« fuel cell and ultracapacitor hybrid power system · « title of the presentation » - outline -...

31
EMR’12 Madrid June 2012 Joint Summer School EMR’12 “Energetic Macroscopic Representation” « Fuel cell and ultracapacitor hybrid power system » Dr. Olivier BETHOUX LGEP, University Paris 11, MEGEVH network, [email protected]

Upload: others

Post on 09-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 2: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 2

« Title of the presentation »

- Outline -

1. Context

• Environmental and social constraints

• Fuel cell behaviour

• Ultracapacitor behaviour

• Power architecture

2. EMR of FC-UC hybrid power system

3. Inversion-based Control of FC-UC hybrid power system

4. Securing the system

5. Conclusion and perspectives

Page 3: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12

Madrid

June 2012

Joint Summer School EMR’12

“Energetic Macroscopic Representation”

«Context »

Page 4: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 4

« Title of the presentation »

Source : ADEME Time

Source : CO2 Capture Project - 2009

Gtoe Oil

Coal

Gas

Biomass (wood)

Nuclear

Renewable (solar, wind, …)

≈ 80% (2009) Hydrocarbon sources

2009

World primary energy demand

≈ + 100%

Time

Social acceptance : Evolution of emission standards for pollutant in the European Union

- environmental and social constraints -

Page 5: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 5

« Title of the presentation »

Fuel Cell : electrochemical power converter

electrons

electrons

Electric

Load

I

H2

02

or air

Acid Polymer Electrolyte

Anode : H2 2 H+ + 2 e-

Cathode : ½ O2 + 2 e- + 2 H+ H2O

- Hydrogen : a convenient energy carrier - a competitor

of gasoline Hydrogen combined with FC provides electric power without local pollution

H2

O2

electricity

water

heat

Fuel Cell

Energy density [kJ.kg-1]

hydrogen : 120 000 kJ.kg-1

oil : 42 000 kJ.kg-1

coal : 26 000 kJ.kg-1

lithium battery : 540 kJ.kg-1

lead-acid battery: 50 kJ.kg-1

environmentally

friendly.

Page 6: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 6

« Title of the presentation »

- Fuel cell behaviour -

FC system

)exp(ln 0 njmjjArjEV Thcell

Eth and A are pressure dependent

Compressor

humidifier

Gas

supply H2

tank

Gas

outlet

Ca

tho

de c

an

al

An

od

e c

anal

Fuel Cell limitations

Fast load variations

Stop/Start conditions

Environment conditions

Influence of current frequency

Current frequency

Time delay

magnitude

Air flow rate

Main Fuel Cell limitations

Page 7: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 7

« Title of the presentation »

Weight and Energy Storage for 500 km Range

- Electric Vehicle : a Fuel cell application -

Fuel Cell / Battery EV market

Page 8: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 8

« Title of the presentation »

Electric vehicle : the power train supply is a demanding application

- A Fuel cell application -

PEMFC

power train demand

(ECE15 EU cycle) 1010

55

--55

00

2020

Temps [s]Temps [s]

Pu

issa

nce [k

W]

Pu

issa

nce [k

W]

4040 6060 8080 100100 120120 140140 160160 18018000

PMax PAv

Time [s]

Pow

er

[kW

]

Power

assistance

PSA Ultracapacitor

Battery

Page 9: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 9

« Title of the presentation »

- Ultracapacitor behaviour -

-

-

-

-

-

-

-

+

+

+

+

+

+

+

+

+

+

+

+

+

+

-

-

-

-

-

-

-

+

+

-

-

Porous electrodes made of activated carbon

Liquid electrolyte

(Hermann Von Helmholtz in 1853)

Capacitive property of the interface between

• the electronic solid conductor

• and the ionic liquid conductor

d

AC with

.

CC

CCC

A 3000 m2.g-1

< 1 nm

high cycle efficiency (95% or more)

Electrostatic effect :

high number of charge-discharge cycles

high specific power (6 kW.kg-1 or more)

0 2 4 6 8 10 12 14 16

-10

0

10

i UC[A

]

UC system dynamic response : current iUC

and vUC

(C = 26F & R = 32mOhms)

0 2 4 6 8 10 12 14 16 1819

20

21

22

23

24v U

C [

V]

CUC

ESR

cu

rre

nt

vo

lta

ge

VUC

IUC

-simulation

- measured

cations

anions

C+ C-

Electrostatic effect electrochemichal effect

Page 10: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 10

« Title of the presentation »

- The different possible architectures to combine both sources -

PPààCC

SCSC

Charge Charge éélectriquelectriqueElectric load

[GRC-2007] M. García Arregui and al, Clean Electrical Power Conference,

Capri,2007.

PPààCC

SCSC

DC

DC

Charge Charge éélectriquelectriqueElectric load

[Blun-2009] B. Blunier and al, VPPC 2009.

[AZIB-2010] T.AZIB and al , IEEE Transactions on Industrial Electronics, Vol. 57, Issue.12, 2010

PPààCC

SCSCDC

DC

Charge Charge éélectriquelectriqueElectric load

PPààCC

SCSC

DC

DC

DC

DC

Charge Charge éélectriquelectriqueElectric load

[THOU-2008] P. THOUNTHONG and al, IEEE Transactions on

Industrial Electronics, Vol. 54, N°. 6, Dec. 2008.

Page 11: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12

Madrid

June 2012

Joint Summer School EMR’12

“Energetic Macroscopic Representation”

« EMR of FC-UC

hybrid power system »

Page 12: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 12

« Title of the presentation »

- General scheme of the system and its associated control structure -

energy exchanges

Energetic Macroscopic

Representation (EMR)

systemic approach, energy exchanges,

decomposition of complex system

EMR Modeling

Command Structure

Strategy

DC

DC

DC

DC

Acquisition of measurements

State

power

distribution

control

Signal

requested

power

demand

interpretation

energy

management

Low level

control

State State

Unit of control and energy management

Control structure directly deduced from a

graphical symmetry of the EMR model

(inversion based control)

Page 13: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 13

« Title of the presentation »

FCUC

VBus

Load

iLoad

VFC

iFC iUC

VUC

Electric Load

UltracapacitorFuel Cell

VUC

Source

R

A

Power Source

- EMR of FC-UC hybrid power system -

two converters architecture

EMR modeling

iLoad

FC

DC/DC DC/DC

iFC

CBus VBus

iUC

VUC

iCbus

i ‘FC i ‘UC

VFC dPàC dSC

Load

UC

iCoupl

iFC iUC

V’FCV’UC

iFC

V’FC V’UC

iUC

VBus

InductanceInductance

VBus

iCbus

DC Bus

A1

R1

R2

A2

Conversion

with storage

i’FC

VBus VBus

i’UC

dFC

Converter

dUC

Converter

m

A1

R1

R2

A2

Conversion

without storage

VBusiCoupl

Parallel Coupling

A1

R1

R2

A2

R3 A3

Parallel

coupling

Page 14: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 14

« Title of the presentation »

- EMR of FC-UC hybrid power system -

two converters architecture

EMR modeling

iLoad

FC

DC/DC DC/DC

iFC

CBus VBus

iUC

VUC

iCbus

i ‘FC i ‘UC

VFC dPàC dSC

Load

UC

iCoupl

iFC iUC

V’FCV’UC

energy flows

FCUC

VBus

Load

iLoad

VBusiCoupl

VFC

iFC

iFC

V’FC

i’FC

VBus VBus

i’UC

V’UC

iUC

iUC

VUC

VBus

dFC

Parallel Coupling Electric Load

Ultracapacitor InductorFuel Cell Inductor Converter

VUC

VBus

iCbus

DC Bus

dUC

Converter

Page 15: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 15

« Title of the presentation »

Model

Control

FCUC

VBus

Load

iLoad

VBusiCoupl

VFC

iFC

iFC

V’FC

i’FC

VBus VBus

i’UC

V’UC

iUC

iUC

VUC

VBus

dFC

Parallel Coupling Electric Load

Ultracapacitor InductorFuel Cell Inductor Converter

VUC

VBus

iCbus

DC Bus

dUC

Converter

- Inversion-based control deduced from EMR of FC-UC hybrid system -

V’UCrefV’FCref

iUCref

iFCref

VBus

VBus_ref

i’UCrefi’FCref

iCoupl_ref

iCbus_ref iLoad_ref

VUC_ref

iUC Comp

Low -level

control

Strategy

Energy distribution

demand

interpretation

k

Losses estimation

State of charge

management

Page 16: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 16

« Title of the presentation »

Model

Control

FCUC

VBus

Load

iLoad

VBusiCoupl

VFC

iFC

iFC

V’FC

i’FC

VBus VBus

i’UC

V’UC

iUC

iUC

VUC

VBus

dFC

Parallel Coupling Electric Load

Ultracapacitor InductorFuel Cell Inductor Converter

VUC

VBus

iCbus

DC Bus

dUC

Converter

- A basic strategy to split power -

V’UCref

iUCref

i’SCrefi’FCref

iCoupl_ref

iCbus_ref

VBus

VBus_ref

iCH_ref

iFCref

V’FCref

Strategy

Low -level

control

Losses

estimation

Energy distribution

VUC_ref

State of charge

management

iUC Comp

demand

interpretation

k

0

Max

Low-pass filter

i’FCref

i’FCref

i’Coupl

quence de

Cutoff frequencyto choose

A few 100mHz

LF MF HF

P

FC UC BUS

frequency decomposition

Pload(t)

Strategy

The weighting coefficient K depends on frequency

so that the FC reacts slowly and the UC bank responds to the high transient.

Page 17: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 17

« Title of the presentation »

- Toward the control implementation -

iLoad

FC

DC/DC DC/DC

iFC

CBus VBus

iUC

VUC

iCbus

i ‘FC i ‘UC

VFC dPàC dSC

Load

UC

iCoupl

iFC iUC

V’FCV’UC

Implemented control scheme

Inversion-based control

Controllers parameters tuning

Inversion-based control

V’UCref

iUCref

i’SCrefi’FCref

iCoupl_ref

iCbus_ref

VBus

VBus_ref

iCH_ref

iFCref

V’FCref

Strategy

VUC_ref

iUC Comp

k

dFCdUC

Current loops

(fsw/10)

T2 T1

Low pass-

filter

i’UCref i’FCref

iCcoupl_ref

Energy distribution PI VBusref

VBus ILOAD

Voltage loop

(fsw/100)

dFC dUC

PI PI

iUC

iUCref

iFC

iFCref

PI

VUCref

VUC

iFC Comp

Compensation loop

(f < 100 mHz)

Page 18: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 18

« Title of the presentation »

- Simulation results -

Constraints are respected and load specifications are satisfied.

Currents and voltages trajectories are suitably controlled

0 50 100 150 200

0

500

1000

0 50 100 150 200

-20

0

20

40

0 50 100 150 200

0

20

40

0 50 100 150 200

-20

0

20

0 50 100 150 20047.5

48

48.5

0 50 100 150 200

22

24

26

PCH [W]

iPàC [A]

iSC [A]

iPàC / iPàCref [A] iSC / iSCref [A]

VSCref [V]

VSC [V]

VBusref [V]

VBus [V]

Temps [s] Temps [s]

- a -

- c -

- e - - f -

- d -

- b -

0 50 100 150 200

0

500

1000

0 50 100 150 200

-20

0

20

40

0 50 100 150 200

0

20

40

0 50 100 150 200

-20

0

20

0 50 100 150 20047.5

48

48.5

0 50 100 150 200

22

24

26

PCH [W]

iPàC [A]

iSC [A]

iPàC / iPàCref [A] iSC / iSCref [A]

VSCref [V]

VSC [V]

VBusref [V]

VBus [V]

Temps [s] Temps [s]

- a -

- c -

- e - - f -

- d -

- b -

Pload [W]

IFC / IFCref [A] IUC / IUCref [A]

IUC [A]

VUC [V]

IFC [A]

VBus [V]

VBusref [V]

time [s] time [s]

VUCref [V]

Page 19: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 19

« Title of the presentation »

- Experiment setup -

H2 sensor

Choppers & coils

Fuel Cell Active Load

Bidirectionnal load

H2 supply motors

drives

dissipators

dSPACE 1103

Ultracapacitor

bank

Page 20: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 20

« Title of the presentation »

0 50 100 150 200

0

500

1000

0 50 100 150 200

-20

0

20

40

0 50 100 150 200

0

20

40

0 50 100 150 200

-20

0

20

40

0 50 100 150 20046

48

50

0 50 100 150 20020

22

24

26

PCH [W]

iPàC [A]

iSC [A]

iPàC / iPàCref [A] iSC / iSCref [A]

VSCref [V]

VSC [V]

VBusref [V]

VBus [V]

Temps [s] Temps [s]

- a -

- c -

- e - - f -

- d -

- b -

0 50 100 150 200

0

500

1000

0 50 100 150 200

-20

0

20

40

0 50 100 150 200

0

20

40

0 50 100 150 200

-20

0

20

40

0 50 100 150 20046

48

50

0 50 100 150 20020

22

24

26

PCH [W]

iPàC [A]

iSC [A]

iPàC / iPàCref [A] iSC / iSCref [A]

VSCref [V]

VSC [V]

VBusref [V]

VBus [V]

Temps [s] Temps [s]

- a -

- c -

- e - - f -

- d -

- b -

- Experiment results -

constraints are respected and load specifications are satisfyied.

Currents and voltages trajectories are suitably controlled

Pload [W]

IFC / IFCref [A] IUC / IUCref [A]

IUC [A]

VUC [V]

IFC [A]

VBus [V]

VBusref [V]

time [s] time [s]

VUCref [V]

Page 21: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 21

« Title of the presentation »

- Experiment results -

First results show a better global efficiency of the hybrid system

0 50 100 150 200 250 3000

5

10

15

Time [s]

Flo

w r

ate

[l/m

in] FC / UC FC

H2_FC = 29.27 l

H2_FC-UC = 26.31 l

≈ 10% saving

Page 22: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12

Madrid

June 2012

Joint Summer School EMR’12

“Energetic Macroscopic Representation”

« Securing the system »

Page 23: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 23

« Title of the presentation »

- New scheme -

PàC

DC/DC DC/DC

iPàC

CBus1 VBus1

iSC

VSC

iCbus1

i ‘PàC

i ‘SC

VPàCdPàC dSC

SCs

iCoupl

iPàC iSC

V’PàCV’SC

iCH

CHARGE

iDiss

Système de

dissipation

iDissSW iChSW

iCoupl3

CBus2VBus2

iCbus2

iCoupl2

V’Bus1

DC/DC

iL2

Etage « haute tension »

- interface élévatrice- dispositif dissipatif

Bus DC n°1

Bus DC n°2

d2

Many applications require high load voltage compared to FC voltage two stages

Bus DC 2

Bus DC 1

Page 24: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 24

« Title of the presentation »

- Securing the system -

SC

PàC Load

a- Requested power is

temporally too large

b- Delivered power is

temporally too large

SC

PàC

PLoad > PFC + PUC

PLoad < PFC + PUC

PCh PFC

PUC

PCh PFC

PUC

Strategy a

Load power modulation

Stratégie b

Auxiliary device modulation

to dissipate over-energy Load

Page 25: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 25

« Title of the presentation »

- Securing the system -

VBus1 iL2

VBus2 iCoupl3

VBus2

iChSW

V’Bus2

iCH

Dissipation

device

SD

V’’Bus2

iDiss

VBus2

iDissSW

dCH dDiss

Load

Electric load

VBus2

VBus2

iCbus2

Bus2 DC VBus2 iCoupl

2

V’Bus

2

iL2

Parallel coupling

switch

Converter

Inductance

d2

k2

Strategy

VBus2_ref

iCbus2_ref

iCoupl2_ref

iL2_ref

V’Bus2_ref

Parallel coupling

switch

Page 26: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 26

« Title of the presentation »

- Securing the system -

0 20 40 60 80 100

0

500

1000

0 20 40 60 80 100-40

-20

0

20

40

60

0 20 40 60 80 10050

55

60

65

700 20 40 60 80 100

15

20

25

30

0 20 40 60 80 100

0

20

40

Time [s]

17.117.217.3

95010001050

17 17.2 17.4

55

60

6 859.659.8

60

71.6871.771.72

656667

72.2172.2272.2372.2472.25-20

0204060

Time [s]

PLoad [W]

iFC [A]

iUC [A]

VUCref [V]

VUC [V]

VUCma

x

VUCmi

n

VBUSref [V]

VBUS [V]

iBrake [A]

Time [s]

1100

900

800

16 16.2 16.4

65

67

66

69.23 69.29

60

59.5

60

65

6

69.96 69.97 69.98

0

20

40

15.8 16.2 16.8

Page 27: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12

Madrid

June 2012

Joint Summer School EMR’12

“Energetic Macroscopic Representation”

« Conclusion and perspectives »

Page 28: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 28

« Title of the presentation »

- Conclusion and perspectives -

Using REM concept allows a systemic study of the FC/UC hybrid system.

* It leads to easy tuning control structure;

* It reveals degree of freedom where to define strategy.

Conclusion :

Model level: Taking into account humidity and temperature may be important

to drive more gently the FC.

Control structure: As the airflow rate has a low time constant, directly driving

the airflow rate may be very important to optimize the system.

Control structure: Comparing different control techniques to implement local loops

(passivity, sliding modes, etc)

Strategy: Modify strategy to optimize fuel consumption, …

Perspectives :

Page 29: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12

Madrid

June 2012

Joint Summer School EMR’12

“Energetic Macroscopic Representation”

« BIOGRAPHIES AND REFERENCES »

Page 30: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 30

« Title of the presentation »

- Authors -

Dr. Olivier BETHOUX

University Paris 11, LGEP, MEGEVH, France

Assistant Prof. at IUT de Cachan, University Paris 11 (2006)

PhD in Electrical Engineering at University of Cergy (2005)

Research topics: electrochemical systems, energy efficiency, energy flexibility

Page 31: « Fuel cell and ultracapacitor hybrid power system · « Title of the presentation » - Outline - 1. Context • Environmental and social constraints • Fuel cell behaviour •

EMR’12, Madrid, June 2012 31

« Title of the presentation »

- References -

[Azib 11] T. Azib, O. Bethoux, G. Remy, C. Marchand, “Saturation Management of a Controlled Fuel-Cell/Ultracapacitor Hybrid Vehicle”, IEEE Transactions on Vehicular Technology, Vol. 60, Issue: 8, 8 December 2011, pp. 4127-4138

[Azib 10] T. Azib, O. Bethoux, G. Remy, C. Marchand, E. Berthelot, “An Innovative Control Strategy of a Single Converter for Hybrid Fuel Cell/Supercapacitors Power Source”, IEEE Transactions on Industrial Electronics, Vol. 57, Issue: 12, 1 December 2010, pp. 4024-4031

[Tiefensee 11] F. Tiefensee, M. Hilairet, D. Normand-Cyrot, O. Bethoux, “Sampled-data energetic management of a fuel cell/supercapacitor system”, IEEE Vehicle Power and Propulsion Conference VPPC, Lille, FR, September 2011, pp. 1-6, Proceedings of IEEE Vehicle Power and Propulsion Conference VPPC

[Ghanes 11] M. Ghanes, M. Hilairet, J.P. Barbot, O. Bethoux, “Singular perturbation control for coordination of converters in a fuel cell system”, Electrimacs, Cergy-Pontoise, FR, September 2011, pp. 1-6, Proceedings of Electrimacs

[Azib 10] T. Azib, R. Talj, O. Bethoux, C. Marchand, “Sliding Mode Control and Simulation of a Hybrid Fuel-Cell Ultracapacitor Power System”, IEEE International Symposium Industrial Electronics, ISIE’10, Bari, Italie, 1 July 2010, pp. 3425-3430, Proceedings of IEEE International Symposium Industrial Electronics, ISIE’10

[Ramirez 12] Victor Ramirez, Romeo Ortega, Antonio Sanchez-Squella, Roberto Grino, Olivier Bethoux, “Theory and experimental results of two dynamic energy routers”, ACC 2012, Montreal, Canada, june 2012

[Mariéthoz 12] Sébastien Mariéthoz, Olivier Bethoux and Mickaël Hilairet, "A distributed model predictive control scheme for reducing consumption of hybrid fuel cell systems", IECON 2012, Montreal, Canada, sept 2012.

[Bethoux 09] O. Bethoux, M. Hilairet, T. Azib A new on-line diagnosis technique for PEM fuel cell with integration perspective, IECON 2009 – The 35th Annual Conference of the IEEE Industrial Electronics Society, 3-5 November 2009, Porto, Portugal.

[De Bernardinis 12] A. De Bernardinis, E. Frappé, O. Béthoux, C. Marchand and G. Coquery, “Simulation with fault-tolerant strategy ”, The European Physical Journal - Applied Physics / Volume 58 / Issue 02 / 2012 , 20901 (15 pages)