos A y B ocurran, entonces el producto ⋅p q representa

7 Dos sucesos son dependientes cuando

8 Si dos sucesos A y B son dependientes, la probabilidad de que ocurra A dado que B ya sucedió se calcula como

U5 MAT 3M (290-359).indd 340 2/11/11 15:51:22

Page 341: 003000.000 grou

UN

IDA

D 5

341

Resuelve junto con tu grupo. Hazlo en tu cuaderno y no olvides revisar tus respuestas.

III. Soluciona los siguientes ejercicios.

1 En un baúl hay 10 revistas infantiles, 8 de moda y 6 revistas científicas. Si la abuela de la familia saca una revista al azar, ¿cuál es la probabilidad de que no sea infantil?

2 En un juego de cartas, los posibles

resultados son: ganar, empatar o perder. Si

Ariel tiene una probabilidad de 0,2 de

empatar y de 25

de ganar, ¿cuál es su

probabilidad de perder?

3 La siguiente tabla muestra la probabilidad que tiene una persona de realizar ciertas actividades. A partir de ella, responde:

Actividad Probabilidad

ir al cine 20%ir a comer 23%ir al mall 45%

a. ¿Cuál es la probabilidad de ir al cine y luego a comer?

b. ¿Cuál es la probabilidad de ir a comer o ir al cine?

4 En una convención de profesionales del área de la salud hay 48 médicos, 24 enfermeros y 28 tecnólogos médicos. El 80% de los médicos son hombres, el 90% de los enfermeros son mujeres y el 60% de los tecnólogos médicos son hombres. Calcula la probabilidad de que:

a. al elegir al azar una comisión de tres personas, esta esté formada por un profesional de cada área, escogiendo primero un médico, luego un tecnólogo médico y por último un enfermero.

b. al escoger al azar a una persona sea mujer si debe ser médico.

5 Dada la siguiente tabla que muestra la frecuencia de cierta especie de insectos en los meses del año, determina:

MesesNúmero de

insectos (miles)

MesesNúmero de

insectos (miles)

enero 6 Julio 2Febrero 7 agosto 1,5marzo 6 Septiembre 4abril 5 Octubre 5,5mayo 4,5 Noviembre 6Junio 3 Diciembre 6

a. la probabilidad de encontrarse con aquellos insectos en los meses de verano (enero, febrero y marzo).

b. la probabilidad de encontrarse con aquellos insectos en los meses de julio y agosto.

6 Si A y B son dos sucesos dependientes, y se

sabe que la probabilidad de que ocurra A,

dado que B sucedió, es 59

, y que la

probabilidad de que ocurran A y B es 0,25,

¿cuál es la probabilidad de que acontezca B?

7 En el colegio de Joel se está preparando un campeonato de fútbol. Se han colocado dos tómbolas para el sorteo de los equipos que disputarán la primera ronda, una para los cursos A y otra para los B, como indica la figura:

7ºA

8ºAIA

IIA

IIIA IVA

7ºB 8ºB

IB IIB

IIIB

IVB

U5 MAT 3M (290-359).indd 341 2/11/11 15:51:23

Page 342: 003000.000 grou

342

¿Cuál es la probabilidad de que al sortear los equipos, el 7º básico A no juegue con el 4º medio B en la primera ronda?

8 Con las letras M, N, A y O se hacen combinaciones para formar palabras de cuatro letras. ¿Cuál es la probabilidad de que las palabras formadas tengan significado?

9 En la sección de control de calidad de una fábrica de baldosas se ha confeccionado el siguiente gráfico considerando baldosas de tres tipos:

Control de calidad de baldosas

tipo de baldosas

Amarillas

80

60

40

20

0Rojas Azules

Defectuosas Buenas

de

bal

do

sas

20

50

15

45

22

68

¿Cuál es la probabilidad de que si el resto de las baldosas sigue el mismo patrón, la próxima baldosa elegida al azar sea defectuosa si es roja?

10 “Mi sobrino está jugando con sus lápices de colores. Él tiene 4 cajas iguales de lápices de 6 colores cada una. ¿Cuál es la probabilidad de que primero escoja uno café y luego otro amarillo si después de usar el primero lo vuelve a poner junto a los demás?”

11 Una caja contiene ocho bolas blancas y x

negras. Al aumentar en dos unidades las

negras, la probabilidad de escoger

azarosamente una bola de este color es 23

.

a. ¿Cuál es el valor de la probabilidad de elegir una bola negra antes de aumentar su número?

b. Establece numéricamente la desigualdad entre las probabilidades de escoger una bola blanca antes y después de modificar el número de negras.

12 Gina consulta por una rebelde indigestión que está sufriendo. Su médico le indica, de acuerdo a sus síntomas, que hay 20% de probabilidad de que sea consecuencia de un resfriado por rotavirus, o bien 80% producto de alguna intoxicación alimentaria. Determina la probabilidad de que esta rebelde indigestión se deba a:

a. cualquiera de estas dos causas.b. ambas causas.c. alguna intoxicación alimentaria y no a

un resfrío.

13 La clave secreta para abrir una maleta está formada por cuatro dígitos. Se sabe que el segundo dígito es impar y que los dos dígitos finales son 64. Determina la probabilidad de abrir inmediatamente esta maleta si:

a. se ha olvidado su clave.b. el primer dígito de la clave es 7.

14 Se ha encuestado a 200 usuarios de un medio de transporte acerca de su opinión con respecto a las modificaciones del mejoramiento del servicio efectuado por las autoridades correspondientes. Los resultados fueron: 22 de ellos estaban completamente en desacuerdo, 36 en desacuerdo, la mayoría conforme; 39 de acuerdo y 28 totalmente de acuerdo. Responde:

a. ¿Cuál es la probabilidad de elegir un usuario al azar que esté conforme con las modificaciones de los recorridos?

b. ¿Cuál es la probabilidad de elegir un usuario al azar que manifieste algún tipo de disconformidad?

c. Se consideran como más que satisfactorias dichas modificaciones si la probabilidad de la disconformidad con las modificaciones del servicio es menor que el 30%. ¿Cuál es la probabilidad de que esto ocurra?

U5 MAT 3M (290-359).indd 342 2/11/11 15:51:24

Page 343: 003000.000 grou

UN

IDA

D 5

343

d. Si al azar se elige a una persona que manifiesta que está más que conforme, ¿cuál es la probabilidad de que esté completamente de acuerdo con las modificaciones de mejoramiento del servicio?

IV. Resuelve los siguientes problemas de planteo:

1 “¡Ay, don Alberto!, mire si es triste mi vida –se quejaba la Sra. Guadalupe–. Por más que trato de que la suerte me acompañe, ella no quiere nada conmigo. Se han sorteado los pasajes para las vacaciones soñadas y a pesar de los 40 números que compré, nada gané. ¿Me podría explicar usted qué es lo que me pasa?”

Responde la pregunta de la Sra. Guadalupe. Hay algo que ella no ha considerado para saber si tenía alguna probabilidad de ganarse los pasajes. ¿Qué es?

2 El papá de Tobías había dejado por fin que el joven eligiera el color con el que pintaría su pieza. Sin embargo, le puso algunas restricciones. Solo podría mezclar dos de los siguientes colores en igual proporción. Tobías hizo todas las mezclas simulándolas en su computador y calculó que la probabilidad de pintar la pieza con alguno de los colores obtenidos y, de acuerdo a sus gustos, era 13,8% %. ¿Cuántos colores le gustaron a Tobías?

3 –Juguemos a ¿Quién quiere ser millonario? ¿Les parece?–No, en serio que no sé nada y las preguntasde tu juego son muy difíciles. ¿Quéprobabilidad tendría yo de ganar?–Calcula tú. Aquí van los datos: 10preguntas con 4 alternativas cada una.¿Qué probabilidad tiene de ganar si contesta todas las preguntas al azar?

4 “Yo creo que no todos podrán costear la salida, al museo para hacer el trabajo; por eso, hay que hacer la rifa, y que sea justo para todos. De las 45 personas que somos en el curso, hay 26 mujeres. De los hombres del curso, hay 9 que pueden pagar”. Entonces, ¿cuál es la probabilidad de que al sortear parejas de trabajo, te toque alguien que no pueda pagar, sabiendo que el trabajo es de a dos?

5 “Me quiere mucho, poquito, nada” –repetía Gilda apenada mientras sacaba los pétalos de su margarita para saber los sentimientos de su amado. ¿Cuál es la probabilidad de que su amado la quiera poquito o nada según la flor?

6 –¿Qué ropa tienes en tu clóset? –Tengo 15 poleras, 10 pantalones, 5 faldas y 8 pares de zapatos. –¡Qué derroche! ¿Y todo combina? –Sí, claro; lo que escoja queda bien. ¿Qué probabilidad tendrá de escoger una tenida al azar que se componga de una falda entre todas las que puede formar?

7 A Camilo le encanta el azar. Cada mañana lanza una moneda para decidir si tomará té o café. Luego, abre el refrigerador y lanza un dado para saber si al pan le pondrá mantequilla, mermelada o jamón, dependiendo si sale 2 o 4, 1 o 6 y 3 o 5, respectivamente. Por último, hace girar la ruleta de tres colores que hay detrás de su puerta para saber si se irá al trabajo en auto, en micro o en bicicleta, dependiendo si sale rojo, amarillo y verde, respectivamente. ¿Cuál es la probabilidad de que hoy Camilo tome café, coma pan con jamón y se vaya en auto?

8 “Cien veces he lanzado este dado –decía Miguel–:18 veces ha salido 1; 17 veces, 2; 15 veces, 3; 21 veces, 4; 12 veces, 5, y 17 veces, 6. Lo lanzaré una vez más y, por los resultados obtenidos, estoy seguro de que saldrá 4”. ¿Es cierto lo que dice Miguel? Justifica tu respuesta.

9 “Este programa de computación me encanta, toma todas las canciones que tengo guardadas en mi computador, las mezcla y hace una lista de canciones elegidas al azar de entre las que seleccioné. Para probarlo, he puesto 8 canciones; dos de ellas son mis

U5 MAT 3M (290-359).indd 343 2/11/11 15:51:24

Page 344: 003000.000 grou

344

preferidas, y haré listas de 3. ¿Cuál es la probabilidad de que en la lista aparezcan mis dos canciones preferidas?”

10 “Ya me decidí, Paula. Llevo 20 copas: 8 son rojas, 8 azules y 4 transparentes”. Llega a su casa y prepara la comida para sus 6 invitados, pero antes les sirve jugo a tres de ellos. ¿Cuál es la probabilidad de que si escoge las copas al azar, les toque una copa roja? (¡Ánimo! Revisa el Taller de profundización para contestar esta pregunta).

11 “¿El daltonismo? Diana, hace mucho tiempo que no me topaba con esta palabra que se refiere a los padecimientos de ciertas personas, al confundir el rojo y verde en su visión. Nunca me imaginé que nuestro antiguo vecino lo padecía. Estuve averiguando que en Chile lo sufren cerca del 10% de los hombres y el 1% de las mujeres. Ahora bien, si pensáramos que aún se mantiene la razón de que el 51% de la población son mujeres y el resto son varones, entonces, Diana, ¿cuál es la probabilidad de que al escoger una persona al azar en nuestro país, esta resulte ser daltónica?”

12 “En ese momento, el mentalista llamó al escenario a Valeria, una bella joven que estaba sentada al lado mío. Entonces le dijo con una voz misteriosa: “Valeria, piensa en un dígito, escríbelo en el siguiente papel sin mostrarlo y guárdalo secretamente. Ahora me voy a concentrar... Valeria, el número que has escrito es 7”. Ella se sorprendió y públicamente mostró que había escrito dicho número”. De acuerdo a lo narrado, ¿cuál es la probabilidad de que el mentalista falle?

13 Papá y mamá estaban muy preocupados por un dinero que debían conseguir a la brevedad. A él le escuché hablar que su ejecutivo de cuentas le había manifestado que había solo 35% de probabilidad de que el banco le facilitara el dinero. Mamá le sugirió que recurriera a don Eulogio, que es un prestamista. “¡Ni pensarlo!, le contestó. Si bien es cierto que de cada 10 préstamos que le solicitan, 7 los hace, los intereses que cobra son espantosos”. Ella insistió preguntándole: ¿Y qué tan probable es que cualquiera de los

dos, el banco o don Eulogio, nos puedan facilitar el dinero? Conforme a lo leído en el párrafo anterior, calcula la probabilidad sugerida en la pregunta hecha por la mamá.

14 El capataz de la constructora Construya está llamando la atención a uno de sus trabajadores: “Tus faltas a la empresa han sido evidentes. De tus compañeros, tres dicen que eres irresponsable; dos, que te pasas de listo; y los otros seis, que simplemente eres flojo. Por otro lado, la secretaria me ha contado que te conoce hace tiempo y opina que estás con penurias económicas, o bien algún conflicto sentimental. Mira, tú eres uno de mis mejores trabajadores y estoy francamente sorprendido: ¿No será que te pasas de listo y además tienes por ahí algún conflicto sentimental? Cuéntame”. Puede que tú hayas sabido de situaciones similares, quizás en otros ambientes, pero ¿qué tan probable es que ocurra lo que el capataz pregunta?

15 Carlos, gerente de marketing de una empresa de venta de automóviles, ha reunido a su grupo de trabajo para informarle que, debido a la caída de la competencia, en el próximo mes la probabilidad de que aumente el precio de los autos 0 km es de 20%, de que aumenten las ventas es de 35% y la de que ocurran ambos hechos es de 15%. Ahora, necesita calcular las siguientes probabilidades. Ayúdalo tú y responde: ¿Cuál es la probabilidad de que:

a. las ventas suban si hay incremento en el precio?

b. suba el precio dado que las ventas aumentan?

Aproxima tus respuestas a números enteros:

16 Los dos amigos de Felipe se han juntado en la casa de este para ver un video en internet sobre el análisis del próximo partido de tenis, hecho por un analista deportivo asesorado por un experto en probabilidades. Dicho analista comienza así: “El tema que nos convoca es la particularidad de Raúl, nuestro tenista, cuya probabilidad de ganar un set frente a su contendor es de 90%. Cada vez que pierde un set se desanima y la probabilidad de

U5 MAT 3M (290-359).indd 344 2/11/11 15:51:24

Page 345: 003000.000 grou

UN

IDA

D 5

345

ganar baja a 70%, según las estadísticas. Entonces, la pregunta que nos inquieta es: ¿qué probabilidad tiene Raúl de lograr que su segundo set ganado sea el cuarto set?” Responde la pregunta considerando que las posibilidades son las dadas en la siguiente tabla:

Posibilidades 1er set 2º set 3er set 4º set

a gana pierde pierde ganaB pierde gana pierde ganac pierde pierde gana Gana

17 Matilda es la animadora del programa de TV Vida al Extremo. Se inicia el programa y ante las cámaras dice: “Tengan ustedes muy buenas noches. En el reportaje de esta semana hablaremos sobre la creciente tendencia de la práctica de los llamados deportes extremos. Pero ¿de qué se trata en verdad? ¿Sabía usted que el 5% de los hombres y el 0,75% de las mujeres de nuestra población practican algún deporte extremo? De esto y mucho más hablaremos después de esta breve pausa”. Supongamos que tú estás viendo este programa y, además de esta información, sabes que el 51% de las personas son hombres. Entonces, la pregunta es: ¿cuál es la probabilidad de que una persona elegida al azar practique algún deporte extremo?

V. Marca la alternativa correcta:

1 Al lanzar un dado común, ¿cuál(es) de las siguientes aseveraciones es(son) verdadera?

I. Que salga un 2 es más probable que salga un 6.

II. La probabilidad de obtener un

número impar es 12

.

III. La probabilidad de obtener un

número múltiplo de 3 es 16

.

a. Solo Ib. Solo II

c. Solo I y IId. Solo II y III

e. I, II y III

DemRe

2 En la lista de un curso de 40 estudiantes hay 17 niñas. Si se escoge un número al azar del 1 al 40, ¿cuál es la probabilidad de que ese número corresponda al de una niña en la lista del curso?

DemRe

a. 1740

b. 117

c. 2340

d. 1

40

e. 1723

3 Una caja tiene 12 esferas de igual tamaño y peso. Cada una de ellas contiene una letra de la palabra DEPARTAMENTO. ¿Cuál(es) de las siguientes afirmaciones es(son) verdadera(s)?

I. La probabilidad de sacar una M es 1

12.

II. La probabilidad de no sacar una

vocal es 7

12.

III. La probabilidad de sacar una A es igual a la probabilidad de sacar una T.

DemRe

a. Solo Ib. Solo III

c. Solo I y IId. Solo I y III

e. I, II y III

4 En un liceo hay 180 estudiantes repartidos por nivel de la siguiente forma:

Primero Segundo Tercero Cuarto

Niños 15 20 18 12Niñas 30 25 27 33

Si se elige un estudiante al azar, ¿cuál(es) de las siguientes afirmaciones es(son) verdadera(s)?

I. La probabilidad de que sea un niño es 65

180.

II. La probabilidad de que sea un estudiante de tercero es 45

180.

III. La probabilidad de que sea un niña y de segundo es 25

45.

a. Solo Ib. Solo II

c. Solo I y IId. Solo II y III

e. I, II y III

5 ¿Cuál es la probabilidad de que al lanzar tres monedas, simultáneamente, dos sean cara y una sello?

a. 38

b. 28

c. 18

d. 13

e. 23

DemRe

U5 MAT 3M (290-359).indd 345 2/11/11 15:51:25

Page 346: 003000.000 grou

346

6 En la caja de la figura adjunta hay fichas

negras N( ) y blancas B( ) de igual tamaño y

peso. De las fichas que se muestran en las

opciones, ¿cuál de ellas hay que agregar a la

caja para que la probabilidad de extraer una

ficha negra sea 23

?

a. 1 N y 0 Bb. 1 N y 3 B

c. 1 N y 4 B

d. 1 N y 1 B

e. 0 N y 1 B

7 La tabla adjunta muestra la distribución teórica de frecuencias de la suma de puntos que resultarían al lanzar simultáneamente dos dados normales. ¿Cuál(es) de las siguientes afirmaciones es(son) verdadera(s)?

Suma de puntos Frecuencias

2 13 24 35 46 57 68 59 4

10 311 212 1

I. La probabilidad de obtener una suma igual o mayor que 9 es la misma probabilidad de lograr una suma igual o menor que 5.

II. La probabilidad de obtener sumas impares es mayor que la probabilidad de lograr sumas pares.

III. La probabilidad de obtener como

suma de sus puntos un 7 es 16

.

DemRe

a. Solo IIIb. Solo I y II

c. Solo I y IIId. Solo II y III

e. I, II y III

8 La siguiente tabla muestra el control de calidad de una empresa sobre sus dos tipos de ampolletas en un determinado período. Si se escoge una ampolleta al azar, ¿cuál es la probabilidad de que esta sea una ampolleta del tipo 1, defectuosa, o bien una ampolleta del tipo 2, ya sea buena o defectuosa?

Buenas Defectuosas Total

Ampolleta tipo 1 12 8 20Ampolleta tipo 2 25 5 30Total 37 13 50

a. 25

b. 625

c. 1925

d. 1350

e. 3750

9 En un pueblo hay 25000 habitantes. De ellos, el 47% son mujeres. El 34% de los hombres trabaja en labores agrarias y el resto en otras tareas. ¿Cuál es la probabilidad aproximada, en porcentaje, de que al elegir una persona al azar, esta no trabaje en labores agrarias dado que es hombre?a. 18%b. 30%

c. 35%d. 66%

e. 72%

10 A y B son dos sucesos independientes. La probabilidad de que ocurra el suceso A es 0,23 y la de que acontezca el suceso B es 33%. Entonces, la probabilidad de que ocurra A y B a la vez es:a. 5,60%b. 7,59%

c. 8,36%d. 56,0%

e. 75,9%

11 Un matrimonio desea tener cuatro hijos y se ha puesto a pensar en la probabilidad de que ellos sean todos del mismo sexo. ¿Cuál será esta probabilidad?a. 2%b. 12,5%

c. 33%d. 10%

e. 25%

DemRe

U5 MAT 3M (290-359).indd 346 2/11/11 15:51:26

Page 347: 003000.000 grou

UN

IDA

D 5

347

12 En el concurso que Nadia está mirando por televisión hay una ruleta con figuras de diferentes premios: 2 autos, 4 televisores y 10 entradas para el cine. Si tiene posibilidad de lanzar 1 vez la ruleta, ¿cuál es la probabilidad de que gane un auto?a. 2%b. 12,5%

c. 14%d. 25%

e. 50%

13 A y B son dos sucesos independientes. La probabilidad de que ni A ni B ocurran a la vez es 0,36. ¿Cuál es la probabilidad de que suceda uno o el otro?

a. – 0,64b. – 0,36c. 0,36

d. 0,64e. No se puede

determinar.

14 La probabilidad de que en un criadero de

gallos y gallinas se extraiga un ejemplar al

azar y sea gallo es 25

. Si el criadero tiene 200

ejemplares, ¿cuántas son gallinas?

a. 80b. 100

c. 120d. 140

e. 160

15 En el gimnasio de mi barrio hay inscritos

niños, adultos y adultos mayores. Si se elige a

una persona al azar para asistir a la

municipalidad en representación del

gimnasio, la probabilidad de que sea niño es 17

y de que sea un adulto mayor es 38

. ¿Cuál es

la probabilidad de que sea un adulto quien

los represente y que además no sea mayor?

a. 4

15

b. 1115

c. 1128

d. 2756

e. 2856

16 En un estante hay 8 libros de Matemática, 12 de Historia y 10 novelas. ¿Cuál es la probabilidad de que al sacar dos al azar, sin volver a ponerlos en el estante, el primero sea de Historia y el segundo sea una novela?

a. 8

75

b. 2249

c. 4

29

d. 1115

e. 2

15

17 Con respecto a la posición relativa de dos rectas en un plano, se puede afirmar que la probabilidad de que ellas sean paralelas es, aproximadamente, en porcentaje:

a. 80%b. 75%

c. 50%d. 40%

e. 33%

18 El siguiente gráfico muestra los resultados de una encuesta realizada por una empresa con respecto a la preferencia por sus cuatro tipos de bebida. ¿Cuál es la probabilidad de que una persona prefiera la bebida tipo C?

Preferencia de bebidas en el mercado

Tipo de bebida

80

60

40

20

0

4555

72

28

A B C D

mer

o d

e p

erso

nas

a. 22,5%b. 27,5%

c. 36%d. 40%

e. 45%

19 En el juego El laberinto se debe llegar del punto A al C, pasando por B. Para ir de A a B puedes escoger 6 caminos y para ir de B a C, 8 caminos. Si solo tres de las combinaciones posibles te llevan de A a C, ¿cuál es la probabilidad de que ganes?

a. 16

b. 18

c. 314

d. 1

16

e. 3

14

20 En una florería hay tulipanes, rosas, fresias, claveles, gladiolos, calas, lirios, alelíes, azucenas y crisantemos, todos en igual número. La señora Carmen, a quien le fascinan las flores, puede escoger de dos tipos para llevar a su casa. ¿Cuál es la probabilidad de que escoja fresias y claveles?

U5 MAT 3M (290-359).indd 347 2/11/11 15:51:27

Page 348: 003000.000 grou

348

a. 15

b. 110

c. 1

50

d. 1

100e. Faltan datos para

poder determinarlo.

21 Un suceso A tiene 42% de probabilidad de ocurrir, mientras que la de acontecer de un suceso B es del 67% ¿Cuál es la probabilidad de que A o B ocurran?

a. 9%b. 19,14%

c. 71,86%d. 80,86%

e. 91%

22 En una caja se han colocado 6 fichas negras, 6 blancas y 8 rojas. Se extraen dos fichas sucesivamente, sin reponer la ficha extraída la primera vez. ¿Cuál es la probabilidad de que la primera ficha haya sido roja y la segunda negra?

a. 219

b. 325

c. 338

d. 340

e. 1295

23 De un total de 450 lanzamientos de una moneda se han obtenido 300 caras y el resto sello. De acuerdo a esta información se puede afirmar que:

I. La probabilidad calculada con estos datos es una probabilidad experimental.

II. La probabilidad de obtener un sello es 0,5.

III. La probabilidad de obtener una cara es 23

.

a. Solo Ib. Solo I y II

c. Solo I y IIId. Solo II y III

e. I, II y III

24 En una empresa trabajan 25 hombres y 35 mujeres. 10 de los hombres llegan a su trabajo en auto y 20 de las mujeres usan transporte público para llegar a la empresa. ¿Cuál es la probabilidad de que al elegir un empleado de la fábrica, este llegue en locomoción propia si se sabe que es mujer?

a. 12

b. 13

c. 14

d. 37

e. 47

25 Marcela lanza dos dados y necesita un número mayor o igual a 9 en la suma de los números de las caras para ganar. ¿Cuál es la probabilidad de que pierda?

a. 3

18

b. 5

18

c. 818

d. 1318

e. 1518

26 En la clase de Matemática de Ricardo harán un trabajo en parejas. Ricardo, Esteban, Alberto, Bernardo y Sandro siempre trabajan juntos, pero esta vez no lo podrán hacer. ¿Cuál es la probabilidad de que de todas las parejas que se pueden formar entre ellos, el grupo que elija el profesor sea el de Esteban y Alberto?

a. 10%b. 12%

c. 15%d. 18%

e. 20%

27 En un equipo de básquetbol de m mujeres hay p jugadoras que miden más de 1,65 m. ¿Cuál es la probabilidad, en porcentaje, que una jugadora elegida al azar no mida más de 1,65 m?

a. m pp−

⋅100

b. m pm−

⋅100

c. mp

⋅100

d. pm

⋅100

e. 1 100−

⋅p

m

28 Se quieren ordenar tres libros, de Biología, Matemática y Lenguaje, en un estante. ¿Cuál es la probabilidad de que el de Lenguaje quede junto al de Biología?

a. 16

b. 26

c. 36

d. 46

e. 56

29 Francisca está jugando con su hermano, y ella debe extraer una carta de un naipe inglés y lanzar un dado. Su hermano le ha dicho que ganará si obtiene un 4 o un corazón en las cartas y un número menor que 3 en el dado. ¿Cuál es la probabilidad aproximada de que Francisca gane?

U5 MAT 3M (290-359).indd 348 2/11/11 15:51:36

Page 349: 003000.000 grou

UN

IDA

D 5

349

a. 8%b. 10%

c. 13%d. 15%

e. 20%

30 Rolando tiene una bolsa llena de bolitas de cristal; de ellas, 3n− son transparentes, 4n− son blancas y 2 7n− son celestes. Si él tiene en total 58n+ bolitas, ¿cuál es la probabilidad de que al sacar una al azar, esta sea transparente?

a. 12

b. 523

c. 1041

d. 869

e. 2184

31 Se ha hecho una encuesta sobre los deportes practicados por los estudiantes de un cierto curso. Dos han dicho que practican fútbol, básquetbol y vóleibol. Tres estudiantes practican básquetbol y vóleibol; 7 practican fútbol y básquetbol; 17 estudiantes practican básquetbol; 17 fútbol, y 6, vóleibol. Si el curso tiene 38 estudiantes y no hay quienes practiquen solo fútbol y vóleibol, ¿cuál(es) de las siguientes afirmaciones es(son) verdaderas?

I. En el curso hay 8 alumnos que no practican ningún deporte.

II. La probabilidad de que un alumno elegido al azar practique solo fútbol es 5

19.

III. La probabilidad de que un alumno elegido al azar no practique deportes es 4

19.

a. Solo Ib. Solo II

c. Solo I y IId. Solo I y III

e. I, II y III

32 En una imprenta se ha estimado que por cada 200 páginas impresas hay 35 en malas condiciones de impresión. ¿Cuál es la probabilidad de que al escoger una página al azar de las 2500 impresas, esta esté en buen estado?

a. 8%b. 17,5%

c. 66%d. 74%

e. 82,5%

33 En una bolsa se han introducido fichas numeradas. Si la probabilidad de obtener un número par al extraer una de las fichas de la bolsa es 0,25, entonces se puede afirmar que:

a. una de las 4 fichas de la bolsa es un número par.

b. tres de las 4 fichas de la bolsa son números pares.

c. una de cada cuatro fichas de la bolsa es un número par.

d. tres de cada cuatro fichas de la bolsa es un número par.

e. hay 5 fichas en la bolsa.

34 En el curso de Valentina han juntado todos los lápices de colores sin nombre en una caja para que el que necesite uno lo pueda ocupar. Valentina ha contado 50 lápices en la caja. De ellos, 4 son azules; 5, rojos; 6, amarillos; 3, verdes, y el resto, de otros colores. ¿Cuál es la probabilidad de que al sacar un lápiz al azar de la caja, este no sea azul ni rojo, ni amarillo?

a. 64%b. 70%

c. 72%d. 74%

e. 76%

35 La profesora de cálculo de la universidad de Sofía ha hecho una estadística de los resultados del examen, tomado la semana pasada, para presentárselos a sus estudiantes. Según los datos de la tabla adjunta, ¿cuál es la probabilidad de que un estudiante no haya aprobado el examen si se sabe que es hombre?

Aprueban Reprueban

Hombres 22 7Mujeres 8 15

a. 722

b. 729

c. 752

d. 2229

e. 2252

36 Con los dígitos 1, 2, 3 y 4 se forman números de 3 cifras no repetidas; estos se escriben y se introducen en una caja. ¿Cuál es la probabilidad de que al extraer un número al azar, este sea impar?

a. 15%b. 25%

c. 50%d. 60%

e. 75%

U5 MAT 3M (290-359).indd 349 2/11/11 15:51:40

Page 350: 003000.000 grou

350

37 Un dado se lanza tres veces. ¿Cuál es la probabilidad de que solo en uno de los lanzamientos salga un número menor que 5?

a. 1

18

b. 1

27

c. 154

d. 1

216

e. 49

38 Marisol va a sortear los temas de su examen de grado en la universidad. La encargada ha colocado en una caja pequeña los 4 temas posibles: Teoría de la educación, Psicología del adolescente, Filosofía de la educación y Metodología, de los cuales Marisol debe escoger dos al azar. Si Marisol quiere que uno de los temas de su examen sea Metodología, ¿cuál es la probabilidad de que escoja lo que quiere?

a. 20%b. 25%

c. 33,3 %d. 50%

e. 75%

39 Bernardita está jugando con su hermana lanzando dados. Ella le propone a su hermana lo siguiente: “Yo gano si al lanzar

un dado obtengo un número mayor o igual a 5, y tú ganas si al lanzar dos dados, la suma de sus caras es múltiplo de 3”. Bajo estas condiciones, se puede afirmar que:

a. ambas tienen las mismas probabilidades de ganar.

b. Bernardita tiene más probabilidad de ganar que su hermana.

c. la hermana de Bernardita tiene más probabilidades de ganar que Bernardita.

d. Bernardita tiene el doble de probabilidades de ganar que su hermana.

e. la hermana de Bernardita tiene un tercio de probabilidades de ganar que Bernardita.

40 Guillermo y Mónica se han casado y planean tener tres hijos. ¿Cuál es la probabilidad de que el tercer hijo sea mujer y el del medio hombre?

a. 12,5%

b. 25%

c. 33,3 %d. 37,5%

e. 62,5%

Mis apuntes

U5 MAT 3M (290-359).indd 350 2/11/11 15:51:42

Page 351: 003000.000 grou

Criterios para autoevaluar tu aprendizaje

Marca con una 8 según la evaluación de tu trabajo en esta unidad. Recuerda que hacer esta evaluación responsablemente te entregará información sobre tu proceso de aprendizaje.

Indicadores +++ ++– +––

Pude completar el mapa conceptual de la síntesis sin necesidad de mirar mi libro.

Respondí correctamente el ítem de completación de la síntesis conceptual.

Resolví correctamente los ejercicios propuestos.

colaboré con mis compañeros y compañeras en el trabajo grupal.

Soy capaz de explicar los contenidos y procedimientos para la resolución de ejercicios de esta unidad.

entiendo el tipo de problemas cotidianos que se pueden resolver con los contenidos de esta unidad.

me siento seguro de lo aprendido y creo que podría resolver otros ejercicios que me plantearan.

Calcula el porcentaje de logro que obtuviste en el ítem III.

Porcentaje de logro

PL = . 100Nº de respuestas correctas

2040 100

Porcentaje de logro

Nota obtenida

Nivel de mi aprendizaje

Cómo mejorar

29% a 0% 1,0 a 2,5 alertaLos contenidos no han sido comprendidos. Debes repasarlos nuevamente y rehacer los ejercicios. Fíjate muy bien en los ejercicios resueltos. Debes pedir ayuda. ¡ánimo! con trabajo y estudio se puede.

49% a 30% 2,6 a 3,5 muy bajoLa mayoría de los contenidos no han sido comprendidos. Debes volver a repasarlos y rehacer los ejercicios incorrectos. Pídeles ayuda a tus compañeros o compañeras. Vuelve a estudiar; seguro que lo lograrás.

59% a 50% 3,6 a 3,9 BajoUna gran parte de los contenidos no han sido comprendidos es su totalidad. Rehaz aquellos ejercicios incorrectos, pero antes vuelve a estudiar los contenidos. trata nuevamente.

69% a 60% 4,0 a 4,7 medio bajoadquiriste una parte de los contenidos, pero aún falta. Debes corregir aquellos ejercicios incorrectos y revisar los contenidos de los temas en que fallaste. Bien, has avanzado, aunque aún queda camino por andar.

79% a 70% 4,8 a 5,4 medioHas logrado entender una buena parte de los contenidos; sin embargo, aún faltan otros y afianzar los primeros. corrige las respuestas erróneas; puedes pedir ayuda si lo deseas. Revisa los contenidos. ¡Puedes hacerlo mucho mejor!

89% a 80% 5,5 a 6,2 medio altoHas logrado adquirir gran parte de los contenidos. Revisa los ejercicios en los que fallaste y repasa aquellos contenidos. ¡Lo has hecho bien!

100% a 90% 6,3 a 7,0 altoHas logrado aprender todos o casi todos los contenidos tratados. ¡muy bien! Has logrado los objetivos propuestos. Sigue así.

UN

IDA

D 5

351

U5 MAT 3M (290-359).indd 351 2/11/11 15:51:43

Page 352: 003000.000 grou

352

I. Coloca V (verdadero) o F (falso) en cada una de las siguientes afirmaciones según corresponda:

1 ____ El valor de 28 2 175 5 252− + es 22 7.

2 ____ Las soluciones de la ecuación 3 3 602x x+ = son – 4 y 5.

3 ____ El conjunto solución de la inecuación

x x− ≥ −14

2 8 es 314

,∞

4 ____ Un triángulo de lados 6; 1,75 y 6,25 cm es un triángulo rectángulo.

5 ____ La probabilidad de extraer una jack

o un rey de un naipe inglés es 426

II. Resuelve los siguientes ejercicios. Coloca todo el desarrollo y no olvides chequear tus respuestas en el solucionario.

1 Reducir al máximo las expresiones siguientes:

a. 3 4 22 3−+

b. 2 3 5

2 Resuelve las siguientes ecuaciones:

a. 10 2 1− + =x x

b. x x x x2 235

12

3 14

+ − − = −

c. xx x+

−+

=1

23

1312

3 Encuentra el vértice y los puntos de corte con los ejes coordenados de la parábola y x x= + −6 13 52

4 Resuelve las siguientes inecuaciones o sistemas de inecuaciones:

a. 2 97

1 3 22

x x− − < +

b. 3 56

1xx

− ≤ −3 5 1

6x

x− ≤ −3 5

61x

x− ≤ −

c. 2 7 8( 12)3( 1) 4(2 5)

x x

x x

+ > −+ < −

2 7 8 12x x+ > −( )3 1 4 2 5x x+( ) < −( )

5 Dado el triángulo de la figura, calcula el valor de los trazos x e y.

x

y

6 u

12 u

6 Si los catetos de un triángulo rectángulo miden 7x + y x +12cm y la hipotenusa mide 17x + cm, ¿cuánto mide la altura trazada desde el vértice donde se encuentra el ángulo recto?

7 Según los datos de la figura, ¿cuál es el valor de x? Usa calculadora y aproxima tu respuesta a la centésima.

Evaluación de síntesis 4 (Unidades 1 a 5)

U5 MAT 3M (290-359).indd 352 2/11/11 15:51:51

Page 353: 003000.000 grou

EV

AL

UA

CIÓ

N

DE

SÍN

TE

SIS

353

x

22°

25 u

8 A un congreso médico asisten 12 anestesistas, 20 neurocirujanos y 18 cardiólogos. De los anestesistas, 4 son hombres; de los neurocirujanos, 6 son mujeres, y de los cardiólogos, 10 son hombres. Calcula expresando tus resultados en porcentaje:

a. la probabilidad de que al escoger uno de los asistentes, este sea cardiólogo.

b. la probabilidad de que al elegir uno de los asistentes, este sea un neurocirujano hombre.

c. la probabilidad de que al escoger a uno de los asistentes, este sea un anestesista dado que se sabe que es mujer.

III. Resuelve los siguientes problemas:

1 Se tienen dos esferas de acero de radios 5 y 12 cm que se fundirán para hacer una nueva esfera. ¿Cuál es el radio de la nueva esfera? (Considera 3=π 3π = ).

2 La Facultad de Física de cierta universidad está promocionándose a través de varios videos que ha colocado en su portal de internet. Elías, que está interesado en ingresar el próximo año, encontró uno de ellos en el que aparecía un físico diciendo: “En este laboratorio investigamos choques y colisiones entre diversos objetos. En una primera etapa, a través de un simulador virtual, estudiamos, por ejemplo, una fuerza que aplicaremos sobre una partícula. Suponemos que esta es una fuerza que varía con el tiempo t de acuerdo con la ecuación F t t= −29 5 2, donde t está en segundos, y F, en Newton. ¿Podrías contestar la siguiente pregunta?”

Elías la miró y se dio cuenta de que sí podía contestarla. Seguro tú también puedes hacerlo. ¿En qué momento esta fuerza llega a ser máxima y qué valor alcanza?

3 Néstor me comentó que en el taller de electricidad le habían solicitado que llevara una lámina rectangular de cobre para cubrir una superficie de 114,75 cm². Entonces, le pedí que me señalara las dimensiones de ella para ayudarle a cortarla a partir de la plancheta de cobre que le había traído. El muy gracioso me dijo que “el largo tenía 5 cm más que el ancho” y se marchó. A mí no me va a ganar con sus adivinanzas. Supongo que a ti tampoco. Te pedimos que encuentres las medidas de dicha lámina.

4 Juan Carlos ha estimado que si el doble de su sueldo disminuyera en $125000, este fluctuaría entre los cuatro tercios y los cinco medios de su sueldo. ¿Cuáles son los posibles valores del sueldo de Juan Carlos?

5 El arquitecto que Nora ha contratado para diseñar su nueva casa ha bosquejado el techo de esta como muestra la figura adjunta, donde las vigas estarán a la vista. Nora quiere saber la altura máxima del techo. ¿Puedes dar tú la respuesta? (Usa calculadora y aproxima tus resultados a la décima).

8 m

3 m

U5 MAT 3M (290-359).indd 353 2/11/11 15:51:52

Page 354: 003000.000 grou

354

6 Desde lo alto de una montaña se avistan dos edificios que están en línea recta con la montaña. Si los edificios miden ambos 40 m y los ángulos de depresión son 43º y 58º, respectivamente, y la separación entre ambos es de 100 m, ¿cuál es el alto de la montaña? (Usa calculadora y aproxima tu respuesta a la milésima).

7 “Anoche en el noticiero de televisión escuché la siguiente noticia: La inestabilidad atmosférica que hemos estado sufriendo estas últimas semanas ha provocado una seguidilla de accidentes que han cobrado varias víctimas fatales. Esta noche, en nuestro estudio, nos encontramos con don Evaristo, experto en transporte:

–Don Evaristo, usted como un entendido en la materia, ¿qué nos puede decir al respecto de la noticia que acaba de leer nuestro conductor de este noticiero? –Fíjese que la probabilidad de que un vehículo tenga un accidente en un día de lluvia es de 9%, y, en cambio, en un día sin lluvia, es mucho más baja, solo 0,6%. –Pero esto no se condice con lo que nos está pasando en estos momentos. Más concretamente, don Evaristo, en estos 20 días que han transcurrido del mes, hemos tenido 16 días lluviosos. Entonces, si continúa así la situación, ¿me puede decir qué tan probable es que justamente una persona en su vehículo tenga un accidente y esté lloviendo? Y aprovecho de preguntarle lo mismo, pero en un día sin lluvia”.Responde tú ambas preguntas.

8 La señora Guillermina tiene un centro de fotocopiado, el que es muy concurrido. Por esto debe estar constantemente revisando las tres máquinas fotocopiadoras que tiene y ver cuándo repararlas. Ha observado que al mes, en la primera de ellas, de cada 100 fotocopias, cuatro salen falladas y, por tanto, tiene que volver a sacarlas. De igual modo, para la segunda, seis salen falladas en un lote de 100. En cambio, en la tercera, una de cada 100 tiene que volver a repetirla.

Con las descripciones de estas falencias, encuentra la probabilidad, dada en porcentaje, de que:

a. la primera presente fallas, la segunda no falle ni tampoco la tercera.

b. fallen la primera y la tercera, pero no la segunda.

c. ninguna falle.

IV. Marca la alternativa correcta.

1 Al simplificar la expresión

2 5 8 2 5 8 2 52

−( ) − −( ) +( ) se

obtiene:

a. – 1

b. 39

c. − −1 10 2

d. − −21 10 2

e. 39 10 2−

2 El conjunto solución de la ecuación x x+ − =3 4 12 es:

a. 7 20,{ }b. 7{ }

c. 20{ }d. 14 40,{ }

e. ∅

3 Las aristas de la base de un paralelepípedo miden x , 1x + y su altura mide 8 cm. Si el volumen es 240 cm3, ¿cuál es la medida de la superficie de la base en cm2?

a. 11b. 30

c. 40d. 42

e. 48

4 Una persona lanza una flecha desde una altura de 12 metros, la que recorre una trayectoria parabólica, donde la altura está relacionada con el tiempo, por la función h t t t( ) = − + +2 9 12. La altura máxima alcanzada por la flecha es:

a. 14,25 mb. 22,50 m

c. 32,25 md. 54,50 m

e. 64,50 m

U5 MAT 3M (290-359).indd 354 2/11/11 15:51:55

Page 355: 003000.000 grou

EV

AL

UA

CIÓ

N

DE

SÍN

TE

SIS

355

5 El conjunto solución de la inecuación 3 7

52x + > es:

a. −

173

1,

b. 173

1,−

c. −∞ −

∪ ∞] [, ,17

31

d. −∞ −

∪ ∞[ [, ,17

31

e. ∅

6 Al resolver el sistema de inecuaciones 3 2( 5)1 42

x x

xx

+ ≤ ++ ≥−

xx+−

≥12

4

x x+ +( )3 2 5£

se obtiene por solución:

a. 2 3,] ]b. 2 3,[ ]

c. − ∞[ [7,

d. −[ [7 2,

e. −[ ]7 3,

7 A partir de la siguiente figura se puede afirmar que:

I. hac

a b2

2

=+( )

II. 2d ac=

III. 2 2 2h d a= −

d

a b

c

h

a. Solo Ib. Solo III

c. Solo I y IId. Solo I y III

e. I, II y III

8 Una persona de 1,65 m de altura mira un volantín en el cielo con un ángulo de elevación de 55º. Si la altura del volantín es de 8 m, la distancia entre el ojo de la persona y el volantín es, aproximadamente: sen 55 0 82 55 0 57 = =, ; cos ,

a. 3,61 mb. 4,41 m

c. 5,21 md. 7,74 m

e. 11,14 m

9 Dados los siguientes datos de la tabla adjunta sobre el número de pacientes en un hospital, determina la probabilidad, en porcentaje aproximado a un decimal, que al encuestar a una persona al azar, esta sea una mujer hospitalizada.

Hospitalizados Ambulatorios

Mujeres 234 1256Hombres 158 1114

a. 4,5%b. 5,7%

c. 6,0%d. 8,5%

e. 9,0%

10 A y B son dos sucesos independientes. Si la probabilidad que ocurra A es 0,33 y la de que B no acontezca es 0,05, entonces la probabilidad de que ocurra A y B a la vez es:

a. 1,65%b. 3,35%

c. 18,25%d. 31,35%

c. 63,65%

11 A y B pueden sacar un número al azar de una bolsa que contiene los números del 1 al 12. Si el número es divisible por tres, gana A; si es divisible por dos, gana B. En otro caso empatan. ¿Cuál es la probabilidad de que empaten?

a. 0

b. 12

c. 13

d. 23

e. 56

U5 MAT 3M (290-359).indd 355 2/11/11 15:52:01

Page 356: 003000.000 grou

356

I. Coloca verdadero (V) o falso (F) frente a cada una de las siguientes afirmaciones según corresponda:

1 ____ En ____ En 3 a , a siempre tiene que ser mayor o igual a 0 para que el valor de la raíz sea un número real.

2 ____ Con respecto a la concavidad de una ____ Con respecto a la concavidad de una parábola, esta puede ser cóncava hacia arriba ( )si( )si a( )a >( )>( )0( ) o cóncava hacia ( ) o cóncava hacia ( ) abajo ( )

( )( )

( )si( )si a( )a<( )<( )0( ).

3 ____ Para solucionar un sistema de ____ Para solucionar un sistema de inecuaciones se debe resolver cada una de las inecuaciones por separado y luego unir las soluciones.

4 ____ La pendiente de una recta es la ____ La pendiente de una recta es la cotangente del ángulo que forma la recta con el eje x.

5 ____ Cuando se quiere “contar” el número ____ Cuando se quiere “contar” el número total de maneras en que puede ocurrir uno u otro suceso, podemos sumar las posibilidades de cada uno de los sucesos.

II. Resuelve los siguientes ejercicios. Coloca todo el desarrollo en tu cuaderno. No olvides revisar tus respuestas en el solucionario.

1 De De 3 litros de una solución de cierto ácido, Aliro ocupó solo 840 cm³. El resto lo guardó en un depósito cúbico llenándolo completamente. ¿Cuánto vale la arista de este cubo? Expresa tu respuesta en dm.

2 La siguiente figura representa una La siguiente figura representa una circunferencia de centro O. Además, se

tiene que PA cm9PA cm9PA cm=PA cmcm, PB = += +3 1= +3 1= +x= +x3 1x= +x y 6PT cm6PT cm6PT cm=PT cmcm.

AA OO B

T

PP

Determina los valores de:

a. x b. PB

3 La capacidad de un cono es La capacidad de un cono es 99 cm³. Si su radio es x y su altura 2x + , ¿cuál son los valores de estas medidas? (Aproxima π a 3).

4 ¿Cuál es el dominio de las siguientes ¿Cuál es el dominio de las siguientes funciones?

a. f x x( )f x( )f x = −= −4 3= −4 3= −

b. g x x( )g x( )g x = −= −x= −x3 5= −3 5= −1 23, ,x, ,x3 5, ,3 5 1 2, ,1 2

5 Dada la parábola de ecuación Dada la parábola de ecuación y xy x= −y x6 1y x6 1y x= −6 1= −y x= −y x6 1y x= −y x 3 8x3 8x −3 8−26 126 1 , encuentra los puntos de corte con los ejes y el vértice.

6 Un paralelepípedo tiene por medidas a Un paralelepípedo tiene por medidas a z,3 53 5z3 53 5+3 5 y 5, todas expresadas en m. ¿Cuál es el valor de z para que el volumen de este z para que el volumen de este zparalelepípedo sea 110 m³?

7 Dada la ecuación Dada la ecuación 5 1 1 25 025 125 1y k5 1y k5 15 125 1y k5 125 1 y5 1y k5 1− +5 1y k5 1( )5 1( )5 1y k( )y k5 1y k5 1( )5 1y k5 15 1− +5 1( )5 1− +5 15 1y k5 1− +5 1y k5 1( )5 1y k5 1− +5 1y k5 1 + =1 2+ =1 25 0+ =5 0,1 2+ =1 2,1 2+ =1 2 , indica los valores de k, de tal modo que la k, de tal modo que la kecuación tenga dos soluciones reales y distintas.

8 En el triángulo rectángulo de la figura En el triángulo rectángulo de la figura encuentra el valor de:

a. senβ b. tg β c. sec β

Evaluación de síntesis 5 (Unidades 1 a 5)

U5 MAT 3M (290-359).indd 356 2/11/11 15:52:08

Page 357: 003000.000 grou

EV

AL

UA

CIÓ

N

DE

SÍN

TE

SIS

357

β

x +1 u x −1 u

12 u

9 La probabilidad de que aparezca un número impar en un dado es x. Además, se sabe que x x2 4 8 1+ =, . ¿Cuál es la probabilidad de que en dos lanzamientos sucesivos de este dado un número salga repetido? Expresa tu respuesta porcentualmente.

10 Una urna contiene bolitas numeradas de 1 a 40, pintadas de azul o rojo. El 55% de las pelotitas pares están pintadas de azul y 13 de las impares están pintadas de rojo. Si se extrae una pelotita al azar, ¿qué probabilidad hay de que sea:

a. par, si su color es rojo?b. impar, si no es roja?

III. Resuelve los siguientes problemas. Coloca todo el desarrollo.

1 Malucha, te pido que me ayudes a resolver este problema de matemáticas aplicadas. Voy a ser lo más ordenada posible en describírtelo: “Mirando el gráfico, en (0,0), está ubicada la puerta de entrada de un centro comercial. A 2 m de esta, en el eje horizontal d, está la subida de la escala mecánica pequeña, cuyo borde es la curva café. Alcanza al parecer una altura (h) de un poco menos de 6 m. Los segmentos en rojo son dos pilares exteriores que se deben colocar. El más grande de ellos debe ubicarse a 8 m de la puerta de entrada. No sé a qué distancia de este último debo poner el otro pilar, el más pequeño, que

mide 3 m. Mi profesor me dijo que la curva que podría describir el borde de la escala estaría dada por h d= −0 25 12, ”. Con los datos entregados, responde ahora tú las siguientes preguntas:

8

6

4

2

2 4 6 8 10 12 14 16 18 20

h () 4,0m( )4,0

d () 4,0m( )4,0

Nivel 2

0

a. ¿A qué altura debiera llegar el borde superior de la escalera?

b. ¿Cuánto mide el largo del pilar mayor?c. ¿Cuál es la distancia entre ambos pilares?

2 “Lo bueno que tiene este instituto comercial es que los ramos financieros me enseñan en realidad a formar mi propia empresa. Por eso, cuando hice un ensayo para crearla, me di cuenta de que hasta la matemática que aprendí tiene sentido. Por ejemplo, encontré que el beneficio de mi empresa con respecto a la publicidad viene dado por: B p p p( ) = + −220 20 0 5 2, , donde p es el gasto en publicidad y B el beneficio obtenido, ambos en miles de pesos. Ahora quiero saber: ¿Qué valor debo invertir en publicidad para producir el máximo beneficio? Y, más aún: ¿A cuánto asciende este monto?” De acuerdo al enunciado, responde ambas preguntas.

3 –¿Y qué es eso del IMC? –¡Ah! Es el índice de masa corporal, que se calcula como el peso dividido por la estatura al cuadrado y se expresa en kg m2. –¿Y qué saco con saber mi índice de masa corporal? –Escucha: si es mayor de 30, significa “obesidad”, y si es menor de 25, quiere decir “normalidad”. –¿Y qué pasa si mi IMC está entre 25 y 30? –¡Ah!, es sobrepeso. Yo peso 75 kilos.

U5 MAT 3M (290-359).indd 357 2/11/11 15:52:11

Page 358: 003000.000 grou

358

Con esta información, encuentra:

a. la estatura de dicha persona si su IMC fuera 24.

b. el rango de la estatura de dicha persona si su IMC:i. señala “obesidad”.ii. está entre 25 y 30.

4 “Oye lo que me pasó, Regina. Primero, el señor que me quiere vender el terreno me dijo que en Valdivia me vendía uno de 70 m por 50 m. Entonces le contesté que iría a verlo. El día antes de mi visita me llamó diciendo que, en realidad, se había equivocado y al medirlo había que quitarle la misma cantidad de metros por lado, de modo que quedaría con una superficie de 3264 metros cuadrados. No sé de qué medidas quedaría el terreno ahora. Por favor, ayúdame a calcularlo”. ¿Cuál debiera ser la respuesta de Regina?

5 “¡Alberto, por fin respondes mi llamado al celular! Estuve cotizando los precios de los dos sillones que nos faltan para nuestra oficina. Cada uno de ellos vale lo mismo. Necesitamos como mínimo $160000, pero no más de $170000, incluyendo el flete de traslado desde la tienda comercial hasta nuestra oficina. A este respecto, los precios de traslado son $16000 desde Almacenes York; $13000 desde San Francisco Center y $17000, desde La Casa del Mueble. Cada sillón sale más barato en... espera, déjame ver dónde dejé las cotizaciones”. Conforme al enunciado, ¿en cuál de las tiendas comerciales es más barato adquirir un sillón? Justifica tu respuesta.

6 Los medios de prensa muestran el croquis del lugar de los hechos. No se sabe si salieron huyendo ante la presencia de los guardabosques por hacer fogata en zona no permitida o por la curiosidad de atravesar el río de noche. No hay muestras de violencia, ni de haber bebido alcohol o consumido drogas. La policía trabaja arduamente en el borde frente a la partida en la zona de llegada. Esto comprende unos 120 metros a lo más. Se presume que atravesaron el río en 24 minutos.

Zona de desaparición

Frente a partida

Fogata clandestina

Llegada

Partida

Algunas huellas

90 km/h

20 km/h

600

m

Francisco movió la cabeza: “Algo no calza en esa información”. Hizo algunos cálculos y pensó: “Primero, la velocidad real a la que iban desde el punto de partida a la llegada era:

20 90 922 2+ ≈ km h2 220 90 92 km h+ ≈20 90 922 2+ ≈ km h y, en segundo lugar, el ángulo formado por el frente de partida, la partida y la llegada era de 12,5º“ .

a. ¿Cuántos metros en verdad hay entre el frente, la partida y la llegada?

b. Calculando previamente la distancia entre la partida y la llegada, y sabiendo que la velocidad real para atravesar esta distancia era de 92 km/h, ¿cuántos minutos se demoraron en cruzarla?

c. Conforme a lo respondido en (a.) y (b.), ¿qué es lo que no calza en la información?

7 Marcos está jugando a las adivinanzas con su hermano menor: “Me has hecho equivocar 30 veces seguidas con tus pistas. Esta vez buscaré yo el número de cinco cifras, no repetidas, formado con los dígitos 1, 2, 3, 4, 5. Y además, irónicamente, me preguntas, con todo lo que he pasado, ¿cuál es la probabilidad de que acierte?” Responde a la pregunta del hermano de Marcos.

8 “Creo que tenemos informes estadísticos diferentes con respecto al estudio de infecciones más relevantes en la población de esa región. Tú dices que un 70% de la población tuvo infecciones broncopulmonares en el invierno del 2012; yo, en cambio, solo registro un 55%. De manera independiente, tú dices que el 40% de la población tuvo infecciones urinarias; por mi parte, solo se registra en mi informe un 45%”. Según esto, ¿cuál es la probabilidad de que una persona elegida al azar presente ambas infecciones? Comparemos y veamos lo que ocurre en cada uno de los informes.

U5 MAT 3M (290-359).indd 358 2/11/11 15:52:12

Page 359: 003000.000 grou

EV

AL

UA

CIÓ

ND

E S

ÍNT

ES

IS

359

IV. Marca la alternativa correcta.

1 Sabiendo que 8 20 2z = − + , luego 2zes igual a :

a. − −2 12 7b. 2−

c. 38 12 10−

d. 38 12 7−

e. 38

2 Al simplificar la expresión 2 7 147+

resulta:

DemRe

a. 2 3

b. 2 14+

c. 2 2+

d. 2 7 2+

e. 4

3 La trayectoria de un proyectil está dada por la ecuación y t t t( ) = −100 5 2, donde el tiempo t se mide en segundos y la altura y (t) se mide en metros. Entonces, ¿en cuál(es) de los siguientes valores de t estará el proyectil a 420 m de altura sobre el nivel del suelo?

I. 6 segundos

II. 10 segundos

III. 14 segundos

a. Solo en Ib. Solo en II c. Solo en III

d. Solo en I y en II e. Solo en I y en III

DemRe

4 Sea la función de números reales f x x( ) = −2 5 , ¿cuáles son los números que satisfacen f x( ) =9 ?

a. –2 y 2b. – 3 y 3

c. –4 y 4d. –16 y 16

e. Ninguno

5 Si a =3 20, b =2 35 y c = 125, entonces el orden correcto de ellos es:

a. b a c> >

b. b c a> >

c. a c b> >

d. a b c> >

e. c a b> >

6 ¿Cuál de las siguientes desigualdades describe al conjunto de todos los números x que cumplen con la condición de 5 2x − ≤ ?

a. 5x ≤b. 9x ≤

c. 5 9x≤ ≤d. 3 7x≤ ≤

e. 2 5x≤ ≤

7 ¿Cuál de las siguientes igualdades es correcta?

a. tg 1cotg

=αα

b. cos sec 1⋅ =α α

c. sec sen 1⋅ =α α

d. cos sen 1⋅ =α α

e. cos 1cosec

=αα

8 En la figura, una persona ubicada en lo alto del edificio P de 12 m de altura observa a otra persona, de igual tamaño, en lo alto del edificio Q de 18 m de altura con un ángulo de elevación de 40°. ¿Cuál es la distancia (d) entre los dos edificios?

DemRe

a. 6 tg o40b. 6

tg o40

c. 6

sen o40

d. 6

cos o40e. 6 sen o40

P Qd

9 La tabla adjunta muestra el número de fábricas que poseen un determinado número de máquinas eléctricas. Al seleccionar una de estas fábricas al azar, ¿cuál es la probabilidad de que esta tenga menos de tres máquinas eléctricas?

Nº fábricas 2 4 2 1 3Nº de máquinas eléctricas 0 1 2 3 4

a. 1 2

b. 1 4

c. 3 4

d. 1 3

e. 2 3

DemRe

U5 MAT 3M (290-359).indd 359 2/11/11 15:52:20

Page 360: 003000.000 grou

360

Ángulo de elevación y ángulo de depresión 250

Aplicaciones de las propiedades de las desigualdades 157 - 159

Ceros de la función 114

Deltoide 227

Descomposición de raíces 28

Desigualdades 152, 153

División de raíces 25, 26

Dominio y recorrido de funciones trigonométricas 266, 267

Dominio y recorrido en una función cuadrática 119

Ecuaciones cuadráticas de la forma ax2 + bx + c = 0, con a ≠ 0, donde el trinomio es factorizable 88 - 90

Ecuaciones cuadráticas de la forma ax2 + bx + c = 0, con a ≠ 0, donde el trinomio no es fácilmente factorizable 94 - 97

Ecuaciones cuadráticas de la forma ax2 + bx = 0, con a ≠ 0 84 - 86

Ecuaciones cuadráticas incompletas de la forma ax2 + c = 0, con a ≠ 0 81 - 83

Ecuaciones cuadráticas 80 - 100

Ecuaciones irracionales 48 - 51

Eje de simetría de una parábola 121 - 122

Expresiones fraccionarias equivalentes 40

Frecuencia relativa 299

Función cuadrática 106 - 124

Función raíz cuadrada 55 - 60

Función tangente y pendiente de una recta 268

Goniómetro 265

Grados y radianes 265

Identidades trigonométricas 262, 263, 269

Inecuación lineal 175, 176

Inecuaciones con valor absoluto 185 - 187

Inecuaciones fraccionarias y cuadráticas 181 -184

Intervalos 162 - 164

Ley de tricotomía 153

Índice temático

SOLU MAT 3M (360-400).indd 360 2/11/11 15:06:21

Page 361: 003000.000 grou

361

Lugar geométrico 113

Método de análisis de signos 199, 200

Método de completación de cuadrados 92, 93

Multiplicación de raíces 23, 24

Polinomio 81

Probabilidad condicionada 329 - 332

Probabilidad teórica y experimental 306 - 309

Probabilidades, relación entre dos o más sucesos 315 - 316

Propiedades de las desigualdades 154 - 156

Puntos de corte o intersección de la parábola con los ejes coordenados 112 - 116

Racionalización 40 - 44

Raíces 14 - 19

Raíz de una raíz 30 - 32

Razones trigonométricas y funciones 244 - 251

Seno y coseno 244 - 247

Sistemas de inecuaciones 192 - 195

Sucesos dependientes 329 - 332

Sucesos equiprobables y no equiprobables 299

Sucesos independientes 315 - 324

Suma y resta de raíces 29, 30

Tangente del ángulo 246, 247

Teorema de Fermat 236 - 240

Teoremas de Euclides 222 - 228

Tipos de intervalos 163

Triángulos semejantes 240

Trigonometría 244 - 251

Tríos pitagóricos 236 - 240

Variable aleatoria 296 - 299

SOLU MAT 3M (360-400).indd 361 2/11/11 15:06:22

Page 362: 003000.000 grou

362

Páginas 8 a 73

Unidad 1

Raíces y función raíz cuadrada

Página 13

1 a. 16

b. 16

c. –16

d. 144

e. 19

f. –1

2 a. 14

b. 8

c. 729

d. 32768

e. 123

f. −( )−2 34

3 a. 4m−

b. 32 14p

c. 2

1ab

d. 4 096 8 12, c d− −

4 a. 4a b. 4 5a b c. 227x

Página 17 Trabaja

1 a. 3b. 6c. 8d. 4

e. 5f. 14g. 15h. 13

i. 20j. 25

2 a. 1,73b. 3,16c. 0,67d. 8,66

e. 10,20f. 14,49g. 6,53h. 29,44

i. 1,23j. 100,50

3 a. 2,23b. 4,58

c. 6,08d. 6,93

e. 7,68

4 a. La escalera puede medir como máximo 2,23 m.

b. Sí, el lado de la caja mide 0,5 m, lo que implica que su volumen es 0,125 m3 y, por lo tanto, puede contener 25 kg de aserrín.

c. Si, a b, ∈ + ∪{ }R 0 se tiene si a < b entonces,

a b< o − > −a b . Por otro lado, si, a b≠0a ≠a b≠

entonces, − <a b .

Página 19 Trabaja

5 a. 1b. –6c. 5d. –4

e. 7f. –1g. 11h. –9

i. 3j. –10

6 a. –2,08b. 2,22c. 2,67d. –4,33

e. 4,64f. –1,40g. 4,15i. 4,45

h. –0,72j. 21,55

Trabaja

1 18 x 9 x 3 cm

2 Sí, porque cada tambor tiene diámetro aproximado de 63,3 cm.

Página 21 Trabaja

1 36 cm

2 7,75 m

3 121 mm

4 10 mm

5 11,71 m/s

6 a. 1,70b. 2,57

c. 3,03d. 3,30

e. 4,16

Página 22 Trabaja

1 27 cm

2 Una arista es el doble de la otra.

3 La caja debe ser cúbica de arista 20 cm.

4 4 cm más

5 Largo y ancho: 1,2 m y alto: 2,4 m

Página 25 Trabaja

1 a. 7b. 60

c. 91 x

d. 6 4 2a a−e. –1f. 15 2a b

Solucionario

SOLU MAT 3M (360-400).indd 362 2/11/11 15:06:29

Page 363: 003000.000 grou

SO

LU

CIO

NA

RIO

363

Página 27 Trabaja

2 a. 23

b. 5

c. 7 x

d. 39

e. –24

f. abc

g. 31

10

h. ab

i. 25

132

135−

j. 1

Página 28 Trabaja

3 a. 3 2

b. 27 2xy x

c. 5 2a b

d. 12 3

e. 10 112 3 4a b c abc

f. 2 23

g. 10 202 3 4 3ax y z xz

h. 2 19 2

3x

i. 10 14 2

3bb

j. 5 22 23mn m

Página 30 Trabaja

4 a. −2 6

b. 8 113

c. 10 x

d. 5 73

e. −2 6

f. −5512

73

g. −45

110

h. 6 2 8 3+

i. 23 73

j. 2 5

Página 32 Trabaja

5 a. 3

b. 8 2

c. 2

d. 4 12

e. 8 720

f. 15 224

g. 3 204

h. 8 56

i. 4 64

j. 12 192

k. 61

11

Trabaja

1 v =75 km h aproximadamente

2 4 1260 5,96≈ cm

3 6 53 5

29 85, ,+ ª , por lo tanto deberá

comprar 10 m.

4 2 3 7 4 3 2 3 7 4 32

+ − = + −( ) ( ) ( )(componiendo)

= + −( ) ( )7 4 3 7 4 3

(resolviendo el cuadrado de binomio)

49 48= −(resolviendo la suma por diferencia)

1 1= =

5 La razón entre los radios es 25

= 0,4, por lo que no deben reconstruir.

6 0, sí pasa siempre.

7 Falló porque a = =2 24

32 8

y esto no es natural. Sólo funcionará si la cantidad subradical es un múltiplo de 12 de la forma 23 n⋅ .

Página 35 Trabaja

1 a. – 12 b. 20 c. 2 32

2 a. 3 unidades de área

b. 2 unidades de área

3 Sí

4 Multiplicar los números primero y luego calcular la raíz, la respuesta es 3 628 800 .

5 2 3 76

6 76

73 3 3 3 3⋅ ⋅ = =

6 La diagonal actual mide 680 y la diferencia de área es 27,5 m2.

SOLU MAT 3M (360-400).indd 363 2/11/11 15:06:41

Page 364: 003000.000 grou

364

7 3 98 2

9 23

10 175 11 48

12 125 13 3,32 m

14 para k = 1

15 3R Vr v=

16 2 6

17 a. 81 100 10⋅ ⋅

b. a b c a a b b c7 5 4 6 4 4⋅ ⋅ = ⋅ ⋅ ⋅ ⋅

c. 216 1002

6 1002

3 3

33

⋅ = ⋅

18 20

c

2 23 cm

23 cm

19

20 d a a= =2 22 con a: lado

21 8 12 28 29 4 7 29

7 7 29 2 203

= ⋅ = ⋅ ⋅ =

⋅ =

22 3 33 3 33 48 000 250 4 2 3 8= ⋅ ⋅ ⋅ ⋅

23 3 33 1 728 8 216 2 6 12= ⋅ = ⋅ =

24 13,5 m2

25 23 5 dm

26 a. 320 7 mπ b. 2346 49 mπ

27 a. 8 5 8 5+ + − unidades de longitud

b. 16 2 59+ unidades de área

c. 2 59 5 8+ − unidades de área

28 20 4 2+

29 10 3

30 No, exactamente debe recorrer

7 2 13 2+ + km, aproximadamente 15,63 km.

31 2 34 2 13 2 29 29 64 3+ + ª ª, dm m

32 40 5 89 44 90cm cmª ª,

33 3 3 1891 91=

34 No, el diámetro mide 2 4212

m

35 Porque 2 0 125 1 13 18, = =

36 41Q

Tt A

= ⋅⋅ε ⋅σ

Página 44 Trabaja

1 a. 22

b. 5 5 155+

c. 3

d. 5 42

3

e. 3 2

f. 14 35

14+

g. 3 2−

h. 8 5 2

7+

i. 3 52+

j. 19 7 10

3−

Trabaja

1 Racionalizando por 2.

2 a. 18 8 3218 8 32

3 2 2 2 4 23 2 2 2 4 2

9 23 2

3

+ +

− −=

+ +

− −=

−= −

b. 1

2 3 51

2 3 5+ −=

+ −⋅( )

2 3 5

2 3 5

+ +

+ +

( )( ) (racionalizar agrupando)

2 3 5

2 3 5

2 3 52 2 6 3 52 2

+ +

+ +=

+ +

+ + −( ) ( )(resolviendo cuadrado de

binomio y suma por diferencia)

SOLU MAT 3M (360-400).indd 364 2/11/11 15:06:50

Page 365: 003000.000 grou

SO

LU

CIO

NA

RIO

365

=+ +

=+ +

⋅2 3 5

2 62 3 5

2 666

(racionalizamos nuevamente)

=+ +12 18 30

12

3 a. 208

958

20 88

7608

− = −

(racionalizando cada una por separado)

= −40 2

82 90

8 (descomponiendo)

= − =−

5 21904

20 2 1904

b. 20 95

820 95

888

−=

−⋅ (racionalizando)

=−

=−20 8 760

840 2 2 190

8(descomponiendo)

=−

=−( )2 20 2 190

820 2 190

4

c. 20 2 1904−

Página 46 Trabaja

1 3 1:

2 Sí

3 Irracional, − −77 10 673

.

4 33

33

3 33

2 3 27, , , ,+

5 2 3

Trabaja

1 a b b a

a b

a b b a a b

a b a b

a ab ab ab b aba b

ab a b++

=+( )⋅ −( )+( )⋅ −( ) = − + −

−=

−( )aa b

ab−

=

a b b a

a b

a b b a a b

a b a b

a ab ab ab b aba b

ab a b++

=+( )⋅ −( )+( )⋅ −( ) = − + −

−=

−( )aa b

ab−

=

2 3 32 232 6 3− +

3 2 3 75−

4 Teresita

5 Que ambos factores están correctos al momento de racionalizar y que el resultado es

9 6 5 10 14 2 21059

+ + − .

Página 51 Trabaja

1 a. x = 12b. x = 5c. x = 5d. x = 8

e. x = 225f. x = 3g. x = 5h. x = 16

i. x = 2j. x = 4

2 – 72

3 27

4 a. 25 cm b. 5 y 6 cm

5 a. 169 b. 13 es la raíz cuadrada de 169.

6 a. 2 b. 3 m y 1 m

Página 52 Trabaja

1 8 2 11,3m≈ m

2 El error fue elevar al cuadrado la igualdad,

1x = − , pues ésta no existe en R.

3 3x = , el número es 13,69 y se tiene que 13,69 3,7=

4 80

5 22x = , también es solución de la primera.

6 135 km/h. En este caso, nos dice que el auto aumentaría su velocidad en 135 km en una hora.

7 108000 peces.

Página 60 Trabaja

1 a. 2 2

b. No tiene.

c. 1,3−

d. No tiene.

e. 4/3

x x ≥ −

f. { }0+ ∪R

2 y x= +45

4

3 a. 0 99,ms

b. 0,0004 J c. 0 99,ms

SOLU MAT 3M (360-400).indd 365 2/11/11 15:06:57

Page 366: 003000.000 grou

366

4 y

8

6

4

2

0–2

–4

–6

–8

b

d

ca

e

f

x

–6 –5 –4 –3 –2 –1 1 2 3 4 5 6 7

Son todas de la misma forma por ser funciones raíces cuadradas. Todas tienen puntos mínimos o máximos, sólo cambian en su posición en el plano. Algunas se abren hacia los valores del eje y positivo y otras hacia los valores del eje y negativos. Algunas crecen más rápido que las otras.

Función Mínimo o máximo Dominio Recorrido

y x= (0,0); mínimo 0,∞ 0,∞

y x= 2 (0,0); mínimo 0,∞ 0,∞

6y x= + (–6, 0); mínimo 6,− ∞ 0,∞

6y x= + (0, 6); mínimo 0,∞ 6,∞

y x= − (0, 0): máximo 0,∞ ] ],0−∞

5y x= − + (0, –5); máximo 0,∞ ] ], 5−∞ −

5 a. 2 b. 0

6 (12,5)

7 a. 3,6 b. Síy

0

6

8

10

12

4

2x

2 4 6 8 10 12 14 16

8 Mediante la ecuación: 3 2 023

x x− = =;3 2 0x − = . La

imagen de 23

es 0 bajo la función y x= −3 2.

9

Evento Número

Número de bacterias al inicio del experimento 8Número de bacterias transcurridos cinco días 13Tiempo en que las bacterias han llegado a 18 individuos

20

10 A los 3 años y 6 meses

11 ( ) 1 5T d d= − −

12 a. Aproximadamente 373 clientes

b. Aproximadamente 474 clientes

13 a. A los 170 minutos

b. Aproximadamente 32º

Taller de profundización

Página 65 Trabaja

1 a. 0b. 3

c. 45 31x

d. c

e. a ba b−+

f. ( )25 p q+

g. 9 13 a +

h. 2 2 2 84+ +

i. 2 5 3a

j. 3 43

2

24

ab

k. a a6 24

l. ab2

6

2 18 5412 unidades

3 32

25+

cm2

4 14 64 mm, o bien 7 8 mm

5 6 6480 m 512 m+

SOLU MAT 3M (360-400).indd 366 2/11/11 15:07:03

Page 367: 003000.000 grou

SO

LU

CIO

NA

RIO

367

Evaluación de la Unidad 1

Página 66

I.

1 V

2 F

3 V

4 V

5 V

6 V

7 F

II.

1 160

2 0,3

3 6

4 –3

5 3

6 –2

7 2

8 10

9 0,5

10 2,1

III.

1 18

2 136

3 8

27

4 40 6

5 12 53

6 29

7 42 5 5a b

8 12

7 23c ab c

9 6 5 5m n

10 −9 12 xy

11 0 2 3, ba

12 73

13 21021

IV.

1 17

2 16

3 32

4 –62

5 45

6 –8

7 6

8 5

9 –1

10 1

17−

11 x = 4

12 x = –6

13 x = 3

V.

1 5 21 22 9 22ª , cm, es decir cm, es decir, 22 cm.

2 $5000 por artículo.

3 32 2 cm.

4 Que al multiplicar dos raíces de números consecutivos, la cantidad subradical del producto de éstas, va aumentando en 4, luego en 6, luego en 8, luego en 10 y así sucesivamente.

VI.

1 e

2 b

3 c

4 c

5 a

6 b

7 b

8 d

9 d

10 c

11 b

12 a

13 b

14 d

15 e

16 d

17 b

18 a

19 d

20 d

21 c

22 c

23 e

24 b

25 b

26 a

27 e

28 d

29 d

30 d

31 d

32 b

33 c

34 e

35 d

36 d

37 a

38 b

39 c

40 c

SOLU MAT 3M (360-400).indd 367 2/11/11 15:07:07

Page 368: 003000.000 grou

368

Páginas 74 a 145

Unidad 2Ecuaciones cuadráticas y

función cuadrática

Página 79

1 ( )3 1b b−

2 7 2 3 5a b− +( )3 4 5m m a−( )4 x a b c+ +( )5 4 13bx a −( )6 4 5 3x y z− +( )7 ( )( )4 1x x+ −

8 ( )( )3 1a a+ +

9 ( )( )7 2m m+ −

10 ( )( )5 4y y− −

11 ( )( )3 2t t− +

12 ( )( )8 1p p− −

13 ( )25u−

14 ( )23x −

15 5 42 2x +( )

16 ( )27 1m−

17 ( )22 6m +

18 ( )( )2 1x x+ −

19 ( )( )20 1a a− −

20 ( )( )2 3 1x x x− +

21 2 3 8 12 164 3 2x x x x x− − + +( ) 2 3 8 12 164 3 2x x x x x− − + +( )22 ( )212x −

23 3 34 2

xy x y −

24 n n−( ) −( )8 2

Página 84 Trabaja

1 a. −2 3 2 3y

b. –5 y 5c. No tiene solución

en R

d. 513

y − 513

e. 714

− y 714

f. –6 y 6

g. 6 y − 6

h. 303

− y 303

i. 9 y – 9j. –2 y 2

Página 86 Trabaja

2 a. 0 y 8,2

b. 0 y 94

c. 0 y 1031

d. 0 y −3211

e. 0 y 0,25

f. 0 y 7739

g. 0 y 12,6

h. 0 y −32

i. 0

j. 0 y 1

Página 87 Trabaja

1 a. 0b. 0 ó – 14c.

4 2 2 14x x x x− = − −( ) ( )

d. 30 bolsas con 50 monedas cada una

e. 0 o – 12

Página 90 Trabaja

3 a. 5 y 9

b. 0,5

c. 12

y – 4

d. –1 y 2

e. 3 y 11

f. 3 y 7g. 6h. 1 y 16i. 2j. 0,25

Página 91 Trabaja

2 a. A y C, sol: 3 y 5; B y D, sol: – 3 y – 5

b. x = 7c. bases: 6 dm y 13 dm, altura: 8 dmd. A: 9 y – 2, B: – 9 y – 4 e. 27 en cada fila y 12 en cada columna

Página 93 Trabaja

4 a. 4 y – 36

b. 10 y 3 10+ −3

c. 15 y2

d. 7 3 52

7 3 52

+ −y

e. No tiene solución en R

f. 5 12 2

y −

g. 37 y2

SOLU MAT 3M (360-400).indd 368 2/11/11 15:07:15

Page 369: 003000.000 grou

SO

LU

CIO

NA

RIO

369

5 a. 12 dm, 15 dm y 0,2 dm

b. 23 o – 18

Página 98 Trabaja

6 a. 13

y –12

b. 12

y 23

c. No tiene solución en R.

d. –8 y 6

e. 9 73

2− +

y 9 73

2− −

f. 1 334

+ y 1 334

g. –0,5 y 0,25

h. 16 y 6

i. 2

j. 4

7 a. 31 o – 31 b. 15 o – 15

8 12 2

Trabaja

3 1,63 m/s2, 2,38 m/s

4 Radio 3 cm, diferencia 420 cm3

5 3 cm.

6 2 metros.

7 Uno se demora 10 semanas y el otro 15 semanas.

8 12 77

16 77

cm y cm

9 a. 0,5 b. 4,5

Página 101 Trabaja

1 a. No tiene solución en R

b. 2; 2−c. No tiene solución en R

2 26

3 6 10 cm4 a. 25 b. 15 cm c. 5 mm d. 24

5 52 o –52

6 131, 24 m

7 20 cm y 2 5 cm

8 5,08 m

9 a. 0 y 70 y5

b. 0 y 10

c. 0 y 20 y

11

d. 0 y 70 y2

e. 0 y 220 y5

f. 0 y 350 y11

g. 0 y 110 y3

h. 0 y 0 y 1−

i. 0 y 0,25

j. 0 y – 8

k. 0 y 20 y

5−

l. 323

34

cm y cm

a. 1 3y3 2

− −

b. – 11 y – 7c. 30 y 11

d. 2 y 45

e. 7 61

2− y

7 612

+

f. − −7 57

2 y − +7 57

2g. – 3h. – 8 y – 3i. – 6 y – 7j. 10k. 2l. 0 y – 30

10

11 a. No tiene solución en R

b. 21 33 21 33;8 8− +

c. No tiene solución en R

12 103

13 a. 12 y 14

b. Si m = 7, 15814

. Si m = – 5,5, −15811

14 – 1,8 y 3

15 2 26 cm

16 a = 0,75 dm; b = 7 dm; h = 2,25 dm

17 a. 103 y7

b. 12

c. 7

d. 10

18 a. k = – 9 y 2; a = – 8 y b = –18; a = 3 y b = 4

b. − − − = + − =8 18 7 0 3 4 7 02 2x x x x;

c. −74

y 12

SOLU MAT 3M (360-400).indd 369 2/11/11 15:07:22

Page 370: 003000.000 grou

370

Trabaja

1 13:00

2 700 gr y 300 gr

3 20 m x 10 m

4 4 y 43

, el volumen aumenta

5 áreas: 10 m² y 6 m², cada galón rinde 2 m²

6 52 años

7 15t =

8 y = 1, eran 8 trabajadores y tardarían 6 días

9 a. 12 9 12x x+ = b. 5,8%

10 Representa el volumen, x = 5; aristas: 2 dm, 7 dm y 16 dm

Página 111 Trabaja

1 y

4

5

3

2

1

0

x

–1,2 –0,8 –0,4 0,4 0,8 1,2

a.

y

4

5

3

2

1

0

x

–5 –4 –3 –2 –1

b.

y

2

4

–2

–4

0

x

–2,4 –1,6 –0,8 0,8 1,6 2,4

c.

2 a. No b. No c. Sí

3 a. Cóncava hacia arriba.

b. Cóncava hacia arriba.

c. Cóncava hacia abajo.

Trabaja

1 a. Cóncava hacia abajo.

b. Cóncava hacia arriba.

c. Cóncava hacia abajo.

d. Cóncava hacia arriba.

e. Cóncava hacia abajo.

f. Cóncava hacia abajo.

g. Cóncava hacia abajo.

h. Cóncava hacia arriba.

2 Sí, son ciertos los datos.

SOLU MAT 3M (360-400).indd 370 2/11/11 15:07:22

Page 371: 003000.000 grou

SO

LU

CIO

NA

RIO

371

Página 116 Trabaja

4

Ejercicio Intersección con eje x Intersección con eje y

a (11,0) y (–8, 0) (0, –176)

b (5, 0) (0, –25)

c 1 3 0−( ), y 1 3 0+( ), (0, 2)

d (1,0) y (16, 0) (0, 16)

e (–3, 0) (0, 27)

f (–14, 0) y (14, 0) (0, 196)

5 a. Punto de Partida: ( )2,0 . Punto de llegada 0 0,( ).

Página 120 Trabaja

6 a. 1 , 22

− − b. 8, 32 c.

3 3,8 2

7 a. Sí b. No c. Sí

8 i. b ii. c iii. a

9 i. azul ii. verde iii. amarillo

10 a. III

b. II

c. Está sobre el eje y

Página 122 Trabaja

3 a. 72

x =

b. x = − 34

c. 0x =d. 1x = e. x =

2 33

4 a. a los 4 segundos b. 172

x =

Página 124 Trabaja

5 20 y 24

6 Del grupo de Amaro.

7 a. T =96 86, oCºC.

b. 100 ºC.

Página 126 Trabaja

1 a. Sí, porque el coeficiente de x2 es menor a cero

b. − −

13

5, y 1 5,−( )c. ambos tienen la misma ordenada

2 −( ) ( )1 4 0 5 4, , ;y

3 a. −( ) ( )4 5 2 5, ,yb. No lleva respuesta ya se debe verificar.

4 a. Cualquier número R+

b. Cualquier número R–

c. 1 y 5

5 a. No, 1 18,( ) no pertenece a la curva. Las ventas fueron 20 unidades, por tanto 1 20,( ), sí está en la curva.

b. Septiembre 2009.

c. 140 unidades.

d. No, se proyecta vender 350 unidades.

e. Si, las ventas debieran alcanzar las 650 unidades, según la curva de proyección

6 a. 0 0,( )

b. 1 5516

,

, 3 58, km

Trabaja

1 − −

1 132

0, , − +

1 132

0, y 0 3,−( )

2 a. Cero; 6,6∆ = − = –80, menor a cero

b. Dos; 6,6∆ = − = 225, mayor a cero.

c. Uno, 6,6∆ = − = 0d. Dos; 6,6∆ = − = 4, mayor a cero

e. Cero; 6,6∆ = − , menor a cero

f. Dos; 1,7∆ = , mayor a cero

3 Tienen los mismos puntos de intersección, y que son: 1 5 0 2 0, ; ,( ) ( )−y

4 y x x= − + −3 11 112

5 a. 11 1 ,0

5 +

b. 0, –2

SOLU MAT 3M (360-400).indd 371 2/11/11 15:07:30

Page 372: 003000.000 grou

372

6 a. ;6 6−

b. y x x y x x= − + = + +0 5 6 3 0 5 6 32 2, ; ,

7 a. −( )1 25 0, ; b. 0 4 5; ,−( )8 42 unidades de área

9 4 2 6+

10 a. Los tres valores están correctos, pues están comprendidos entre –0,5 y 1, que son las abscisas de los puntos de corte.

b. 18

11 a. a 10 m b. No, es 8 m

12 Tienen los mismos puntos de intersecciones con el eje x : , ; ,1 5 0 0 4( ) ( )y . Difieren en el punto de intersección con el eje y , ya que son 0 12 0 18, ,( ) ( )y , respectivamente.

13 0 9 3 0 7 0, , , ,−( ) ( ) ( )y, 0 9 3 0 7 0, , , ,−( ) ( ) ( )y y 0 9 3 0 7 0, , , ,−( ) ( ) ( )y

14 15000 unidades. Sucede por la forma parabólica de la curva.

15 El punto de referencia está en d = ( )0 0 0, ,es decir , es decir d = ( )0 0 0, ,es decir de la gráfica.

Por tanto, en 0 5, ,( ), el móvil se encuentra detenido a 5 km de este punto.

1 0,( ), transcurrido una hora, el móvil se ha desplazado acercándose al punto de referencia y llegando a él.

5 0,( ). Después de haberse alejado del punto de referencia, se devuelve, transcurrido cinco horas de iniciado el movimiento.

16 a. (7, – 34), máximo.

b. (0,1), máximo.

c. 9 95,8 16

, máximo.

d. (0, –12), mínimo.

e. 32

714

,

, mínimo.

f. −

43

21, , mínimo.

17 25 cm.

18 a. No.

b. 125 unidades.

c. Aproximadamente $12.

19 31,2

20 La función, puesto que los costos mínimos

dan 92

21 $140000000 en 30 años

22 Después de los 25 años

23 1000 bacterias

24 Se debe disminuir la base y aumentar la altura en 1,5 cm. El área máxima será 21,125 cm2.

25 15000 copias, después de 15 días de lanzado el CD.

Evaluación de la Unidad 2

Página 132

I. Crucigrama

R

A

I

CE AU IC NO UC DA AR

NU A

EC R OD

S

IT AC

E

S

EV

R

T

IM

N

A

E

T

CSID

R

I

IV

D

A

OC

C

A

E

M

T

R

DE

J

E

A

S

I

C

E

B

AP

R

A

O

L

10

8

4

6

23

1

7

9

5

II.

1 7 972

+ y 7 972

2 –2 y 0,75

3 0 y 8

4 –3 y –2

5 –1,2 y 5

6 − +4 10 y − −4 10

7 –4 y 2

8 0 y 5

9 3 y 710 3 7y −11 No tiene solución.

12 3 3 33

43 3 33

4− +

y

SOLU MAT 3M (360-400).indd 372 2/11/11 15:07:38

Page 373: 003000.000 grou

SO

LU

CIO

NA

RIO

373

III. 1 Sí.

2 No.

3 Sí.

4 Sí.

5 Sí.

6 Sí.

IV. 1 50 m por 21 m.

2 16, 12 y 20 cm.

3 8 m por 14 m.

4 No. Porque n (n+1) = 1200 no tiene solución en N, siendo n un natural a buscar.

V. Grafica las siguientes funciones cuadráticas:

1 y x x= −2 32

y

80

100

60

40

20

x

–6 –5 –4 –3 –2 –1 1 2 3 4 5 60

2 y x x= − − −2 5 2y

–40

–20

–60

–80

x

–6 –5 –4 –3 –2 –1 1 2 3 4 5 60

3 y x=6 2

y

200

250

150

100

50

0

x

–6 –5 –4 –3 –2 –1 1 2 3 4 5 6

4 y x x= − + +2 3 62

y

–40

–20

–60

–80

–100

0

x

–6 –5 –4 –3 –2 –1 1 2 3 4 5 6

5 y x x= − +7 212

y15

10

5

–5

–2 2 4 6 8 10 x0

SOLU MAT 3M (360-400).indd 373 2/11/11 15:07:41

Page 374: 003000.000 grou

374

VI.

concavidadPunto(s) de corte(s) con

el eje x

Punto de corte con el eje y

vértice eje de simetría

1 Hacia abajo

2 ,03

− y

() 4,00,0( )4,0() 4,00,0( )4,0

1 1,3 3

− 13

x = −

2 Hacia arriba

No hay () 4,00,2( )4,0 () 4,00,2( )4,0 x = 0

3 Hacia arriba

() 4,00,0( )4,0 () 4,00,0( )4,0 () 4,00,0( )4,0 x = 0

4 Hacia abajo

1 22 ,03

− −

y

1 22 ,03

− +

() 4,00,7( )4,01 22,3 3

− 13

x = −

5 Hacia arriba

No hay () 4,00,2( )4,01 7,2 4

− 12

x = −

6 Hacia abajo

1 ,03

y

() 4,01,0( )4,0() 4,00,–1( )4,0

2 1,3 3

23

x =

7 Hacia arriba

No hay () 4,00,9( )4,0 () 4,00,9( )4,0 x = 0

8 Hacia abajo

7 ,03

( )0, 49− 7 ,03

73

x =

VII.

1 2,25 s

2 Sí, en los puntos (0, –3) y (1, 2).

3 a = 1; (0,1) y (1,0) por ejemplo.

4 Solo y x= − − +( )5 82

tiene máximo pues sus ramas se abren hacia abajo.

5 (1, 3), I cuadrante y −

14

2316

, , II cuadrante.

VIII.

1 a

2 e

3 d

4 e

5 b

6 e

7 d

8 b

9 c

10 d

11 b

12 c

13 e

14 c

15 a

16 d

17 e

18 d

19 c

20 c

21 c

22 c

23 a

24 b

25 d

26 a

27 c

28 e

29 d

30 b

31 a

32 e

33 e

34 c

35 b

36 e

37 b

38 b

39 e

40 e DEMRE

Evaluación de síntesis 1 (Unidades 1 y 2)

Página 142

I.

1 Se multiplica la cantidad de subradicales, conservando la raíz con el índice respectivo.

2 El profesor de Martina le propuso el siguiente desafío, calcular el valor de x en

729 3x = . Martina lo pensó por algunos minutos y recordó que usando sus conocimientos de las raíces y sus propiedades y solo utilizando la raíz cuadrada de 2 y/o 3, podría resolver el desafío. Hizo algunos cálculos y dio su respuesta... ¿cuál fue la respuesta de Martina y como lo hizo?

Respuesta: x = 6, 3 6729 729 729x = =

SOLU MAT 3M (360-400).indd 374 2/11/11 15:07:42

Page 375: 003000.000 grou

SO

LU

CIO

NA

RIO

375

3 Sí, porque el vértice está en dicho cuadrante, este será el punto más bajo de la parábola cóncava hacia arriba, con una ordenada siempre positiva. En otras palabras, si hiciéramos y = 0, en la ecuación de la parábola, no habría solución. Esto último ocurre cuando el respectivo discriminante es menor a 0.

4 Como a es menor a 0, entonces la función

tiene un máximo. Ahora bien, este máximo

viene dado por 4

4

2ac ba−

. Como b = 0, luego

se reduce a 44

aca

, y simplificando se tiene c .

5 a. ba

− b. ca

II.

1 a. −38 5

b. 2 2 252x x+ −

c. 4 27 102 3x x x+ −

d. 3 5 5 330+

2 a. 12 b. 8

3 a. 1 y 34

b. 5 3± 97

8

c. 299 y19

d. 15

e. 11

4 a. –100

b. ---

c. Máximo: (4, 3); pre imágenes: 4 6 y 4 6+ −

d. ( ) 82,9 y ,95

III.

1 9 y 12

2 Mauricio, pues aunque al resolverla se tiene que x = 1, al comprobarla, la ecuación no tiene solución.

3 $656

4 Cada juego costó $2500 y compró 12 juegos

5 d = 4,782 m y d 4 = 8,782 m

6 $5000

7 Se deben vender 75 libros y la utilidad máxima será U$5600

8 2 segundos, pre imagen

IV.

1 a

2 b

3 a

4 d

5 e

6 b

7 d

8 c

9 e

10 e

SOLU MAT 3M (360-400).indd 375 2/11/11 15:07:46

Page 376: 003000.000 grou

376

Páginas 146 a 215

Unidad 3Desigualdades e inecuaciones

Página 151 Trabaja

1 a. { }1,2

b. { }1,2,3,4,5,6,7,8

c. { }4,6,8

d. { }1,2,3,4,5,7

e. { }1,2,3,4,5,6,7,8,10

f. { }/ impar 5 9∈ ∧ ≤ ≤x x xN

2 a. { }{ }3,4 ; /3 4x x∈ ≤ ≤N

b. { }{ }7 ; / 7x x∈ =N

c. { }{ }9,27 ; / 3 , 2,3nx x n∈ = =N

d. {}{ }3 ; / 3x x∈ =N

e. { }{ }3,4,5 ; /3 5x x∈ ≤ ≤N

f. x x x∈ ∧{ }N £ £/ impar 5 9

Página 160 Trabaja

a. 7 7− <b. 6n≥

c. 1,75 mE ≤d. L A>e. 65m< o 65m>

f. 75007.500 14.590p≤ ≤ 14590g. a b c+ >

h. 34

V <

i. 2000 3000£ p<j. 2 2 2a b ab+ ≥

1

2 a. Sean a y b los dos reales positivos, es decir a > 0 y b > 0, y lo que queremos demostrar es que a + b es positiva, es decir a + b > 0. Recordando que al tener dos desigualdades del mismo sentido, se pueden sumar sus miembros y conservando el sentido de la desigualdad, se aplica:

Entonces:

a

b

a b

>+ >+ >

000

significa que la suma es positiva

b. Sean x e y los dos reales negativos, es decir x < 0; y < 0, y lo que queremos demostrar es que x + y es negativa, es decir x + y < 0. Aplicando la propiedad de que al tener dos desigualdades del mismo sentido se pueden sumar sus miembros y mantener la desigualdad,

Entonces:

x

y

x y

<+ <+ <

000

significa que la suma es negativa

c. Si a es mayor o igual a 1, es decir, 1 a≥ se

quiere demostrar que 1 1a≤

Como a ≥ 1esto se rescribe como 1 £ a.

Multiplicando por 1a

que es positivo a

ambos miembros de la desigualdad, y por

tanto se conserva el sentido de ella, se

obtiene 1 aa a≤ . Simplificando por a,

finalmente tenemos 1 1a≤

d. Multiplicamos ambos miembros de a < b por 1

ab. Ten presente que

1ab

es positivo, por

tanto no afecta el sentido de la desigualdad. a b

ab ab< . Haciendo las respectivas

simplificaciones se tiene que 1 1b a<

e. Si a < b, se quiere probar que 2

a ba b

+< <

Observa el desarrollo que se presenta en la siguiente tabla:

Como a < ba < b / + aa + a < b + aEs decir, 2 a < a + bDividiendo por 2, se tiene:

2a b

a+<

Como a < ba < b / + aa + b < b + bEs decir, a + b < 2 bDividiendo por 2, se tiene:

2a b

b+ <

Como 2

a ba

+< y 2

a bb

+ < , podemos

reunir en aa b

b< + <2

f. Si c es positivo, se tiene que 1 2cc

+ ≥

Recuerda que ya vimos que 1 2aa

+ ≥

Si remplazamos a por c se tiene 1 2cc

+ ≥

g. Haciendo una tabla estimativa se tiene:

SOLU MAT 3M (360-400).indd 376 2/11/11 15:07:51

Page 377: 003000.000 grou

SO

LU

CIO

NA

RIO

377

n Número de personas

1n

Ración

de la torta

Valor en Kg que le corresponde a cada persona

212 0,500

313 0,3

414 0,250

515 0,200

616 0,16

717

0,143≈

101010

110

10,00....... 1nueve ceros

105050

110

10,00....... 1

cuarenta y nueve ceros

10100100

110

10,00....... 1

noventa y nueve ceros

1010001.000

110

10,00....... 1

novecientos noventa y nueve ceros

A medida que aumenta n, número de

personas a repartir la torta en partes iguales,

el valor de cada ración 1n

se acerca cada vez

más a 0, pero no alcanza este valor. Por tanto,

fluctúa entre 0 (no lo alcanza) y 12

(valor

mayor). Esto es, 1 102n

< ≤ .

Formalmente tenemos que, como n natural,

se tiene que es mayor a cero. Es decir, 0 < n. En

particular, 0 < 2. Además n mayor o igual a 2,

en otras palabras 2 1 10

2n< ≤ n.

Por tanto, 0 < 2 y 2 1 10

2n< ≤ n, podemos establecer

que 0 < 2 1 10

2n< ≤ n.

Ahora bien, Como n es positivo, se divide cada

miembro de 0 < 2 1 10

2n< ≤ n por 2n, y, se obtiene

02

22 2n n

nn

< £ . Haciendo las simplificaciones

correspondientes, logramos que 1 10

2n< ≤

Así podemos afirmar que 1n

fluctúa entre 0

(no lo alcanza) y 12

(valor mayor).

Por tanto, aunque se dividiera en partes

iguales entre muchísimas personas, cada

unasiempre recibiría una ración de torta, por

pequeña que sea.

h. Si a < 0, siempre a2 > 0. De aquí 2 0a < .

Así se puede decir que: “si a < 0 y 20 a< ,

entonces 2a a< . Como 2a a= ,

tenemos a a< .

Si a = 0 o a > 0, siempre a2 11 0

2 n<≤ 0. Es claro

que 2a a= . Por tanto, a a= .

Reuniendo los tres casos, cuando a < 0;

a = 0 y a > 0, en una sola desigualdad, se

obtiene a a≤

i. Como n es natural 0 < n. Además “todo

número natural es menor que su sucesor”, es

decir, n < n + 1. De aquí se puede escribir que

0 < n < n + 1, dividiendo por n + 1, tenemos:0 1

1 1 1n n

n n n+< <

+ + + y de aquí 0 1

1n

n< <

+j. Malaquías estableció que:

i. “Como 3 0,5 7 0,5⋅ < ⋅ y además

0,5 7 0,75 7⋅ < ⋅ , luego 3 0,5 0,75 7⋅ < ⋅

”lo cual es verdadero, ya que reduciendo

se tiene: 1,5 3,5< y 3,5 5,25< , luego por

transitividad se tiene: 1,5 5,25< .

ii. Como a, b, c, d son positivos, tal que

a b< y c b< , entonces a c b d⋅ < ⋅

Tenemos a b< y la multiplicamos por c, y

obtenemos a c b c⋅ < ⋅

3 π π100 625¿ ¿,[ [100 625¿ ¿,[ [100 625¿ ¿,[ [ o bien 314 1 926 5, ; ,[ [

SOLU MAT 3M (360-400).indd 377 2/11/11 15:07:53

Page 378: 003000.000 grou

378

4 ⋅ + ≤50 35 300i

5 Para el área: Si:

aa

aa

+ ≥ ⋅

+

1 2 2

2 1 4

/

bb

bb

+ ≥ ⋅

+

1 2 2

2 1 4

/

Entonces,

A aa

bb

A

= +

⋅ +

≥ ≥

1 1

4

2 2

2

cm Para el perímetro:

P aa

bb

P

= +

+ +

≥ ≥

2 1 2 1

8

2 2

cm

6 pq<1

pq

pq

< ⋅1 /

pq

pq

<

2

pq

pq

pq

< ⋅

2

/

pq

pq

<

3 2

Por transitividad se puede establecer

pq

pq

pq

<

< <

3 2

1

7 a. 5544 000 00000≤ ≤d 6 9b. 14 televisores como máximo.

Página 165 Trabaja

8 a. { }/ 5 5x x∈ − ≤ ≤R

–5 0 5

b. { }/ 3 7x x∈ − ≤ <R

–3 0 7

c. { }/ 1 5x x∈ − ≤ ≤R

–1 0 5

d. { }/ 4x x∈ − <R

0 4

9

a. 6,− ∞ b. 1,1−

c. 11, 1− − d. 13 17;( )

10 a. { }/ 2 ; ,2x x∈ ≤ −∞ R

b. { }/ 4 1 ; 4,1x x∈ − ≤ ≤ − R

c. { } ( )/ 3 3 ; 3,3x x∈ − < < −R

d. { }/ 2 5 ; 2,5x x∈ − ≤ < − R

11 a. 7;•( )b. 7;•( )c. −( )•;7

d. ,7−∞ e. −( )9 20;

f. 9,20− g. 9,20− h. ¿ , 13( )π

i. 20,21 j. 21,+∞

f. − −] ]∪ − −[ [∪[ [• •, , ,8 4 1 5

g. −

73

92

,

h. ∅i. ( )3, 1− −

j. 9 ,2

a. −] ]5 7,

b. 1,4−

c. 1,4− d. − −] ]∪ −[ [• •, ,8 4

e. 4,7−

12

Página 170 Trabaja

13 Si n representa el número de semanas de gestación:

a. Recién nacido pretérmino: RNPT n < 37b. Recién nacido a término: RNAT 37 ≤ n ≤ 42c. Recién nacido postérmino: RNPT 42 < n

14 Tabla sugerida:

SOLU MAT 3M (360-400).indd 378 2/11/11 15:08:03

Page 379: 003000.000 grou

SO

LU

CIO

NA

RIO

379

CategoríasNúmero trabajadores (x) por empresa

Número total de trabajadores

%

Empresa grande 200 < x No indica * 11,1Pyme 5 ≤ x ≤ 199 1834553 40,2Micro 1 ≤ x ≤ 4 2024300 44,4Sin identificar Falta información 193900 4,3* Este valor puede estimarse usando la composición porcentual.

15 a. 100 35000,[ ]b. 20 24,[ ]c. 1996 2000 2004> >d. Dependerá de la opinión de cada estudiante.

Página 172 Trabaja

1 a.

2 2

a. > b. < c.

d. e. f. >

g. h. < i. <

21 21 2 21 12 22 2

13 8 13 8 2 2 8 75 5

z x x y z y

z y y x x z

y zz y x z y z

+ + ≥

− ≤ − − > − − −

− ≥ − + + − −

b.

2 2

a. > b. < c.

d. e. f. >

g. h. < i. <

21 21 2 21 12 22 2

13 8 13 8 2 2 8 75 5

z x x y z y

z y y x x z

y zz y x z y z

+ + ≥

− ≤ − − > − − −

− ≥ − + + − −

c. 2 2z y≥

d.

2 2

a. > b. < c.

d. e. f. >

g. h. < i. <

21 21 2 21 12 22 2

13 8 13 8 2 2 8 75 5

z x x y z y

z y y x x z

y zz y x z y z

+ + ≥

− ≤ − − > − − −

− ≥ − + + − −e.

2 2

a. > b. < c.

d. e. f. >

g. h. < i. <

21 21 2 21 12 22 2

13 8 13 8 2 2 8 75 5

z x x y z y

z y y x x z

y zz y x z y z

+ + ≥

− ≤ − − > − − −

− ≥ − + + − −f. − −1

212

x z>

g. 13 8 13 8z y− −≥

h. 25

25

xy

zz+ +<

i. 2 2

a. > b. < c.

d. e. f. >

g. h. < i. <

21 21 2 21 12 22 2

13 8 13 8 2 2 8 75 5

z x x y z y

z y y x x z

y zz y x z y z

+ + ≥

− ≤ − − > − − −

− ≥ − + + − −

2 Perímetros: 4 2 6 28 2r r a b B< <, + + , Áreas: 2 3 142 2r r rb rB< <, +

3 [ ] [ ] [ ] [ ] [ ] [ ]3 5 6 1 4 2p p p p p p> > > > ≥

4 a. a a

a

2 2

4

0

0

≥ ⋅

/ b. a a

a

4 2

6

0

0

≥ ⋅

/

5 a b

a ab b ab

a b ab

ab

ab

−( )− + ++

2

2 2

2 2

1

0

2 0 22

1 2 212

/

/ :

6 a. − −] [∪[ [• •, , ;2 0 5

b. −] [∪[ [• •, , ;0 0 5

c. −] [∪[ [• •; , , ;1 4 2 2

7 a. −

32

12

,

b. −] ]7 7 10 5, ; ,

8 a. 1 4;[ [b. 0 5 0 125, ; ,−] ]

9 a. −] [30 0;

b. 5 7;[ ]10 a. ---

b. −] [6 0,

c. 2 6,[ ]

d. − −] [10 2,

e. 2 6,[ ]

11 33000 77 000;[ ]12 Para mamá: [ ]1,6 ; Para tía Coné [ ]1,3

13 a. [ ]280 m, 300 m

b. No, porque los posibles valores son los de 6 6 16h h; ,[ ]

14 9 6 12, ;cm cm] [15 a. 1500 1500 25m m; ,] ]

b. 1 499 59 1500, ;m m[ [Página 177 Trabaja

a. ( )20,− ∞

b. −] ]•,1

c. −] ]•; ,0 5

d. ( )8,∞

e. 27,13

−∞

f. 4 ,3 ∞

g. ( )2,∞

h. 316

,•

i. , 193

−∞ −

1

2 a. ] ], 0,6−∞

b. 5 ,3

− ∞

c. 14 ,3

3 17 cm7

x ≤

4 34 46m m,] [

SOLU MAT 3M (360-400).indd 379 2/11/11 15:08:16

Page 380: 003000.000 grou

380

5 { }......240,243,245,248,

6 −] [•, 8

7 6 1 10 1+( ) +( )cm largo cm y£ £ y

6 1 10 1−( ) −( )cm ancho cm£ £

8 % ( ) %0 5 14p≤ ≤

9 0 6 3, ;] [10 11 Edad del mayor 21< <

11 Producto Akg kg400 504,] [

Producto Bkg kg100 126,] [

Página 178 Trabaja

1 Menos de 60

2 a. 0 600< <mb. el plan B, porque ocupan más de 600 minutos

3 dvd: [ ]$ $38 500, 63 000 y

libros: [ ]$ $181 500, 297 000

4 º º84 C 100 CT< <f

5 Sandra [ ]m1,50 , 1,63 m ,

Roberto [ ]1,80 m, 1,96 m

6 Entre 31 y 32 páginas

7 17 es el mínimo de aprobados.

8 25a ≤

9 >0 347, m s2

10 1300 1565,] [. No, el precio es de más de $1300

11 a. 212F >b. Representa las temperaturas superiores al

punto de ebullición del agua en condiciones normales, expresada en grados Fahrenheit.

12 a. 23b. 16 < Nº de estudiantes que prefieren

chocolate < 39

13 x + ] [273 298 25 26> •, , , oC °C

14 625 baldosas como mínimo y de 749 baldosas como máximo.

15 Menos de $53.

16 − −[ ]16 15 6; ,

17 37 5 75, ;[ ]

Página 184 Trabaja

12 a. 2 3,3 2

b. 1 ,02

− c. 2z ≤d. ] [ [ [, 1 0,3−∞ − ∪

e. ] ] [ [, 2 2,−∞ − ∪ ∞

f. 8 31, ,7 2

− ∪ ∞

13 ] [ 5, 6 ,2 −∞ − ∪ ∞

14 ] [ [ [,0 1,−∞ ∪ ∞

15 a. −

313

0,

Página 187 Trabaja

a. 4,4−

b. 3 ,1

11 −

c. − −] ]∪[ [• •, ,50 50

d. 1 1, ,2 4

−∞ − ∪ ∞ e. ∅

f. 12,33

g. −] ]∪[ [• •, ,9 29

h. − −

∪[ [• •, ,16

36

i. −] [14 20,

j. −∞( )∪ +∞( ), ,39 26

18

19 a. Sí

b. (i) Si t es la temperatura, luego 2t ≤(ii) l precio de los lácteos, entonces 440 10l − ≤(iii) 502,5 7d − ≤ ,5 donde d es el valor del dólar.

c. (i) 500 5V − <(ii) 9,8477 < h < 9,9471

Página 189 Trabaja

1 a. −] [4 4,

b. − −] [∪] [• •, ,3 3

c. 0 14

,

SOLU MAT 3M (360-400).indd 380 2/11/11 15:08:24

Page 381: 003000.000 grou

SO

LU

CIO

NA

RIO

381

d. ( ) ( ),2 4,−∞ ∪ ∞

e. R

f. −] [4 1,

g. R

h. −] ]∪[ ]• •, ,9 25

i. R

j. 35

1,

k. ] ] [ [,0 1,−∞ ∪ ∞

l. − −

∪ +

• •, ,7 2 13 7 2 13

2 a. −

•, 3114

b. ( )2,∞

c. ( ) ( )1,0 1,− ∪ +∞

3 − −] [∪] [• •, ,11 6 para el menor; y

− −] [∪] [• •, ,6 11 para el otro

4 <1 cm 5 cmx ≤

5 3 ,12

− 6 a. [ ]6,6−

b. ] ] [ [, 0,5 0,5,−∞ − ∪ ∞

7 0 3,] [0,3

8 ] ] [ [, 3 3,−∞ − ∪ ∞

9 22 5, 2 5 ,7 − − − + ∪ ∞

10 −] [∪] [• •; , ,0 5 6 . Con x = 0, se muestra lo solicitado.

11 5 ,32

12 2,9−

13 1250,

3

es en cm.

Trabaja

1

Inecuaciones Solución

a. 3 1 1x + < − −

∪ ] [• •, ,2

30

b. x − > −8 1 − −] ]∪ −[ [• •, ,4 2

c. 3 1 1x + > −

23

0,

d. 2 5 7x x+ − £ −[ ]4 2,

e. 2 7 5x x+ − ≥ R

2 a. ∅ b. ∅

c. 137,3

− − d. −∞ −] [∪ ∞] [, ,5 5

e. ] [ ] [15, 10 2,3− − ∪ −

3 a. ⊂ b. ⊄ c. ⊄ d. ⊂ e. ⊂

4 1200 m hacia el sur y 800 m hacia el norte

5 22 38,[ ]6 − −] ]∪] [• •, ,4 2

7 Ganó Teo

8 ] ] [ [, 1 3,−∞ − ∪ ∞

Página 195 Trabaja

1 a. 9 5, ;•] [b. No tiene solución.

c. 152,7

d. ∅

e. 11,5

−∞ − f. ∅

g. 72

,∞

h. 9 51,17 9

Página 196 Trabaja

1 $300000 < sueldo <1 cm 5 cmx ≤ $350000

2 Entre $384 y $460

SOLU MAT 3M (360-400).indd 381 2/11/11 15:08:34

Page 382: 003000.000 grou

382

3 No, el sistema no tiene solución porque su intersección es vacía.

Página 197 Trabaja

1 a. − −

72

2,

b. 11, 10− − c. ] [2,∞d. 1,∞] [e. ] [, 6−∞ −f. ∅

2 a. −

6 23

,

b. ] [, 1−∞ −

c. ] [4,9

d. 21 3, ,2 2

−∞ − ∪ ∞ e. ∅

f. 2 ,0

23 −

Trabaja

1 Medirá más de 4 m y menos de 7 m

2 Más de 5 y hasta 30

3 Más de 5 y hasta 30

4 Más de 1 k, pero menos de 3 k

5 60000 90000,] [6 Todos los números menores o iguales que –15

7 79 años.

Página 201 Trabaja

1 , 3 0,4,5 7,−∞ − ∪ ∪ ∞

2 − −] [∪ −] [•, ,7 2 0

3 10,5 10,− ∪ ∞

4 , 2 3,−∞ − ∪ ∞

5 −

•, ,12

1320

23

Evaluación de la Unidad 3

Página 202

I.

1 Es una expresión matemática que indica que dos cantidades no son necesariamente iguales.

2 La desigualdad cambia de sentido. Sucede esto también al dividir por un número negativo.

3 Es un subconjunto de números reales.

4 a pertenece al intervalo y b no es parte del intervalo.

5 Una inecuación es una desigualdad que se verifica para un subconjunto de R.

6 No se puede multiplicar la desigualdad por 2x, ya que no sabemos si es negativo o positivo. Se debe separar en casos.

7 x > a o x < –a

8 x < b y x > –b

9 Es un conjunto de inecuaciones que puede tener una o más variables.

10 Se resuelve cada una de las inecuaciones por separado y luego se intersectan las soluciones.

III.

1 13 ,3

π −

2 Como no se permite resolver, se puede estimar a través de tablas.

0,345x <

Nota que, para que 5x

sea menor de 1, x

debe ser menor que 4. Hacemos una tabla:

Valor de x Valor de 5x

1 0,22 0,4

De aquí, el valor para x debe estar entre 1 y 2.

Valor de x Valor de 5x

1,1 0,221,3 0,261,5 0,301,7 0,34

SOLU MAT 3M (360-400).indd 382 2/11/11 15:08:36

Page 383: 003000.000 grou

SO

LU

CIO

NA

RIO

383

De acuerdo a esta última tabla los valores de x menores de 1,7, conforman el conjunto de solución. Así, tenemos que este es −( )•; ,1 7

3 ( )2,3 4,3f x≤ ≤

a b a + b a b+ a b a b+ a b a b+ ≤ +

5 7 12 12 5 7 12 12 ≤ 12–5 –7 –12 12 5 7 12 12 ≤ 12–5 0 –5 5 5 0 5 5 ≤ 50 7 7 7 0 7 7 7 ≤ 7

–3 3 0 0 3 3 6 0 ≤ 7–5 7 2 2 5 7 12 2 ≤ 12–7 5 –2 2 7 5 12 2 ≤ 12

4 a b a b+ ≤ +

5 Si v es velocidad del objeto y ve la velocidad de escape, se tiene:

Velocidad de lanzamiento Forma órbita

v < 0,71 ve----- *

v = 0,71 vecircular

0,71ve < v ≤ veelipse

ve < v parábola

* órbita no estable

IV.

1 −( )1 7;

2 ∆

3 0,•( )4 ∆

5 −( )2 4,

6 −( )3 5,

7 3 5 4, ;] [

8 −

59

7,

9 1 5,[ [10 1 3,] ]

V.

1 − ∞

24235

,

2 −∞ −

, 52

3 ( )1,5,− ∞

4 ( )3,− ∞

5 ,0,5−∞

6 35

241,•

7 − −] ]∪ −] ]•, ,5 2 0

8 −

25

15

,

9 − −] [∪

∪] [• •, , ,1 0 1

72

10 R+

11 R−

12 −∞ −] [∪ − −

, ,5 5 94

13 3 ,32

14 − −] ]3 1,

15 1,0−

16 5 ,33

VI.

1 “Si, se cumple siempre.

2 1 3x − <

3 Si la solución está dada por 1 3x< < , en particular contiene a 2. Pero 2 2 3 1⋅ − < es falso, por tanto, este intervalo no es conjunto de solución de 2 3 1x − <

4

Intervalo de Edad Dosis en gotas

(0, 4) 5

)4,12 7

[ ]12,20 10

(20, …) 15

5 Como a < b, dividimos por ab y mediante

las simplificaciones respectivas obtenemos 1 1b a<

Ahora bien, multiplicando por –1, tenemos

− > −1 1b a

6 No se pueden precisar, pero si l es el

largo, 20 6 30 3£ £l y a el ancho,

403

6 20 3£ £a

SOLU MAT 3M (360-400).indd 383 2/11/11 15:08:44

Page 384: 003000.000 grou

384

7 x pertenece al intervalo 205,3

8 1,75 < x < 1,88

9 0 56a< ≤

VII.

1 A

2 D

3 B

4 E

5 E

6 E DEMRE

7 D

8 D

9 C

10 A

11 C

12 C

13 C

14 C

15 C

16 D

17 B

18 C

19 A DEMRE

20 A

21 A DEMRE

22 B

23 B

24 C

25 E

26 A

27 B

28 C

29 E

30 B

31 B

32 A

33 D

34 E

35 B

36 C

37 B

38 E

39 B

40 C

Evaluación de síntesis 2 (Unidades 1 a 3)

Página 212

I.

S W P R U P M V D N D W F A Z N X V D IQ G A G M D D R G S Z U C X R O G P E BF Q R A I Z C U A D R A D A M I N U S JD K Y P O Y F O R R X B T F H C D A I CV G D I S C R I M I N A N T E A T Y G TM H T Y Z T U A V N C O Y F A U U L U CI K F F Z P M J A I Z X P D D C A O A QS D W X L Q R Q A W J T N G Y E F U L TT E G R F E Y N F Y S F F Y W N O C D RN O I C A Z I L A N O I C A R I S Z A ZX W L H F G O J Y T H P U D Y J N A D FM V B J T G O N L Y A T L G X T Z O T CJ E F L H H E S J R T E W S M U R J N UO R I A M D C K A N V U M C V B I Y H PW T B Y U B K B O O F U A M P J O I D ZD I L R B D O W D M M K H Z O Z J M X IH C E W V L Y D M R S Z Q H L B U A K LH E T O A V Q L K V O G L L M G P A E HO L A V R E T N I G Y W E C E F C R R ZD U E Q G L C F N U A U G T Z O W C M X

II. 1 a. 318 60 6−

b. 7 11

c. 3 2 14 3 237

+ +

2 a. x = 15 b. – 5 y 1 c. ∅ d. 12

3 VérticeIntersección con

Eje X Eje Y

a.358

, -1 369

16

9,0( ) y -14

,0

0, -9( )

b.134

,498

-5,0( ) y -32

,0

0, -15( )

c. 1, -13

0,0( ) y 2,0( ) 0,0( )

4 a. −∞ − 1,

28

b. −

73

,•

c. ] [ −∞ − ∪ ∞ 7, 1 ,2

d. 74

, 314

e. 559

935

,

III. 1 664 178 3 334 5 62 15− − +2 250 artículos con un costo de $12000

3 P t t tc ( ) = − + −2 14 202

4 y x x= − − −23

143

42 y AB =8

5 5 53 1 23, ,

2 2 2 2y

6 4 m de profundidad y 192000 litros.

7 Cualquier número entero del intervalo 1 16,[ [

8 $458

IV.

1 A

2 C

3 B

4 C

5 A

6 A

7 D

8 B

9 E

10 A

SOLU MAT 3M (360-400).indd 384 2/11/11 15:08:52

Page 385: 003000.000 grou

SO

LU

CIO

NA

RIO

385

Páginas 216 a 289

Unidad 4Algo más sobre triángulos

rectángulos

Página 221 Trabaja

1 a. 8:1b. 15:14c. Depende de la cantidad de alumnos de

ambos cursos en tu colegio.

d. Depende del número de salas y el número de oficinas de tu colegio.

2 8:3

3 36 cm

4 $162500

Página 228 Trabaja

1 AC BC= =6 8cm y cm

2 2 2 cm

3 7213

5 54cm cm≈ ,

4 0,58 cm y 3,32 cm

5 37,5 cm2

6 26 10 13+ unidades

7 No.

8 3,5 unidades

9 4,85 cm

10 Sí.

Página 230 Trabaja

1 a. 143,11 cm

b. Muy acertado, conforme a la información dada.

2 2 13 3 13,3 a. 28 cm2

b. Representa la altura del triángulo, mide 12.

4 a. 9 m b. siete

Página 232 Trabaja

1 a. 2 5 u

b. 4 2 2 2− u

c. 9 76314

u

d. 7 u

e. 5 u

f. 21 2 42 273+ + u

g. 18 3 u

h. 9 18 24

+u

i. 100 u

j. 6

11 u

2 294 cm

3 a x x a x xa

xa a2 2 2 2

2

2 22 2

22

= ⋅ ⇒ = ⇒ = ⇒ = ⇒

a x x a x xa

xa a2 2 2 2

2

2 22 2

22

= ⋅ ⇒ = ⇒ = ⇒ = ⇒

4 6,72 dm

5 3 m aprox.

6 6 y 8 cm

7 anclaje largo: 16,6 m; segmentos en el piso: 7,5 y 13,3 m

8 9,96 cm2

9 12 palos de 16 cm (para las aristas); 1 palo de

16 2 cm (para el cateto del triángulo celeste);

1 palo de 16 3 cm (para la hipotenusa del

triángulo celeste) y 1 palo de 16 6

3cm (para la

altura del triángulo celeste)

10 44,2368 m2

11 4,62 m aproximadamente

12 Sí, es cierto.

13 a. 8 15 u3

b. 10 6 u3

c. 2 10 u

d. 15 u

e. 2 6 u

14 a. 24 55

cm b. 12 55

cm c. 245

cm

15 a. 600169

u b. 12013

u

16 280 10 u3

SOLU MAT 3M (360-400).indd 385 2/11/11 15:09:00

Page 386: 003000.000 grou

386

17 3 154

cm

18 a. 15 7 cm8

b. 71,31 cm2

19 a. 7,2 cm b. 9,6 cm c. 19,44 cm2

20 a. 9 3 cm

b. 81 34

cm2

c. 81 3π−( ) cm2

21 a. 7,5 cm b. 625 cm24

c. 769 cm2

22 a. 2 2

2 2 2 2m m nP m n m n

n m+= + + + +

b. An m n

m=

+( )2 2

2

Página 241 Trabaja

1

x2–y2

x2+y2 2xy

90º

ca

b

2

n a b c

1 3 4 52 5 12 133 7 24 254 9 40 415 11 60 616 13 84 857 15 112 113

3 No, no lo contradice, porque la nueva arista no es entera, ya que es 3 35 3,27≈

4 Cuadrilátero

5 7,24 y 25 u

6 3 cm

7 30 cm

8 Porque equivale a

cateto hipotenusa otro cateto= −( ) ( )2 2 que

es otra manera de enunciar el teorema de

Pitágoras en un triángulo rectángulo escaleno.

9 16 2 unidades.

10 Sí.

11 a. Si b. Si c. No

12 11 y 61

13

C

B

A60 u

C

45 u

75 u

B

A

60 u

36 u

48 u

C

B

A

60 u80 u

100 u

SOLU MAT 3M (360-400).indd 386 2/11/11 15:09:02

Page 387: 003000.000 grou

SO

LU

CIO

NA

RIO

387

Página 242 Trabaja

1 18,8

2 2 6 12 45 2 9

4 24 36 12 45 4 36 81

4 3

2 2 2

2 2

2

n n n

n n n n n

n

+( ) + +( ) = +( )

+ + + + = + +

+ 66 81 4 36 812n n n+ = + +

3 100 m aprox.

4 a. i) 15, 20 y 25 ii) 24, 32 y 40 b. Como se obtiene a3 + 13, el producto

indicado nunca será reducible a un cubo de un número natural.

Página 243 Trabaja

1 a. 16 b. 14, 48 y 50

2 a. 15 cm, 8 cm y 17 cmb. Sí, porque 15, 8 y 17 son naturales y

2 2 215 8 17+ =

Trabaja

1 En particular para x4 4 4131 119= + el teorema de Fermat dice que no hay un trío de números naturales x, 131 y 119 que satisfagan la igualdad.

2 Se cumple el teorema de Pitágoras para este trío de números.

3 a. 6 y 12 b. 108, 144 y 180

Página 251 Trabaja

1 sen δ δ δ= = =0 6 0 8 0 75, cos , ,; y tg

2 0,43

3 0,5

4

Medida del ánguloFunción Trigonométrica 15º 43º 79º

sen 0,26 0,68 0,98cos 0,97 0,73 0,19tg 0,27 0,93 5,14

5

12 u

13 u5 u

s ne ± =

1213

senα = 1213

s ne ± =1213

tg ± =125

tanα = 125

tg ± =125

6

3 u5 u

53º

90º37º4 u

7 a. 60 20 8 24o u u; ,x y= =

b. 60 10 3 10o u u; x y= =c. 48 42 62o o aprox.; ; a =

8 a. 0,75 b. 233

9 Sí

10 g

=

α α

α

= =+

+

++

a

b

a a b

a b

b a b

a b

; ;

cos

sen2 2

2 2

2 2

2 2

11 a. 7 7474

b. 5 7474

c. 1 4,

12 a. 15241

b. 4

241

Página 253 Trabaja

1 5,81 m y 14°

2 Aproximadamente 21 cm

3 3653,42 m; 2558,15 m

4 6,48 m

5 La secuencia correcta es d. e. a. b. c. y la respuesta es 21,96 m

SOLU MAT 3M (360-400).indd 387 2/11/11 15:09:09

Page 388: 003000.000 grou

388

6 El primer guardabosque y tiene que trasladarse 1,29 km.

7 12,62 m

8 a. Sí

b. 5590,17 km.

c. No, porque en el cálculo trigonométrico, en rigor, el ángulo está entre los 48° y 49°, y el ayudante usó una aproximación.

9 En ambos pliegos se pueden colocar 2 decágonos pues el radio de la circunferencia es aprox. 32,4 cm. Conviene el primero, pues es más barato.

Página 256 Trabaja

1 306

2 a. 2129

b. 2120

c. 46º aprox.

3 a. < b. > c. > d. <

4 a.

23 7 240 7 64 56a. b. c. d. e. f. 17 17 289 17 225 289

b. 23 7 240 7 64 56a. b. c. d. e. f. 17 17 289 17 225 289

c. 240289

d. 161120

e. 64225

f. 0

5 a. 12 35 12 35a. b. c. d. e. aproximadamente 19º37 37 35 12

b. 12 35 12 35a. b. c. d. e. aproximadamente 19º37 37 35 12

c. 12 35 12 35a. b. c. d. e. aproximadamente 19º37 37 35 12

d. 12 35 12 35a. b. c. d. e. aproximadamente 19º37 37 35 12

e. aprox. 19°

6 a. 0,8 b. 0,75 c. 0,6 d. 1,3

7 45 28 45sen = ; cos = ; tg =53 53 28

x x x y

28 45 28sen = ; cos = ; tg =53 53 45

y y y

8 Sí, se puede. Los valores de las razones son

35 12 35 12sen cos , cos sen , tg , tg37 37 12 35

α β α β α β= = = = = =

35 12 35 12sen cos , cos sen , tg , tg37 37 12 35

α β α β α β= = = = = =

9 1385

10 3cos5

α = , el ángulo es aprox. 53º

11 El Sr. Tamayo tiene la razón, el ángulo es de

aprox. 43º y el seno pedido es 4 2125

12 9

4913

Larg

o del

hilo

tens

or de

l pé

ndul

o (cm

)

Altu

ra de

la po

sició

n de

lanz

amien

to co

n res

pect

o al

punt

o de e

quilib

rio(cm

)

Cate

to ad

yace

nte d

el

ángu

lo x

(cm)

Valo

r de c

os x

50 20 30 0,650 15 35 0,745 20 25 0,545 15 30 0,640 20 20 0,540 15 25 0,625

14 sen α α α

α α

= = =

= = =

817

517

815

817

1715

158

, cos , ,

, sec ,

tg

cosec cotg

15 Aumenta en un 22,2%

16 26 N, 23x y= = 23º

Trabaja

1 1147 m

2 a. 7º b. 2779 m

3 8,66 m

4 4239,52 m

5 a. 1,17 m s b. 67,25 m6 a. 157,22 m b. 143,31 m

7 168,5 m

8 30,67 km

9 80,83 m

10 MP 17,63 m, PR 18,76 m y RN 21,35 m= = =

11 2,71 unidades.

SOLU MAT 3M (360-400).indd 388 2/11/11 15:09:10

Page 389: 003000.000 grou

SO

LU

CIO

NA

RIO

389

12 44,76 u

48,63 u19,00 u

67º

90º23ºp2 p1

p3

13 Sí, el ángulo es de 7,4º

14 a. 6,14 mb. 5,77 m

Página 269 Trabaja

1 seccos

37137

1 153

oo osen

cosec= = = =a

c

37º

53º

a

b

c

2 30º y 150º

3 a. 1sec cos cos 1

cos⋅ = ⋅ =β β β

β

b. 1tg cotg tg 1

tgx x x

x⋅ = ⋅ =

4 0º; 180º

5 a. tg β b. 2tg β

6 Aumenta su valor a partir de 1. Porque cos 90º es 0, y esto indefine la función secante.

7 Sí

8 81º

9 Son perpendiculares

10 El mayor ángulo de inclinación es el que forma la recta de pendiente –3. La recta con pendiente 0 es paralela al eje x y la última recta es paralela al eje y.

490º 108º

4,53,532,521,5-0,5

-1

0,5

1

1,5

2

2,5

5 5,5 6

Página 270 Trabaja

1 sen 0,92; cos 0,39; cotg 0,42; sec 2,56; cosec 1,09α α α α α= = = = = sen 0,92; cos 0,39; cotg 0,42; sec 2,56; cosec 1,09α α α α α= = = = =

2 tgtg

cotgo

oxa

b b

ax

x= = =−

= −( ) ( )1 190

90

x

90 – x

a

b

c

3 ( )2 2 2 2

2 22 2 2

2 2

1 tg 1 tg 1 tg tg1 tg tg11 cotg tg 1 tg 11

tg tg

+ + += = = + ⋅ =+ + ++

β β β ββ ββ β β

β β

1+tg

tgtg

tg22

22β

ββ

β⋅+

=1

4 45º

5 a. 56º

b. Por ser paralelo al eje x, la velocidad es nula. El auto ha estado detenido a cierta distancia del eje de partida. Las intersecciones, en su componente x, permite saber en qué momento, cada auto (azul y rojo) se encuentra con este auto.

SOLU MAT 3M (360-400).indd 389 2/11/11 15:09:12

Page 390: 003000.000 grou

390

Página 272 Trabaja

1 a. cos cosec cossen

cossen sen

costg

cotgx x xx

xx x

xx

x⋅ = ⋅ = = = =1 1 1

cos cosec cossen

cossen sen

costg

cotgx x xx

xx x

xx

x⋅ = ⋅ = = = =1 1 1

b. tg

sec

sencos

cos

sencos

cos senxx

xx

x

xx

xx= = ⋅ =

1 1

c. cotg ±α α

αα

αα

⋅ ⋅ =

⋅ ⋅ = =

( )

sen

sensen

sec

coscos

2

221

1 1

cotg ±α α

αα

αα

⋅ ⋅ =

⋅ ⋅ = =

( )

sen

sensen

sec

coscos

2

221

1 1

d. 2 2

22 2

1 sen cos cotg1 cos sen− = =−

δ δ δδ δ

e. sen cossen

sen cossen sen

cosecxxx

x xx x

x+ = + = =2 2 2 1

sen cossen

sen cossen sen

cosecxxx

x xx x

x+ = + = =2 2 2 1

f. sen

coseccossec

sen

sen

cos

cos

sen sen cosxx

xx

x

x

x

x

x x x+ = ⋅ + ⋅ = ⋅ +11

11

⋅⋅ = + =cos sen cosx x x2 2 1

sencosec

cossec

sen

sen

cos

cos

sen sen cosxx

xx

x

x

x

x

x x x+ = ⋅ + ⋅ = ⋅ +11

11

⋅⋅ = + =cos sen cosx x x2 2 1

g. tg cos cos cos tg cos sec coscos

2 2 2 2 2 2 2 221 1 1y y y y y y y y

y⋅ + = +( ) = ⋅ = ⋅ =

tg cos cos cos tg cos sec coscos

2 2 2 2 2 2 2 221 1 1y y y y y y y y

y⋅ + = +( ) = ⋅ = ⋅ =

h. 1 1 1

2

2

2

2

22+( ) −( )

= − = =cos cos

coscos

cossencos

tgx x

xx

xxx

x

1 1 1

2

2

2

2

22+( ) −( )

= − = =cos cos

coscos

cossencos

tgx x

xx

xxx

x

i. sen sen sen sen sen cosx x x x x x− = −( ) = ⋅3 2 21

sen sen sen sen sen cosx x x x x x− = −( ) = ⋅3 2 21

j. 2 2 2

22 2 2 2 2

1 tg sec 1 cos 1 cosectg tg cos sen sen+ = = ⋅ = =β β β β

β β β β β

2 2 2

22 2 2 2 2

1 tg sec 1 cos 1 cosectg tg cos sen sen+ = = ⋅ = =β β β β

β β β β β

k. sen cosec

cossen

sen cossencos

tg2

2 1 1x xx

xx x

xx

x⋅ = ⋅ ⋅ = =

sen coseccos

sensen cos

sencos

tg2

2 1 1x xx

xx x

xx

x⋅ = ⋅ ⋅ = =

l. sen cos sen cosx x x x+( ) + −( )2 2

= + + + − +sen sen cos cos sen sen cos cos2 2 2 22 2x x x x x x x x = + + + − +sen sen cos cos sen sen cos cos2 2 2 22 2x x x x x x x x

= + = +( ) = ⋅ =2 2 2 2 1 22 2 2 2sen cos sen cosx x x x

= + = +( ) = ⋅ =2 2 2 2 1 22 2 2 2sen cos sen cosx x x x

Evaluación de la Unidad 4

Página 274

I.

Y A U K N D Z U J V V U W O DA K Z V C A H X K Q E V E O MX G Q V H R M T C T Y P D O VY M E Z H U Y A O E E H L D IK B Q A D T H N N N P O F K UR N L Y A L X G E T A W I N KV T S A D A D E S H F Y P Y YM H E K I P U N A Q D V P D UF N C F T G J T O G K T Z I SQ I A M N U W E K W Q V H U QT U N M E B Z K L W S W S R IY V T S D X C T O B C N O L ES T E F I Q D Y R U P C M M KP U R T E E N O Y H E R T Y HF B W G Z H P J M V B G Y J L

II.1 V

2 F

3 V

4 V

5 F

6 F

7 V

8 V

9 F

10 V

III.1 9,6 cm, 7,2 cm y 12,8 cm

2 3721 cm2

3 2 m2

SOLU MAT 3M (360-400).indd 390 2/11/11 15:09:18

Page 391: 003000.000 grou

SO

LU

CIO

NA

RIO

391

4 Por Euclides: h pq h pq2 = ⇒ = , como

c p q= + , entonces: Ap q pq

=+( )

2 Por Euclides: a cp a cp2 = ⇒ = ,

b cq a cq2 = ⇒ = , entonces,

P c a b c cp cq c c p q= + + = + + = + +( ) P c a b c cp cq c c p q= + + = + + = + +( )

5 2 2 cm

6 La diagonal mide 2 2 2 a b c+ + y como

a2 + b2 = c2, remplazando queda 2 2c c+

finalmente c 2

7 La viga mide 2 2 m

8 74° y 24 cm

9 582,61 km

10

ctg 3 1 33

sec 2 33

2 2

cosec 2 22 3

3

11 recta azul: 63° aproximadamente y recta fucsia 153°, aproximadamente.

12 y x=2 (recta azul) y x= +0 5 3, (recta roja)

13 2,68 y 5,37 aproximadamente.

14 2,415 1,2 (triángulo verde) y 6 0 2, (aprox 2,68)

para el mayor.

16 1,2 y 4,8

17 0 6 5 2 4 5, ,y

18

-1 0-1

1

2

3

4

5y

-2

-3

1 2 3 4 5 6 7-2-3

Según las respuestas de las preguntas 14 y 16, se tiene, en el triángulo naranja: q=1,2; p=4,8 y h=2,4, entonces, podemos verificar que: h p q2 = ⋅ , h2 5 76= , y p q⋅ =5 76, .

19 Ángulos: 61°, 29° y 90°. Lados: 8,31 cm, 15 cm y 17,15 cm

20 No se obtiene una igualdad, pues 1 3 3+ ≠

21 2243 u50

22 a. 15, 112 y 113b. 2 2 1 2 2 4 2 2

2 2 4 2 2 1

2 2

2 2

a b a b ab a b

a b ab a b

+ + + + + ++ + + + +

, ,

23 a. 2 67

b. 2 65

IV.1 Radio terrestre. 6371 km

2 14,86 cm

3 la altura del muro: 11,69 m y distancia al muro: 6,75 m

4 No hay tres números naturales que cumplan que a b cn n n+ = con a, b distintos de c y n>2. Un ejemplo sería tomar n=3 y c = 5, los valores más grandes que podrían tomar a y b serían 4 y 4, así se tendría: 43 + 43 = 64 + 64 = 128 aπ0 53. Como a y b son los mayores valores, no habrán números que cumplan lo pedido.

SOLU MAT 3M (360-400).indd 391 2/11/11 15:09:29

Page 392: 003000.000 grou

392

5 Con el trío pitagórico 6, 8 y 10, se tienen

radios de las semi circunferencias 3, 4 y 5

respectivamente, esto implica que las áreas

son: 92π,

162π y

252π, con lo que se verifica

lo pedido ya que se cumple que: 9 16 252 2 2

+ =π π π.

6 188,89 m

7 Está correcta.

8 Todas sumarían igual que la amarilla. Se han construido en base a la amarilla, pero algunas sumas parciales se hicieron en base a los tríos pitagóricos.

9 37° aprox.

10 4 2 unidades de área

11 Sí, al multiplicar por 25

; no, al extraer raíz cuadrada.

12 75 = 16807, por otro lado, los números más grandes que pudieran sevir son: 65 65 = 15552 < 75. Entonces, no existen dichos números.

13 Aproximadamente 14,18 m

14 36,5º aproximadamente

15 14,78 m aproximadamente

V.1 A

2 A

3 B

4 D

5 C

6 D

7 C

8 A

9 B

10 A

11 D

12 D

13 C

14 C

15 D

16 D

17 B

18 E

19 C

20 C

21 C

22 A

23 E

24 D

25 D

26 C

27 C

28 B

29 A

30 B

31 E

32 B

33 D

34 D

35 E

36 E

37 D

38 A

39 B

40 A

Evaluación de síntesis 3 (Unidades 1 a 4)

Página 286

I.

1 1

2 0 5,−( )3 0 5,−( )4 ] [1,1−

5 ab

II. 1 a. 2 b. ( )2 a b+

2 a. 1 3 1 3+ −{ }, b. 4 y 0

3 a. 11 ,4

b. 101,24

−∞

c. 1 10, ,2 3

−∞ ∪ ∞

d. [ ]5, 1− −

e. 191,3

f. 4 12,5 7

4 a. 7 cm b. 4 7 cm c. 2 35 cm

5 a. 1,6 m b. 2, 6 mIII. 1 14 días

2 12 millones

3 1,5 cm de largo, 0,5 cm de ancho

4 cualquiera del conjunto 9 15,2 2

5 410,42 m aprox.

6 1040 m aprox.

7 143,52 m

8 Poste: 20,71 m, Cable: 28,79 m

IV.

1 A

2 C

3 D

4 C

5 E

6 B

7 D

8 E

9 A

10 D

SOLU MAT 3M (360-400).indd 392 2/11/11 15:09:31

Page 393: 003000.000 grou

SO

LU

CIO

NA

RIO

393

Páginas 290 a 359

Unidad 5Probabilidades... un paso más

Página 295 Trabaja

1 a. 15% b. Falta información

2 a. 20% b. 80%

3 16

4 33% aprox.

Página 299 Trabaja

1 a. 0,3b. El ganador es E, porque el Nº de juegos

ganados/ Total jugados, es el valor mayor.

c. Si eso hubiera ocurrido, habría un sólo ganador de todos los juegos, lo cual no pasó. Todos, al lo menos, ganaron un juego.

2 a. 7

24 para un auto rojo ;

14

para un auto

amarillo; 16

para un auto celeste; 7

24 para un

auto verde.

b. No. Porque lo eran el rojo y el verde.

3 a. Nº acumulado de Aciertos de M / Nº acumulado de lanzamientos

b. A los 35, 55, 75, 90 y 120 lanzamientos, N tiene más aciertos acumulados. A los 10, 20, 150, 180, y 200 lanzamientos, N no es favorecido.

c. 3 lanzamientos más como mínimo, en el caso de que M los pierda todos.

d. No.

4 a. Frecuencia relativa de desaciertos.

b. Es el valor que se obtiene al sumar la frecuencia relativa de los aciertos con la frecuencia relativa de los desaciertos.

5 El 5, ya que tiene la frecuencia relativa mayor.

6 En el puesto 1, pues la razón entre el número promedio diario de los huevos blancos vendidos, con respecto al número promedio diario total, es mayor que en el otro puesto.

7 Basándose en los partidos ganados con respecto a los jugados, ambos coinciden en su valor, que es, 0,375.

8 a. 21

21n+ para artefactos eléctricos sin

fallas y 21

nn+

para aquellos con fallas.

b. 0,5c. Mayor que 0,5 hasta 1, inclusive.

9 a. El producto de los números.

b. Se ubican aquellos pares de números posibles, cuyos productos sea 29. En este caso son: 5 6,( ), 6 5,( ) y 6 6,( ) , es decir, 3 pares posibles en 36 pares posibles que ocurran. De aquí se obtiene la frecuencia relativa, la cual permite conocer la posibilidad requerida.

10 a. Frecuencia relativa de esfera amarilla: 3

11 Frecuencia relativa de esfera azul:

511

Frecuencia relativa de esfera blanca: 3

11b. TE

c. La amarilla y la blanca.

d. 5 blancas pintadas de amarillo con la silaba LA y 1 blanca coloreada de azul con la Sílaba TE.

e. LATE, porque la silaba TE tiene frecuencia

relativa 1121

, sin embargo la referente a la

silaba LA es menor, 1021

11 0,6 y 0,04

12 a. 7 ºC

b. 2 ºC y 4 ºC

c. 6 ºC

Página 302 Trabaja

1 3175

2 14

3 0,025

4 415

, la probabilidad del juego es experimental.

Página 304 Trabaja

1 a. 0,4

b. 0,5

c. 0,2

d. 0,3

e. 0,1

2 a. 0,16

SOLU MAT 3M (360-400).indd 393 2/11/11 15:09:33

Page 394: 003000.000 grou

394

b. 70 cm, con frecuencia relativa de 7

25 y

mayor que las otras, cuyos valores son: 2 4 1, y

25 25 5.

c. 50 cm y 80 cm ambos con frecuencia

relativa de 2

25, que es el valor menor entre

todas ellas.

d. 50 cm y 80 cm; 90 cm y 100 cme. 70 cm, es el único, cuya frecuencia relativa

supera a un quinto.

f. En 0,04.

3 a. Rojo. Su frecuencia relativa mantiene el valor 13

b. Amarillo. Su frecuencia relativa disminuye su valor de 0,40 a 0,38

Trabaja

1 0,16

2 --- (depende de cada grupo)

3 en el 10º juego

4 25% o 0,25

5 a. 7,1% b. 24,8%c. 90,7%d. Sistema circulatorio (28,2%)

e. Mal definidas (2,8%)

6 a. 16,25% b. 28,75%

Página 309 Trabaja

1 a. Corresponden a los valores de probabilidades experimentales.

b. En desacuerdo, porque este valor experimental es una referencia de cuán posible es que aparezca 4, pero no que asegure que sea 4.

c. 1 y 6d. Los valores debieran acercarse cada vez más a

los valores de la probabilidad teórica 16

2 Depende de lo obtenido en la simulación.

3 No, porque si llegara a tender a 0,5, la moneda dejaría de estar cargada. Además que se sabe de antemano que la probabilidad de cara es 0,25 (podría considerase como probabilidad

teórica); este valor debiera ser el posible a que debiera tender, en un número de veces cada vez mayor.

4 a. Argentina

b. Paraguay

c. Paraguay

d. Argentina

Página 311 Trabaja

1 a. 27107

b. 0 2000g≤ ≤

c. Es más probable que haya gastado menos

de $6000, pues esta probabilidad es de 71

107 contra

36107

2 a. b. c. Memo tiene razón y ha calculado intuitivamente que el 100% de las baldosas se mojarán. Si las gotas de lluvia son cada vez más numerosas y, podríamos decir, casi infinitas, la probabilidad teórica nos dice lo mismo que la probabilidad experimental de Memo.

Página 312 Trabaja

1 No, lo que nos da la tabla es sólo la probabilidad experimental.

2 a. Depende de lo obtenido en la actividad.

b. cada color 13

c. Sí, porque son pocos experimentos.

3 a. 28%b. 14%c. 36%d. No, porque las probabilidades calculadas

son experimentales y por lo tanto solo reflejan el comportamiento de la muestra.

4 ---- (Los resultados dependerán de cada grupo)

5 ---- (Los resultados dependerán de cada grupo)

Trabaja

1 a. 20%b. 10%c. 53,3%d. 13,3%

SOLU MAT 3M (360-400).indd 394 2/11/11 15:09:33

Page 395: 003000.000 grou

SO

LU

CIO

NA

RIO

395

2 a. 31,75%b. 33,75%c. Para (a.), 1,583%, para (b.), 0,416 %

Página 316 Trabaja

1 0

2 26%

3 a. 0% b. 10%4 5%

5 a. 100% b. 0%

6 0%. No existe ningún valor real que satisfaga 2 1 0x + < . Luego no es posible encontrar algún

rectángulo con tales medidas.

Página 317 Trabaja

1 a. 0%b. 100%c. Podría dejar de estar enojada.

2 a. 0%b. 100%

3 Porque ese día y a esa hora debía asistir a otro lugar o realizar otra actividad. Si esto ocurre asistir a la reunión sería de un suceso imposible.

Página 318 Trabaja

1 a. 100%. De 7

16 aumentó a

1116

, es decir, 4

16.

Esto es 25%b. 0%. Con tal modificación, la nueva

probabilidad es 1116

2 a. 1

365b.

31365

c. 5573

d. 0

3 a. 36,36%b. 63,63%c. 0%d. 100% pues obtuvo un 32,47% del total de

votos.

e. 0%, ya que consiguió sólo 36,36% del total.

4 a. 1

12b.

1 16 4<

5 a. 0,25 b. 0,75 c. 79

6 De 24 maneras, la probabilidad es 50%

7 16

8 a. Diciembre, 21,8%b. Octubre, 35%c. Ultrasonido, 10,8%

9 a. 33, 59% b. 0% c. 100%

10 a. 9

28b. 5

28c. 50%

11 a. 1720

b. 0,2

12 a. 1, 5, 6, 8, 13, 16, 18, 19 y 21b. 43%c. 1. Probabilidad 5. Raíces 6. Coordenadas

8. Irracional 13. Aleatorio 16. Intersección 18. Desigualdad 19. Suceso 21. Condicionada

13 40%

Página 325 Trabaja

1 a. 22,9% aprox.

b. 24,7% aprox.

2 25%

3 60%

4 25%

5 25%

6 160

, es la misma en los dos casos.

7 a. De D a A: 14

, de vuelta: 38

; se produce la

diferencia porque de B a A hay menos

caminos que de A a B.

b. 1º camino: 1

24, 2º camino: 0 (este camino es

imposible de seguir)

c. 0%

d. 79

8 Es más probable una cara. Cara: 50%, 3 sellos: 18,75%

SOLU MAT 3M (360-400).indd 395 2/11/11 15:09:34

Page 396: 003000.000 grou

396

Página 326 Trabaja

1 17%

2 0,417%

3 78%

4 60%

5 a. 15% b. 28%

6 4,16%

7 25%

8 3,3%

9 W con el 50% de las posibilidades

10 a. 6,25% b. 6,25% c. 6,25% d. 12,5%

11 a. 9,12% b. 6,84% c. 22,04%

Página 328 Trabaja

1 a. 3

56b.

928

c. 5

56d.

1528

2 a. 1475

b. 7500

c. 63200

3 a. P A By( )b. P A By no( )

c. P A Bno y( )d. P A Bno y no( )

4 a. 31,8% b. 5,36% c. 0,3%

5 a. 6,25%b. 0,4% aprox.

c. 0,01% aprox.

Página 332 Trabaja

1 0,3

2 a. 0,75 b. 0,50

3 Son iguales.

4 53,8%

5 67% aprox.

6 a. 2873

b. 8

23

7 913

8 a. 113

b. 110

9 10%

10 45,71%

Página 334 Trabaja

1 a. 81

119b.

1113

c. 0

2 4

153 Por ejemplo, puede ser que la probabilidad de

que el turno 1 lo atienda, dado que viene con

desperfectos mecánicos es 6

114 36%

5 34%

Página 336 Trabaja

1 2 5 1%; , %( )2 a.

16

b. 1320

3 a. 8 b. 37

c. 0,625 d. 0,125

4 37

5 Sí, porque P A B/( ) = 58

y P B A/( ) = 2544

6 a. 5

24b.

2124

7 a. 7

55b.

25

c. 4855

d. 35

8 a. 19

b. 19

c. 14

d. 29

e. 1

12

Trabaja

1 11,25%

2 a. 12

b. 13

c. 13

d. 16

3 32%

4 a. 11,7% b. 15% c. 6,7%

5 16

, aproximadamente un 17%

6 a. 221

b. 5

829c.

49

d. 1029

e. 1

56

SOLU MAT 3M (360-400).indd 396 2/11/11 15:09:40

Page 397: 003000.000 grou

SO

LU

CIO

NA

RIO

397

Evaluación de la Unidad 5

Página 340

II. 1 Cercana a 0,5

2 0 1,[ ]3 1− p

4 El valor de la probabilidad experimental se acerca al valor de la probabilidad teórica a medida que aumenta la repetición del evento.

5 La probabilidad de que este ocurra.

6 La probabilidad de que A y B ocurran a la vez.

7 La ocurrencia de uno de ellos influye en la ocurrencia del otro.

8 La división entre la probabilidad de que ocurran A y B y la probabilidad de que ocurra B.

III.

1 7

122 40%

3 a. 4,6% b. 38,4%

4 a. 3,3% b. 20,8%

5 a. 34% aprox. b. 6,2% aprox.

6 45%

7 13,88%

8 1

129 25%

10 1

36

11 a. 7

11b.

411

13

>

12 a. 84% b. 16% c. 64%

13 a. 2% b. Aprox. 2,2%14 a. 37,5%

b. 29%c. 100%d. 41,79%

IV. 1 Tendría que conocer cuántos números se

vendieron.

2 5

3 0,000095%

4 53% aprox.

5 66% aprox.

6 33% aprox.

7 5,5% aprox.

8 No, la probabilidad experimental no garantiza que el resultado más probable sea el con mayor frecuencia para la próxima repetición del evento.

9 11% aprox.

10 32% aprox.

11 5,41%

12 90%

13 80,5%

14 1

1115 a. 75% b. 43%

16 0,0427

17 2,92%

V.

1 B

2 A

3 E

4 C

5 A

6 A

7 C

8 C

9 D

10 B

11 B

12 B

13 D

14 C

15 D

16 C

17 E

18 C

19 D

20 A

21 D

22 E

23 C

24 D

25 D

26 A

27 B

28 D

29 B

30 E

31 E

32 E

33 C

34 B

35 B

36 C

37 A

38 D

39 B

40 B

SOLU MAT 3M (360-400).indd 397 2/11/11 15:09:42

Page 398: 003000.000 grou

398

Evaluación de síntesis 4 (Unidades 1 a 5)

Página 352

I. 1 V 2 F 3 F 4 V 5 F

II. 1 a. 11 5 6− b. 7208

2 a. x = 3

b. 1 166

11x

±=

c. 3 y 5

3 Con eje Y: 0 5,−( ), con eje X: 13

0,

y −

52

0, , vértice: 13 289,12 24

− −

4 a. 46 ,17

− ∞ b.

11 ,9

∞ c.

23 103,5 6

5 x =6 2 u, y =6 3 u

6 12cm

7 9,37

8 a. 36% b. 28% c. 36,36 %

III. 1 3 1853 cmr =

2 2,9 s y 42,05 N

3 8,5cm y13,5cm

4 Cualquiera mayor a $187500

5 4,4m

6 263,808m

7 7,2%; 0,12%

8 a. 3,72% b. 0,0376% c. 89,34%

IV. 1 E

2 B

3 B

4 C

5 C

6 A

7 D

8 D

9 D

10 D

11 B

Evaluación de síntesis 5 (Unidades 1 a 5)

Página 356

I. 1 F 2 V 3 F 4 F 5 F

II. 1 1,29 dm

2 a. 5 b. 4 cm

3 3 cm y 11 cm

4 a. , 1,3 −∞ b. 111 ,320 ∞

5 − − −

1 8 13 361, 0 ; , 0 ; (0 , 8) y ,2 3 12 24

0 8,−( ) y − − −

1 8 13 361, 0 ; , 0 ; (0 , 8) y ,2 3 12 24

6 2

7 −∞( )∪ ∞( ), ,6 4

8 a. 1237

b. 1235

c. 3735

9 22,7%

10 a. 2

15b.

725

III. 1 a. 5,91 m b. 3,87 m c. 1,68 m

2 $20000; $420000

3 a. 1,77 m.

b. i. Menor a 1,58 m.

ii. Entre 1,58 m y 1,78 m.

4 68 m por 48 m

5 “La Casa del Mueble”, porque el precio más bajo que pudiera costar es $71500. En cambio, este valor sube a $72000, si se adquiere en “Almacenes York”, y $73500, si la compra se realiza en el “San Francisco Center”.

6 a. 133 m b. 0,40 minutos

c. La distancia entre el borde frente a la partida hasta la zona de llegada no es 120 m, y los jóvenes no atravesaron el río en 24 minutos, sino en 24 segundos.

7 3,84%

8 24,75% y 28%

IV. 1 C

2 C

3 E

4 E

5 D

6 D

7 B

8 B

9 E

SOLU MAT 3M (360-400).indd 398 2/11/11 15:09:46

Page 399: 003000.000 grou

399399

Bibliografía

•AmatAbreu,M.(2008).100 problemas de razonamiento lógico. Santiago de Cuba: Editorial Oriente.

•Arenas,F.,Masjuán,G.yVillanueva,F.(2008).Álgebra clásica. Santiago: Ediciones Universidad Católica de Chile.

•Blackaller,B.,Juárez,Á.,Santillán,F.,Jiménez,J.Castillo, G. y del Campo, F. (2009). Matemática y vida cotidiana II. México: Universidad de Guadalajara, Editorial Universitaria.

•Corbalán,F.(2007).La matemática aplicada a la vida cotidiana (9º ed.). Barcelona: Editorial GRAO.

•López,D.,Olivares,J.,Ormazábal,M.yTapia,O.(2007). Manual de preparación para la PSU matemáticas. Santiago: Ediciones Universidad Católica de Chile.

•ManceraMartínez,E.(1998).Errar es un placer. México: Grupo Editorial Iberoamérica.

•MinisteriodeEducacióndeChile.(2008).Experiencias en la innovación de informática educativa 2007. Santiago: Ministerio de Educación de Chile.

•MinisteriodeEducacióndeChile.(2009). Primer seminario internacional de textos escolares. (2º ed.). Santiago: Ministerio de Educación de Chile.

Lecturas para los estudiantes

•Baldor,A.(1997).Álgebra (15º ed.). México: Compañía Cultural Editorial y Distribuidora de Textos Americanos S.A. Incluye contenidos de las Unidades 1, 2 y 3. Además elementos de combinatoria de la Unidad 5. Proporciona de manera detallada reglas de resolución de ejercicios y problemas propuestos. Incluye solucionario

•MercadoSchuler,C.(1983).Curso de Matemática Elemental I: Álgebra. (11º ed.). Santiago: Editorial Universitaria. Desarrolla detalladamente los

contenidos de las Unidades 1, 2 y 3. Presenta ejercicios, demostraciones y problemas resueltos. Algunos relacionados con temas de la física y de la economía. La unidad 15 presenta un resumen de conocimientos de geometría mencionando los Teoremas de Euclides referente a la Unidad 4. Los conocimientos fundamentales de conjuntos y el análisis combinatorio también se presentan en este texto y son de utilidad para el estudio de la Unidad 5. Los ejercicios y problemas propuestos vienen con las soluciones incluidas, al final de los temas de cada capítulo.

•Velasco,G.yWisniewski,P.(2001).Probabilidad y Estadística para Ingeniería y Ciencias. México: Thomson Ediciones. Los tres primeros capítulos desarrollan con detalles los contenidos de la Unidad 5, a través de ejemplos de fácil y útil comprensión. Sirve también para profundizar los conceptos y ampliar los conocimientos, especialmente los referentes a las probabilidades de sucesos independientes, como los dependientes.

•CidFigueroa,E.(2010).Texto de Nivelación Matemática S.P.A.M Uno. Libro de ejercicios PSU Matemática. (4ºed.) Santiago: Editorial Cid. Ofrece superar las dificultades en matemática. Incluye solucionario de los ejercicios propuestos

•CidFigueroa,E.(2009).Matemática PSU, Matemática (6º ed.). Santiago: Editorial Cid. Todos los temas se inician con un recuerdo de los contenidos más fundamentales para el desarrollo de los ejercicios. Incluye solucionario.

•LabbéDíaz,C.(2010).Ensayo PSU, Matemática. 700 problemas resueltos. Santiago: Editorial Catalonia. En la primera parte se presentan los problemas para que el estudiante los resuelva. En la segunda parte, éstos están resueltos a fin de que el estudiante compare y/o revise la solución y se autoevalúe. Para consultas generales al autor, se menciona el siguiente email: [email protected]

SOLU MAT 3M (360-400).indd 399 2/11/11 15:09:46

Page 400: 003000.000 grou

© Matemática 3º Medio

Autores Olga Saiz Maregatti Profesora de Matemática. Pontificia Universidad Católica de Chile.

Viktor Blumenthal Gottlieb Licenciado en Ciencias, mención Matemática. Pontificia Universidad Católica de Chile.

2012 Ediciones Cal y Canto ®N˚ de Inscripción: 200.152ISBN: 978-956-339-003-2

Director Editorial Jorge Muñoz RauGerente Editorial Alicia Manonellas BalladaresEditora a cargo Alicia Manonellas BalladaresColaboración Myriam Baeza ReyesCorrector de pruebas y estilo Alejandro Cisternas Ulloa Vladimir Ferro GonzálezDiseño María Jesús Moreno GuldmanDiagramación Digital David Maldonado CidFotografías Banco de Fotos de Ediciones Cal y CantoJefe de Producción Cecilia Muñoz Rau Asistente de Producción Lorena Briceño González

Impreso en RR Donnelley.

El presente libro no puede ser reproducido ni en todo ni en parte, ni archivado, ni transmitido por ningún medio mecánico, electrónico, de grabación, CD-Rom, fotocopia, microfilmación u otra forma, sin la autorización escrita del editor.

Se terminó de reimprimir XXXXXX ejemplares en el mes de XXXXX de 20XX.

SOLU MAT 3M (360-400).indd 400 2/11/11 15:09:46