Ž†ƒhzŁo gzfiu«ŽŁ a¶–Žfiz–ƒh s–§¶h–¶§u«kaiser/logic_games.pdf ·...

95
L G A S Lukasz Kaiser Mathematische Grund agen der Informatik RWTH achen /

Upload: ngongoc

Post on 31-Jul-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Logic and Games on Automatic Structures

Łukasz Kaiser

Mathematische Grundlagen der InformatikRWTH Aachen

1 / 23

Page 2: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Overview

Logic and Games

Automatic Structures

Imperfect Information Games

Generalized Quanti�ers

2 / 23

Page 3: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Model Checking Problem

A ⊧ φ ?

Deductive approach�(N,+) ⊧ φ ?

• Objects: formulas

Direct approach(N,+) ⊧ φ ?

• Objects: numbers

Presentation approach(N2,A+) ⊧ φ ?

• Objects: sequences of digits

3 / 23

Page 4: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Model Checking Problem

A ⊧ φ ?

Deductive approach�(N,+) ⊧ φ ?

• Objects: formulas

Direct approach(N,+) ⊧ φ ?

• Objects: numbers

Presentation approach(N2,A+) ⊧ φ ?

• Objects: sequences of digits

3 / 23

Page 5: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Model Checking Problem

A ⊧ φ ?

Deductive approach�(N,+) ⊧ φ ?

• Objects: formulas

Direct approach(N,+) ⊧ φ ?

• Objects: numbers

Presentation approach(N2,A+) ⊧ φ ?

• Objects: sequences of digits

3 / 23

Page 6: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Model Checking Problem

A ⊧ φ ?

Deductive approach�(N,+) ⊧ φ ?

• Objects: formulas

Direct approach(N,+) ⊧ φ ?

• Objects: numbers

Presentation approach(N2,A+) ⊧ φ ?

• Objects: sequences of digits

3 / 23

Page 7: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Model Checking Game

Idea: Construct a game G so that

A ⊧ φ ? ↝ who wins G ?

Players:

• Eloïse: φ is true on A!

• Abélard: No, φ is false on A!

4 / 23

Page 8: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Model Checking Game

Idea: Construct a game G so that

A ⊧ φ ? ↝ who wins G ?

Players:

• Eloïse: φ is true on A!

• Abélard: No, φ is false on A!

4 / 23

Page 9: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Model Checking Game

Idea: Construct a game G so that

A ⊧ φ ? ↝ who wins G ?

Players:

• Eloïse: φ is true on A!

• Abélard: No, φ is false on A!

4 / 23

Page 10: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Model Checking Game

Idea: Construct a game G so that

A ⊧ φ ? ↝ who wins G ?

Players:

• Eloïse: φ is true on A!

• Abélard: No, φ is false on A!

4 / 23

Page 11: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Model Checking Game: Theory

�(N,+) ⊧ ∀m ∃n n = m +m ?

I will prove it by induction.

Show me for m = 0.

Let n = 0. 0 = 0 + 0 is an axiom.

∀m ∃n n = m +m

∀m ∃n n = m +m

∃n n = 0 + 0

0 = 0 + 0

∃n n = m +m → ∃n′ n′ = (m + 1) + (m + 1)

n = m +m → n + 1 + 1 = m + 1 +m + 1

induction

m = 0

n = 0

m ↝ m + 1

n′ = n + 1 + 1

5 / 23

Page 12: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Model Checking Game: Theory

�(N,+) ⊧ ∀m ∃n n = m +m ?

I will prove it by induction.

Show me for m = 0.

Let n = 0. 0 = 0 + 0 is an axiom.

∀m ∃n n = m +m

∀m ∃n n = m +m

∃n n = 0 + 0

0 = 0 + 0

∃n n = m +m → ∃n′ n′ = (m + 1) + (m + 1)

n = m +m → n + 1 + 1 = m + 1 +m + 1

induction

m = 0

n = 0

m ↝ m + 1

n′ = n + 1 + 1

5 / 23

Page 13: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Model Checking Game: Theory

�(N,+) ⊧ ∀m ∃n n = m +m ?

I will prove it by induction.

Show me for m = 0.

Let n = 0. 0 = 0 + 0 is an axiom.

∀m ∃n n = m +m

∀m ∃n n = m +m

∃n n = 0 + 0

0 = 0 + 0

∃n n = m +m → ∃n′ n′ = (m + 1) + (m + 1)

n = m +m → n + 1 + 1 = m + 1 +m + 1

induction

m = 0

n = 0

m ↝ m + 1

n′ = n + 1 + 1

5 / 23

Page 14: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Model Checking Game: Theory

�(N,+) ⊧ ∀m ∃n n = m +m ?

I will prove it by induction.

Show me for m = 0.

Let n = 0. 0 = 0 + 0 is an axiom.

∀m ∃n n = m +m

∀m ∃n n = m +m

∃n n = 0 + 0

0 = 0 + 0

∃n n = m +m → ∃n′ n′ = (m + 1) + (m + 1)

n = m +m → n + 1 + 1 = m + 1 +m + 1

induction

m = 0

n = 0

m ↝ m + 1

n′ = n + 1 + 1

5 / 23

Page 15: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Model Checking Game: Theory

�(N,+) ⊧ ∀m ∃n n = m +m ?

I will prove it by induction.

Show me for m = 0.

Let n = 0. 0 = 0 + 0 is an axiom.

∀m ∃n n = m +m

∀m ∃n n = m +m

∃n n = 0 + 0

0 = 0 + 0

∃n n = m +m → ∃n′ n′ = (m + 1) + (m + 1)

n = m +m → n + 1 + 1 = m + 1 +m + 1

induction

m = 0

n = 0

m ↝ m + 1

n′ = n + 1 + 1

5 / 23

Page 16: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Model Checking Game: Structure

(N,+) ⊧ ∀m ∃n n = m +m ?

Position ∀m, Abélard chooses m.

Let m = 17.

Position ∃n, Eloïse chooses n.

Let n = 34.

Eloïse wins as 34 = 17 + 17.

∀m ∃n n = m +m

∃n n = 0 + 0 . . . ∃n n = 17 + 17 . . .

0 = 0 + 0 . . . 34 = 17 + 17 . . .

m = 0 m = 17

n = 0 n = 34

6 / 23

Page 17: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Model Checking Game: Structure

(N,+) ⊧ ∀m ∃n n = m +m ?

Position ∀m, Abélard chooses m.

Let m = 17.

Position ∃n, Eloïse chooses n.

Let n = 34.

Eloïse wins as 34 = 17 + 17.

∀m ∃n n = m +m

∃n n = 0 + 0 . . . ∃n n = 17 + 17 . . .

0 = 0 + 0 . . . 34 = 17 + 17 . . .

m = 0 m = 17

n = 0 n = 34

6 / 23

Page 18: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Model Checking Game: Structure

(N,+) ⊧ ∀m ∃n n = m +m ?

Position ∀m, Abélard chooses m.

Let m = 17.

Position ∃n, Eloïse chooses n.

Let n = 34.

Eloïse wins as 34 = 17 + 17.

∀m ∃n n = m +m

∃n n = 0 + 0 . . . ∃n n = 17 + 17 . . .

0 = 0 + 0 . . . 34 = 17 + 17 . . .

m = 0 m = 17

n = 0 n = 34

6 / 23

Page 19: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Model Checking Game: Structure

(N,+) ⊧ ∀m ∃n n = m +m ?

Position ∀m, Abélard chooses m.

Let m = 17.

Position ∃n, Eloïse chooses n.

Let n = 34.

Eloïse wins as 34 = 17 + 17.

∀m ∃n n = m +m

∃n n = 0 + 0 . . . ∃n n = 17 + 17 . . .

0 = 0 + 0 . . . 34 = 17 + 17 . . .

m = 0 m = 17

n = 0 n = 34

6 / 23

Page 20: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Model Checking Game: Structure

(N,+) ⊧ ∀m ∃n n = m +m ?

Position ∀m, Abélard chooses m.

Let m = 17.

Position ∃n, Eloïse chooses n.

Let n = 34.

Eloïse wins as 34 = 17 + 17.

∀m ∃n n = m +m

∃n n = 0 + 0 . . . ∃n n = 17 + 17 . . .

0 = 0 + 0 . . . 34 = 17 + 17 . . .

m = 0 m = 17

n = 0 n = 34

6 / 23

Page 21: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Model Checking Game: Presentation(N2,A+) ⊧ ∀m ∃n n = m +m ?

Chooses the �rst digit of m.

Chooses the �rst digit of n

but do not show Abélard!

Make a step of + (simplify) and continue . . .

∀m ∃n n = m +m

∀m ∃n n = 2m + 2m ∀m ∃n n = (2m + 1) + (2m + 1)

∀m ∃n 2n = 2m + 2m

∀m ∃n 2n + 1 = 2m + 2m

∀m ∃n 2n = (2m + 1) + (2m + 1)

∀m ∃n 2n + 1 = (2m + 1) + (2m + 1)

m = 2m m = 2m + 1

n = 2n

n = 2n + 1

n = 2n

n = 2n + 1

. . .

Games with imperfect information, unbounded duration, many players.

7 / 23

Page 22: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Model Checking Game: Presentation(N2,A+) ⊧ ∀m ∃n n = m +m ?

Chooses the �rst digit of m.

Chooses the �rst digit of n

but do not show Abélard!

Make a step of + (simplify) and continue . . .

∀m ∃n n = m +m

∀m ∃n n = 2m + 2m ∀m ∃n n = (2m + 1) + (2m + 1)

∀m ∃n 2n = 2m + 2m

∀m ∃n 2n + 1 = 2m + 2m

∀m ∃n 2n = (2m + 1) + (2m + 1)

∀m ∃n 2n + 1 = (2m + 1) + (2m + 1)

m = 2m m = 2m + 1

n = 2n

n = 2n + 1

n = 2n

n = 2n + 1

. . .

Games with imperfect information, unbounded duration, many players.

7 / 23

Page 23: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Model Checking Game: Presentation(N2,A+) ⊧ ∀m ∃n n = m +m ?

Chooses the �rst digit of m.

Chooses the �rst digit of n

but do not show Abélard!

Make a step of + (simplify) and continue . . .

∀m ∃n n = m +m

∀m ∃n n = 2m + 2m ∀m ∃n n = (2m + 1) + (2m + 1)

∀m ∃n 2n = 2m + 2m

∀m ∃n 2n + 1 = 2m + 2m

∀m ∃n 2n = (2m + 1) + (2m + 1)

∀m ∃n 2n + 1 = (2m + 1) + (2m + 1)

m = 2m m = 2m + 1

n = 2n

n = 2n + 1

n = 2n

n = 2n + 1

. . .

Games with imperfect information, unbounded duration, many players.

7 / 23

Page 24: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Model Checking Game: Presentation(N2,A+) ⊧ ∀m ∃n n = m +m ?

Chooses the �rst digit of m.

Chooses the �rst digit of n but do not show Abélard!

Make a step of + (simplify) and continue . . .

∀m ∃n n = m +m

∀m ∃n n = 2m + 2m ∀m ∃n n = (2m + 1) + (2m + 1)

∀m ∃n 2n = 2m + 2m

∀m ∃n 2n + 1 = 2m + 2m

∀m ∃n 2n = (2m + 1) + (2m + 1)

∀m ∃n 2n + 1 = (2m + 1) + (2m + 1)

m = 2m m = 2m + 1

n = 2n

n = 2n + 1

n = 2n

n = 2n + 1

. . .

Games with imperfect information, unbounded duration, many players.

7 / 23

Page 25: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Model Checking Game: Presentation(N2,A+) ⊧ ∀m ∃n n = m +m ?

Chooses the �rst digit of m.

Chooses the �rst digit of n but do not show Abélard!

Make a step of + (simplify) and continue . . .

∀m ∃n n = m +m

∀m ∃n n = 2m + 2m ∀m ∃n n = (2m + 1) + (2m + 1)

∀m ∃n 2n = 2m + 2m

∀m ∃n 2n + 1 = 2m + 2m

∀m ∃n 2n = (2m + 1) + (2m + 1)

∀m ∃n 2n + 1 = (2m + 1) + (2m + 1)

m = 2m m = 2m + 1

n = 2n

n = 2n + 1

n = 2n

n = 2n + 1

. . .

Games with imperfect information, unbounded duration, many players.

7 / 23

Page 26: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Model Checking Game: Presentation(N2,A+) ⊧ ∀m ∃n n = m +m ?

Chooses the �rst digit of m.

Chooses the �rst digit of n but do not show Abélard!

Make a step of + (simplify) and continue . . .

∀m ∃n n = m +m

∀m ∃n n = 2m + 2m ∀m ∃n n = (2m + 1) + (2m + 1)

∀m ∃n 2n = 2m + 2m

∀m ∃n 2n + 1 = 2m + 2m

∀m ∃n 2n = (2m + 1) + (2m + 1)

∀m ∃n 2n + 1 = (2m + 1) + (2m + 1)

m = 2m m = 2m + 1

n = 2n

n = 2n + 1

n = 2n

n = 2n + 1

. . .

Games with imperfect information, unbounded duration, many players.7 / 23

Page 27: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Overview

Logic and Games

Automatic Structures

Imperfect Information Games

Generalized Quanti�ers

8 / 23

Page 28: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Automatic Structures

Example: + = {(x2, y2, z2) ∶ x + y = z} is a regular relation

00 11

(0, 0, 0), (1, 0, 1), (0, 1, 1)

(1, 1, 0)

(1, 0, 0), (0, 1, 0), (1, 1, 1)

(0, 0, 1)(0,◻, 0), (1,◻, 1)

= 9+ = 5

= 14

Relational structure A is automatic if

A ≅ (L, R1, . . . , Rn)

with L, Ri regular

9 / 23

Page 29: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Automatic Structures

Example: + = {(x2, y2, z2) ∶ x + y = z} is a regular relation

0

0

1

1

(0, 0, 0), (1, 0, 1), (0, 1, 1)

(1, 1, 0)

(1, 0, 0), (0, 1, 0), (1, 1, 1)

(0, 0, 1)(0,◻, 0), (1,◻, 1)

= 9+ = 5

= 14

Relational structure A is automatic if

A ≅ (L, R1, . . . , Rn)

with L, Ri regular

9 / 23

Page 30: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Automatic Structures

Example: + = {(x2, y2, z2) ∶ x + y = z} is a regular relation

0

0

1

1

(0, 0, 0), (1, 0, 1), (0, 1, 1)

(1, 1, 0)

(1, 0, 0), (0, 1, 0), (1, 1, 1)

(0, 0, 1)(0,◻, 0), (1,◻, 1)

1 0 0 1 = 9+ 1 0 1 ◻ = 5

0 1 1 1 = 14

Relational structure A is automatic if

A ≅ (L, R1, . . . , Rn)

with L, Ri regular

9 / 23

Page 31: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Automatic Structures

Example: + = {(x2, y2, z2) ∶ x + y = z} is a regular relation

0

0 1

1

(0, 0, 0), (1, 0, 1), (0, 1, 1)

(1, 1, 0)

(1, 0, 0), (0, 1, 0), (1, 1, 1)

(0, 0, 1)(0,◻, 0), (1,◻, 1)

1 0 0 1 = 9+ 1 0 1 ◻ = 5

0 1 1 1 = 14

Relational structure A is automatic if

A ≅ (L, R1, . . . , Rn)

with L, Ri regular

9 / 23

Page 32: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Automatic Structures

Example: + = {(x2, y2, z2) ∶ x + y = z} is a regular relation

0

0 1

1

(0, 0, 0), (1, 0, 1), (0, 1, 1)

(1, 1, 0)

(1, 0, 0), (0, 1, 0), (1, 1, 1)

(0, 0, 1)(0,◻, 0), (1,◻, 1)

1 0 0 1 = 9+ 1 0 1 ◻ = 5

0 1 1 1 = 14

Relational structure A is automatic if

A ≅ (L, R1, . . . , Rn)

with L, Ri regular

9 / 23

Page 33: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Automatic Structures

Example: + = {(x2, y2, z2) ∶ x + y = z} is a regular relation

0

0 1

1

(0, 0, 0), (1, 0, 1), (0, 1, 1)

(1, 1, 0)

(1, 0, 0), (0, 1, 0), (1, 1, 1)

(0, 0, 1)(0,◻, 0), (1,◻, 1)

1 0 0 1 = 9+ 1 0 1 ◻ = 5

0 1 1 1 = 14

Relational structure A is automatic if

A ≅ (L, R1, . . . , Rn)

with L, Ri regular

9 / 23

Page 34: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Automatic Structures

Example: + = {(x2, y2, z2) ∶ x + y = z} is a regular relation

0

0 1

1

(0, 0, 0), (1, 0, 1), (0, 1, 1)

(1, 1, 0)

(1, 0, 0), (0, 1, 0), (1, 1, 1)

(0, 0, 1)(0,◻, 0), (1,◻, 1)

1 0 0 1 = 9+ 1 0 1 ◻ = 5

0 1 1 1 = 14

Relational structure A is automatic if

A ≅ (L, R1, . . . , Rn)

with L, Ri regular

9 / 23

Page 35: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Automatic Structures

Example: + = {(x2, y2, z2) ∶ x + y = z} is a regular relation

0

0

1

1

(0, 0, 0), (1, 0, 1), (0, 1, 1)

(1, 1, 0)

(1, 0, 0), (0, 1, 0), (1, 1, 1)

(0, 0, 1)(0,◻, 0), (1,◻, 1)

1 0 0 1 = 9+ 1 0 1 ◻ = 5

0 1 1 1 = 14

Relational structure A is automatic if

A ≅ (L, R1, . . . , Rn)

with L, Ri regular

9 / 23

Page 36: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Automatic Structures

Example: + = {(x2, y2, z2) ∶ x + y = z} is a regular relation

0

0

1

1

(0, 0, 0), (1, 0, 1), (0, 1, 1)

(1, 1, 0)

(1, 0, 0), (0, 1, 0), (1, 1, 1)

(0, 0, 1)(0,◻, 0), (1,◻, 1)

1 0 0 1 = 9+ 1 0 1 ◻ = 5

0 1 1 1 = 14

Relational structure A is automatic if

A ≅ (L, R1, . . . , Rn)

with L, Ri regular

9 / 23

Page 37: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Various Automatic Structures

Presburger Arithmetic (N,+) [word-automatic]• n ↝ binary encoding• +↝ bitwise + with carry-over

Skolem Arithmetic (N, ⋅) [tree-automatic]• n = pα1

1 pα22 . . . p

αnn ↝ binary encodings of α1, α2, . . . , αn

• ⋅↝ + on corresponding αi components

Boolean Algebra (P(N),∪,∩, C,∅,N) [ω-word-automatic]• A ⊆ N↝ wA : wA[i] = 1 ⇐⇒ i ∈ A• ∪↝max• ∩↝min• C

↝ 1 − x

10 / 23

Page 38: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Various Automatic Structures

Presburger Arithmetic (N,+) [word-automatic]• n ↝ binary encoding• +↝ bitwise + with carry-over

Skolem Arithmetic (N, ⋅) [tree-automatic]• n = pα1

1 pα22 . . . p

αnn ↝ binary encodings of α1, α2, . . . , αn

• ⋅↝ + on corresponding αi components

Boolean Algebra (P(N),∪,∩, C,∅,N) [ω-word-automatic]• A ⊆ N↝ wA : wA[i] = 1 ⇐⇒ i ∈ A• ∪↝max• ∩↝min• C

↝ 1 − x

10 / 23

Page 39: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Various Automatic Structures

Presburger Arithmetic (N,+) [word-automatic]• n ↝ binary encoding• +↝ bitwise + with carry-over

Skolem Arithmetic (N, ⋅) [tree-automatic]• n = pα1

1 pα22 . . . p

αnn ↝ binary encodings of α1, α2, . . . , αn

• ⋅↝ + on corresponding αi components

Boolean Algebra (P(N),∪,∩, C,∅,N) [ω-word-automatic]• A ⊆ N↝ wA : wA[i] = 1 ⇐⇒ i ∈ A• ∪↝max• ∩↝min• C

↝ 1 − x

10 / 23

Page 40: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Overview

Logic and Games

Automatic Structures

Imperfect Information Games

Generalized Quanti�ers

11 / 23

Page 41: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Games with Perfect Information

Games are represented by labelled directed graphs.

a ab

a b

b

Plays are sequences of positions:

Chooses b. Chooses b again. and so on . . .

Winning condition: Eloïse wants to visit in�nitely o�en.

Winning strategy guarantees winning all consistent plays.

I will choose a on the right and b elsewhere.

12 / 23

Page 42: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Games with Perfect Information

Games are represented by labelled directed graphs.

a ab

a b

b

Plays are sequences of positions:

Chooses b. Chooses b again. and so on . . .

Winning condition: Eloïse wants to visit in�nitely o�en.

Winning strategy guarantees winning all consistent plays.

I will choose a on the right and b elsewhere.

12 / 23

Page 43: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Games with Perfect Information

Games are represented by labelled directed graphs.

a ab

a b

b

Plays are sequences of positions:

Chooses b.

Chooses b again. and so on . . .

Winning condition: Eloïse wants to visit in�nitely o�en.

Winning strategy guarantees winning all consistent plays.

I will choose a on the right and b elsewhere.

12 / 23

Page 44: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Games with Perfect Information

Games are represented by labelled directed graphs.

a ab

a b

b

Plays are sequences of positions:

Chooses b. Chooses b again.

and so on . . .

Winning condition: Eloïse wants to visit in�nitely o�en.

Winning strategy guarantees winning all consistent plays.

I will choose a on the right and b elsewhere.

12 / 23

Page 45: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Games with Perfect Information

Games are represented by labelled directed graphs.

a ab

a b

b

Plays are sequences of positions:

Chooses b. Chooses b again. and so on . . .

Winning condition: Eloïse wants to visit in�nitely o�en.

Winning strategy guarantees winning all consistent plays.

I will choose a on the right and b elsewhere.

12 / 23

Page 46: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Games with Perfect Information

Games are represented by labelled directed graphs.

a ab

a b

b

Plays are sequences of positions:

Chooses b. Chooses b again. and so on . . .

Winning condition: Eloïse wants to visit in�nitely o�en.

Winning strategy guarantees winning all consistent plays.

I will choose a on the right and b elsewhere.

12 / 23

Page 47: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Games with Perfect Information

Games are represented by labelled directed graphs.

a ab

a b

b

Plays are sequences of positions:

Chooses b. Chooses b again. and so on . . .

Winning condition: Eloïse wants to visit in�nitely o�en.

Winning strategy guarantees winning all consistent plays.

I will choose a on the right and b elsewhere.

12 / 23

Page 48: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Games with Perfect Information

Games are represented by labelled directed graphs.

a ab

a

b

b

Plays are sequences of positions:

Chooses b. Chooses b again. and so on . . .

Winning condition: Eloïse wants to visit in�nitely o�en.

Winning strategy guarantees winning all consistent plays.

I will choose a on the right and b elsewhere.12 / 23

Page 49: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Games with Imperfect Information

Abélard cannot see the moves of Eloïse

a ab

a b

b

Let me try: I will always choose b.

�en I will choose b on the le� and a on the right.

You have no winning strategy!

Neither do you!

In such imperfect information game it is Abélard who loses.

13 / 23

Page 50: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Games with Imperfect Information

Abélard cannot see the moves of Eloïse

a ab

a

b

b

Let me try: I will always choose b.

�en I will choose b on the le� and a on the right.

You have no winning strategy!

Neither do you!

In such imperfect information game it is Abélard who loses.

13 / 23

Page 51: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Games with Imperfect Information

Abélard cannot see the moves of Eloïse

a ab

a

b

b

Let me try: I will always choose b.

�en I will choose b on the le� and a on the right.

You have no winning strategy!

Neither do you!

In such imperfect information game it is Abélard who loses.

13 / 23

Page 52: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Games with Imperfect Information

Abélard cannot see the moves of Eloïse

a ab

a

b

b

Let me try: I will always choose b.

�en I will choose b on the le� and a on the right.

You have no winning strategy!

Neither do you!

In such imperfect information game it is Abélard who loses.

13 / 23

Page 53: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Games with Imperfect Information

Abélard cannot see the moves of Eloïse

a ab

a

b

b

Let me try: I will always choose b.

�en I will choose b on the le� and a on the right.

You have no winning strategy!

Neither do you!

In such imperfect information game it is Abélard who loses.

13 / 23

Page 54: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Games with Imperfect Information

Abélard cannot see the moves of Eloïse

a ab

a

b

b

Let me try: I will always choose b.

�en I will choose b on the le� and a on the right.

You have no winning strategy!

Neither do you!

In such imperfect information game it is Abélard who loses.13 / 23

Page 55: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Games withHierarchical Imperfect Information

Eloïse, meet my friend Adam:

a ab

a b

Hierarchy of information:• Adam can see what everyone does• Eloïse can only see what Abélard does• Abélard can not see the moves of other players

We say that Eloïse wins this game, because:• for every strategy of Abélard• there is a counter-strategy of Eloïse• that leads to a winning play whatever Adam does

14 / 23

Page 56: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Games withHierarchical Imperfect Information

Eloïse, meet my friend Adam:

a ab

a b

Hierarchy of information:• Adam can see what everyone does• Eloïse can only see what Abélard does• Abélard can not see the moves of other players

We say that Eloïse wins this game, because:• for every strategy of Abélard• there is a counter-strategy of Eloïse• that leads to a winning play whatever Adam does

14 / 23

Page 57: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Games withHierarchical Imperfect Information

Eloïse, meet my friend Adam:

a ab

a b

Hierarchy of information:• Adam can see what everyone does• Eloïse can only see what Abélard does• Abélard can not see the moves of other players

We say that Eloïse wins this game, because:• for every strategy of Abélard• there is a counter-strategy of Eloïse• that leads to a winning play whatever Adam does

14 / 23

Page 58: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Building theModel Checking Game

Goal: A ⊧ φ ↝ who wins G.

Take the formula ∃x (R1(x) ∧ R2(x))

R1 = {aω}

Rq01 Rq1

1b

a a,bR2 = {a, b}ω

/{aω}

Rq02 Rq1

2b

a a,b

Note: x given before ∧ branch is chosen∧ on a higher level of information than ∃x

• quanti�er alternation↝di�erent levels of information

∃x (R1(x) ∧ R2(x))

R1(x) ∧ R2(x)

R1(x) R2(x)Rq01 (x)

Rq11 (x)

b

a

a, b

Rq02 (x)

Rq12 (x)

b

a

a, b

15 / 23

Page 59: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Building theModel Checking Game

Goal: A ⊧ φ ↝ who wins G.

Take the formula ∃x (R1(x) ∧ R2(x))

R1 = {aω}

Rq01 Rq1

1b

a a,bR2 = {a, b}ω

/{aω}

Rq02 Rq1

2b

a a,b

Note: x given before ∧ branch is chosen∧ on a higher level of information than ∃x

• quanti�er alternation↝di�erent levels of information

∃x (R1(x) ∧ R2(x))

R1(x) ∧ R2(x)

R1(x) R2(x)Rq01 (x)

Rq11 (x)

b

a

a, b

Rq02 (x)

Rq12 (x)

b

a

a, b

15 / 23

Page 60: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Building theModel Checking Game

Goal: A ⊧ φ ↝ who wins G.

Take the formula ∃x (R1(x) ∧ R2(x))

R1 = {aω}

Rq01 Rq1

1b

a a,bR2 = {a, b}ω

/{aω}

Rq02 Rq1

2b

a a,b

Note: x given before ∧ branch is chosen∧ on a higher level of information than ∃x

• quanti�er alternation↝di�erent levels of information

∃x (R1(x) ∧ R2(x))

R1(x) ∧ R2(x)

R1(x) R2(x)Rq01 (x)

Rq11 (x)

b

a

a, b

Rq02 (x)

Rq12 (x)

b

a

a, b

15 / 23

Page 61: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Building theModel Checking Game

Goal: A ⊧ φ ↝ who wins G.

Take the formula ∃x (R1(x) ∧ R2(x))

R1 = {aω}

Rq01 Rq1

1b

a a,bR2 = {a, b}ω

/{aω}

Rq02 Rq1

2b

a a,b

Note: x given before ∧ branch is chosen∧ on a higher level of information than ∃x

• quanti�er alternation↝di�erent levels of information

∃x (R1(x) ∧ R2(x))

R1(x) ∧ R2(x)

R1(x) R2(x)

Rq01 (x)

Rq11 (x)

b

a

a, b

Rq02 (x)

Rq12 (x)

b

a

a, b

15 / 23

Page 62: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Building theModel Checking Game

Goal: A ⊧ φ ↝ who wins G.

Take the formula ∃x (R1(x) ∧ R2(x))

R1 = {aω}

Rq01 Rq1

1b

a a,bR2 = {a, b}ω

/{aω}

Rq02 Rq1

2b

a a,b

Note: x given before ∧ branch is chosen∧ on a higher level of information than ∃x

• quanti�er alternation↝di�erent levels of information

∃x (R1(x) ∧ R2(x))

R1(x) ∧ R2(x)

R1(x) R2(x)

Rq01 (x)

Rq11 (x)

b

a

a, b

Rq02 (x)

Rq12 (x)

b

a

a, b

15 / 23

Page 63: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Building theModel Checking Game

Goal: A ⊧ φ ↝ who wins G.

Take the formula ∃x (R1(x) ∧ R2(x))

R1 = {aω}

Rq01 Rq1

1b

a a,bR2 = {a, b}ω

/{aω}

Rq02 Rq1

2b

a a,b

Note: x given before ∧ branch is chosen∧ on a higher level of information than ∃x

• quanti�er alternation↝di�erent levels of information

∃x (R1(x) ∧ R2(x))

R1(x) ∧ R2(x)

R1(x) R2(x)

Rq01 (x)

Rq11 (x)

b

a

a, b

Rq02 (x)

Rq12 (x)

b

a

a, b

15 / 23

Page 64: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Hierarchical Games and Logic

�eoremCoalition◯ wins the gameMC(A, φ) i� A ⊧ φ.

Is there a strict correspondece between games and logic?

De�ne WG◯(x) ⇐⇒ the play according to x is winning for◯.

�eoremFor any strictly hierarchical game G, coalition◯ wins G i�

(Σ≤ω ,WG◯) ⊧ ∃x1 ∀x2 . . . QxN WG

◯(x1, x2, . . . , xN).

16 / 23

Page 65: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Hierarchical Games and Logic

�eoremCoalition◯ wins the gameMC(A, φ) i� A ⊧ φ.

Is there a strict correspondece between games and logic?

De�ne WG◯(x) ⇐⇒ the play according to x is winning for◯.

�eoremFor any strictly hierarchical game G, coalition◯ wins G i�

(Σ≤ω ,WG◯) ⊧ ∃x1 ∀x2 . . . QxN WG

◯(x1, x2, . . . , xN).

16 / 23

Page 66: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Hierarchical Games and Logic

�eoremCoalition◯ wins the gameMC(A, φ) i� A ⊧ φ.

Is there a strict correspondece between games and logic?

De�ne WG◯(x) ⇐⇒ the play according to x is winning for◯.

�eoremFor any strictly hierarchical game G, coalition◯ wins G i�

(Σ≤ω ,WG◯) ⊧ ∃x1 ∀x2 . . . QxN WG

◯(x1, x2, . . . , xN).

16 / 23

Page 67: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Overview

Logic and Games

Automatic Structures

Imperfect Information Games

Generalized Quanti�ers

17 / 23

Page 68: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Hierchical Games with Same-Level Players

• Eloïse and Abélard can see each others moves• but not the moves of Adam (he can see everything)

a ab

a b

b

Now Abélard and Adam can win together:• Adam chooses b• Abélard repeats the last move of Eloïse

What does it corespond to in logic?

18 / 23

Page 69: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Hierchical Games with Same-Level Players

• Eloïse and Abélard can see each others moves• but not the moves of Adam (he can see everything)

a ab

a

b

b

Now Abélard and Adam can win together:• Adam chooses b• Abélard repeats the last move of Eloïse

What does it corespond to in logic?

18 / 23

Page 70: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Hierchical Games with Same-Level Players

• Eloïse and Abélard can see each others moves• but not the moves of Adam (he can see everything)

a ab

a

b

b

Now Abélard and Adam can win together:• Adam chooses b• Abélard repeats the last move of Eloïse

What does it corespond to in logic?18 / 23

Page 71: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

GameQuantifier

Our structure: ({a, b}ω , R1, . . . , RK)

axy φ(x , y)

Eloïse x = a b b a a . . .

Abélard y = b b a b b . . .

Can Eloïse play so that however Abélard plays φ(x , y) holds?

Considered before in in�nitary logic:

axy φ(x , y) ⇐⇒ (∃a1∀b1∃a2∀b2 . . .) φ(a1a2 . . . , b1b2 . . .).

19 / 23

Page 72: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

GameQuantifier

Our structure: ({a, b}ω , R1, . . . , RK)

axy φ(x , y)

Eloïse x = a

b b a a . . .

Abélard y =

b b a b b . . .

Can Eloïse play so that however Abélard plays φ(x , y) holds?

Considered before in in�nitary logic:

axy φ(x , y) ⇐⇒ (∃a1∀b1∃a2∀b2 . . .) φ(a1a2 . . . , b1b2 . . .).

19 / 23

Page 73: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

GameQuantifier

Our structure: ({a, b}ω , R1, . . . , RK)

axy φ(x , y)

Eloïse x = a

b b a a . . .

Abélard y = b

b a b b . . .

Can Eloïse play so that however Abélard plays φ(x , y) holds?

Considered before in in�nitary logic:

axy φ(x , y) ⇐⇒ (∃a1∀b1∃a2∀b2 . . .) φ(a1a2 . . . , b1b2 . . .).

19 / 23

Page 74: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

GameQuantifier

Our structure: ({a, b}ω , R1, . . . , RK)

axy φ(x , y)

Eloïse x = a b

b a a . . .

Abélard y = b

b a b b . . .

Can Eloïse play so that however Abélard plays φ(x , y) holds?

Considered before in in�nitary logic:

axy φ(x , y) ⇐⇒ (∃a1∀b1∃a2∀b2 . . .) φ(a1a2 . . . , b1b2 . . .).

19 / 23

Page 75: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

GameQuantifier

Our structure: ({a, b}ω , R1, . . . , RK)

axy φ(x , y)

Eloïse x = a b

b a a . . .

Abélard y = b b

a b b . . .

Can Eloïse play so that however Abélard plays φ(x , y) holds?

Considered before in in�nitary logic:

axy φ(x , y) ⇐⇒ (∃a1∀b1∃a2∀b2 . . .) φ(a1a2 . . . , b1b2 . . .).

19 / 23

Page 76: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

GameQuantifier

Our structure: ({a, b}ω , R1, . . . , RK)

axy φ(x , y)

Eloïse x = a b b

a a . . .

Abélard y = b b

a b b . . .

Can Eloïse play so that however Abélard plays φ(x , y) holds?

Considered before in in�nitary logic:

axy φ(x , y) ⇐⇒ (∃a1∀b1∃a2∀b2 . . .) φ(a1a2 . . . , b1b2 . . .).

19 / 23

Page 77: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

GameQuantifier

Our structure: ({a, b}ω , R1, . . . , RK)

axy φ(x , y)

Eloïse x = a b b

a a . . .

Abélard y = b b a

b b . . .

Can Eloïse play so that however Abélard plays φ(x , y) holds?

Considered before in in�nitary logic:

axy φ(x , y) ⇐⇒ (∃a1∀b1∃a2∀b2 . . .) φ(a1a2 . . . , b1b2 . . .).

19 / 23

Page 78: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

GameQuantifier

Our structure: ({a, b}ω , R1, . . . , RK)

axy φ(x , y)

Eloïse x = a b b a

a . . .

Abélard y = b b a

b b . . .

Can Eloïse play so that however Abélard plays φ(x , y) holds?

Considered before in in�nitary logic:

axy φ(x , y) ⇐⇒ (∃a1∀b1∃a2∀b2 . . .) φ(a1a2 . . . , b1b2 . . .).

19 / 23

Page 79: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

GameQuantifier

Our structure: ({a, b}ω , R1, . . . , RK)

axy φ(x , y)

Eloïse x = a b b a

a . . .

Abélard y = b b a b

b . . .

Can Eloïse play so that however Abélard plays φ(x , y) holds?

Considered before in in�nitary logic:

axy φ(x , y) ⇐⇒ (∃a1∀b1∃a2∀b2 . . .) φ(a1a2 . . . , b1b2 . . .).

19 / 23

Page 80: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

GameQuantifier

Our structure: ({a, b}ω , R1, . . . , RK)

axy φ(x , y)

Eloïse x = a b b a a

. . .

Abélard y = b b a b

b . . .

Can Eloïse play so that however Abélard plays φ(x , y) holds?

Considered before in in�nitary logic:

axy φ(x , y) ⇐⇒ (∃a1∀b1∃a2∀b2 . . .) φ(a1a2 . . . , b1b2 . . .).

19 / 23

Page 81: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

GameQuantifier

Our structure: ({a, b}ω , R1, . . . , RK)

axy φ(x , y)

Eloïse x = a b b a a

. . .

Abélard y = b b a b b

. . .

Can Eloïse play so that however Abélard plays φ(x , y) holds?

Considered before in in�nitary logic:

axy φ(x , y) ⇐⇒ (∃a1∀b1∃a2∀b2 . . .) φ(a1a2 . . . , b1b2 . . .).

19 / 23

Page 82: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

GameQuantifier

Our structure: ({a, b}ω , R1, . . . , RK)

axy φ(x , y)

Eloïse x = a b b a a . . .

Abélard y = b b a b b

. . .

Can Eloïse play so that however Abélard plays φ(x , y) holds?

Considered before in in�nitary logic:

axy φ(x , y) ⇐⇒ (∃a1∀b1∃a2∀b2 . . .) φ(a1a2 . . . , b1b2 . . .).

19 / 23

Page 83: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

GameQuantifier

Our structure: ({a, b}ω , R1, . . . , RK)

axy φ(x , y)

Eloïse x = a b b a a . . .

Abélard y = b b a b b . . .

Can Eloïse play so that however Abélard plays φ(x , y) holds?

Considered before in in�nitary logic:

axy φ(x , y) ⇐⇒ (∃a1∀b1∃a2∀b2 . . .) φ(a1a2 . . . , b1b2 . . .).

19 / 23

Page 84: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

GameQuantifier

Our structure: ({a, b}ω , R1, . . . , RK)

axy φ(x , y)

Eloïse x = a b b a a . . .

Abélard y = b b a b b . . .

Can Eloïse play so that however Abélard plays φ(x , y) holds?

Considered before in in�nitary logic:

axy φ(x , y) ⇐⇒ (∃a1∀b1∃a2∀b2 . . .) φ(a1a2 . . . , b1b2 . . .).

19 / 23

Page 85: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

GameQuantifier

Our structure: ({a, b}ω , R1, . . . , RK)

axy φ(x , y)

Eloïse x = a b b a a . . .

Abélard y = b b a b b . . .

Can Eloïse play so that however Abélard plays φ(x , y) holds?

Considered before in in�nitary logic:

axy φ(x , y) ⇐⇒ (∃a1∀b1∃a2∀b2 . . .) φ(a1a2 . . . , b1b2 . . .).

19 / 23

Page 86: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Decidability of FO[a]

Game quanti�er makes automata alternating

LemmaIf R(x , y, z) is ω-regular then axy R(x , y, z) is ω-regular as well.

Corollary

�e logic FO[a] is decidable on automatic structures.

�ere is a strict correspondence between FO[a] and hierarchical games

Corollary

It is decidable whether◯ win in a hierarchical game G.

Only for hierarchical games where players alternate!

20 / 23

Page 87: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Decidability of FO[a]

Game quanti�er makes automata alternating

LemmaIf R(x , y, z) is ω-regular then axy R(x , y, z) is ω-regular as well.

Corollary

�e logic FO[a] is decidable on automatic structures.

�ere is a strict correspondence between FO[a] and hierarchical games

Corollary

It is decidable whether◯ win in a hierarchical game G.

Only for hierarchical games where players alternate!

20 / 23

Page 88: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Decidability of FO[a]

Game quanti�er makes automata alternating

LemmaIf R(x , y, z) is ω-regular then axy R(x , y, z) is ω-regular as well.

Corollary

�e logic FO[a] is decidable on automatic structures.

�ere is a strict correspondence between FO[a] and hierarchical games

Corollary

It is decidable whether◯ win in a hierarchical game G.

Only for hierarchical games where players alternate!

20 / 23

Page 89: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Generalized UnaryQuantifiers

We consider the following counting quanti�ers:• in�nity quanti�er

∃∞x φ(x) ≡ {x ∶ φ(x)} is in�nite

• modulo counting quanti�ers

∃k mod mx φ(x) ≡ ∣{x ∶ φ(x)}∣ = k mod m

• uncountability quanti�er (on ω-automatic structures)

∃>ωx φ(x) ≡ {x ∶ φ(x)} is uncountable

�eorem�e logic FO[C] collapses to FO and thus is decidable on automatic structures.

21 / 23

Page 90: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

More on Generalized UnaryQuantifiers

�ese are no other generalized unary quanti�ers that preserve regularity• we obtained full characterization up to de�nability

Extends to structures with interpreted equality• Example: atomless boolean algebra• Technical di�culty with the uncountability quanti�er• Method: investigate semigroups recognizing transitive relations• Corollary: every countable ω-automatic structure is automatic

Extends to generalized-automatic structures

22 / 23

Page 91: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

More on Generalized UnaryQuantifiers

�ese are no other generalized unary quanti�ers that preserve regularity• we obtained full characterization up to de�nability

Extends to structures with interpreted equality• Example: atomless boolean algebra• Technical di�culty with the uncountability quanti�er• Method: investigate semigroups recognizing transitive relations• Corollary: every countable ω-automatic structure is automatic

Extends to generalized-automatic structures

22 / 23

Page 92: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

More on Generalized UnaryQuantifiers

�ese are no other generalized unary quanti�ers that preserve regularity• we obtained full characterization up to de�nability

Extends to structures with interpreted equality• Example: atomless boolean algebra• Technical di�culty with the uncountability quanti�er• Method: investigate semigroups recognizing transitive relations• Corollary: every countable ω-automatic structure is automatic

Extends to generalized-automatic structures

22 / 23

Page 93: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Summary

Problem studied:A ⊧ φ ? where A automatic (presentation) and φ ∈ FO[C ,a]

Main results:

• model-checking games for automatic structures• decidability of hierarchical games• analysis of memory structures for in�nite games• study of game quanti�cation on automatic structures• elimination of cardinality and counting quanti�ers

�ank You

23 / 23

Page 94: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Summary

Problem studied:A ⊧ φ ? where A automatic (presentation) and φ ∈ FO[C ,a]

Main results:

• model-checking games for automatic structures• decidability of hierarchical games• analysis of memory structures for in�nite games• study of game quanti�cation on automatic structures• elimination of cardinality and counting quanti�ers

�ank You

23 / 23

Page 95: Ž†ƒhZŁo GZfiu«ŽŁ A¶–ŽfiZ–ƒh S–§¶h–¶§u«kaiser/logic_games.pdf · MŽou‘C—uh”ƒŁ†P§Žf‘ufi A àφ? Deductiveapproach (N,+)àφ? • Objects: formulas

Summary

Problem studied:A ⊧ φ ? where A automatic (presentation) and φ ∈ FO[C ,a]

Main results:

• model-checking games for automatic structures• decidability of hierarchical games• analysis of memory structures for in�nite games• study of game quanti�cation on automatic structures• elimination of cardinality and counting quanti�ers

�ank You

23 / 23