zero temperature limite and the cell problem in hamilton ...pthieull/recherche/... · zero...

51
0. 1. 2. 3. Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit´ e Bordeaux 1, Institut de Math´ ematiques Roma, Mars 2011 Roma 2011, Sapienza Zero temperature limite 1/23

Upload: others

Post on 22-Feb-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

Zero temperature limite andthe cell problem in Hamilton-Jacobi equation

Philippe Thieullen

Universite Bordeaux 1, Institut de Mathematiques

Roma, Mars 2011

Roma 2011, Sapienza Zero temperature limite 1/23

Page 2: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

Objectives

The ultimate goal of the project:To interprete the solution of the cell equation in Hamilton-Jacobi as aground state, that is, a zero temperature limite of Gibbs measures

1 A short introduction on the semi-discretized cell problem

2 A dynamical interpretation by the Frenkel-Kontorova model

3 Gibbs measures and phase transition

Roma 2011, Sapienza Zero temperature limite 2/23

Page 3: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

Objectives

The ultimate goal of the project:To interprete the solution of the cell equation in Hamilton-Jacobi as aground state, that is, a zero temperature limite of Gibbs measures

1 A short introduction on the semi-discretized cell problem

2 A dynamical interpretation in the Frenkel-Kontorova model

3 Gibbs measures and phase transition

Roma 2011, Sapienza Zero temperature limite 3/23

Page 4: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

A semi-discretized cell equation

Notations: We consider an Hamiltonian H(x, p), continuous,periodic in x, convex in p and uniformly superlinear in p

lim‖p‖→+∞

infx∈Rd

H(x, p)‖p‖

= +∞.

The cell equation: There exist a unique constant H(P ) such thatthat, for any P ∈ Rd fixed,

H(x,Du(x) + P ) = H(P ), ∀ x ∈ Rd

admits a periodic solution u(x) = u(x, P ) in the viscosity sense.

Roma 2011, Sapienza Zero temperature limite 4/23

Page 5: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

A semi-discretized cell equation

Notations: We consider an Hamiltonian H(x, p), continuous,periodic in x, convex in p and uniformly superlinear in p

lim‖p‖→+∞

infx∈Rd

H(x, p)‖p‖

= +∞.

The cell equation: There exist a unique constant H(P ) such thatthat, for any P ∈ Rd fixed,

H(x,Du(x) + P ) = H(P ), ∀ x ∈ Rd

admits a periodic solution u(x) = u(x, P ) in the viscosity sense.

Roma 2011, Sapienza Zero temperature limite 4/23

Page 6: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

A semi-discretized cell equation

An approximate cell problem: (Hamilton-Jacobi-Belman) Thereexists a unique viscosity solution uε(x) of

εuε(x) +H(x,Duε(x) + P ) = 0, ∀ x ∈ Rd

The value function: (of an infinite horizon problem)

uε(x) = uε(x, P ) = inf{∫ 0

−∞

[L(γ, γ)− P · γ

]e−ε|s| ds :

γ ∈W 1,∞(]−∞, 0],Rd), γ(0) = x}

where L(x, v) = sup{p · v −H(x, p) : p ∈ Rd} is the associatedLagrangian

LPV result: For some subsequence of ε, uniformly in x

εuε(x)→ −H(P ), uε(x)−minuε → u(x)

Roma 2011, Sapienza Zero temperature limite 5/23

Page 7: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

A semi-discretized cell equation

An approximate cell problem: (Hamilton-Jacobi-Belman) Thereexists a unique viscosity solution uε(x) of

εuε(x) +H(x,Duε(x) + P ) = 0, ∀ x ∈ Rd

The value function: (of an infinite horizon problem)

uε(x) = uε(x, P ) = inf{∫ 0

−∞

[L(γ, γ)− P · γ

]e−ε|s| ds :

γ ∈W 1,∞(]−∞, 0],Rd), γ(0) = x}

where L(x, v) = sup{p · v −H(x, p) : p ∈ Rd} is the associatedLagrangian

LPV result: For some subsequence of ε, uniformly in x

εuε(x)→ −H(P ), uε(x)−minuε → u(x)

Roma 2011, Sapienza Zero temperature limite 5/23

Page 8: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

A semi-discretized cell equation

An approximate cell problem: (Hamilton-Jacobi-Belman) Thereexists a unique viscosity solution uε(x) of

εuε(x) +H(x,Duε(x) + P ) = 0, ∀ x ∈ Rd

The value function: (of an infinite horizon problem)

uε(x) = uε(x, P ) = inf{∫ 0

−∞

[L(γ, γ)− P · γ

]e−ε|s| ds :

γ ∈W 1,∞(]−∞, 0],Rd), γ(0) = x}

where L(x, v) = sup{p · v −H(x, p) : p ∈ Rd} is the associatedLagrangian

LPV result: For some subsequence of ε, uniformly in x

εuε(x)→ −H(P ), uε(x)−minuε → u(x)

Roma 2011, Sapienza Zero temperature limite 5/23

Page 9: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

A semi-discretized cell equation

The semi-discretized HJB equation: Let τ > 0 be a time step.Let t−k = −τk, k=1,2,. . .

uε,τ (x) = inf{ +∞∑k=1

τ[L(x−k, v−k)− P · v−k

](1− ετ)k−1 :

v−k ∈ Rd, x−k+1 = x−k + τv−k, x0 = x}

Results (Falcone, Rorro): If in addition H(x, p) is C2-smooth andstrictly convex in p, then, for some constant C,

supx∈Rd

|uε,τ (x)− uε(x)| ≤ C τε

Roma 2011, Sapienza Zero temperature limite 6/23

Page 10: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

A semi-discretized cell equation

The semi-discretized HJB equation: Let τ > 0 be a time step.Let t−k = −τk, k=1,2,. . .

uε,τ (x) = inf{ +∞∑k=1

τ[L(x−k, v−k)− P · v−k

](1− ετ)k−1 :

v−k ∈ Rd, x−k+1 = x−k + τv−k, x0 = x}

Results (Falcone, Rorro): If in addition H(x, p) is C2-smooth andstrictly convex in p, then, for some constant C,

supx∈Rd

|uε,τ (x)− uε(x)| ≤ C τε

Roma 2011, Sapienza Zero temperature limite 6/23

Page 11: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

A semi-discretized cell equation

The discrete dynamical programming principal: The discretevalue function u(x) = uε,τ satisfies

εu(x) + supv∈Rd

{(1− ετ)

u(x)− u(x− τv)τ

−L(x− τv, v) +P · v}

= 0

versus a semi-discrete cell equation:

supv∈Rd

{u(x)− u(x− τv)τ

− L(x− τv, v) + P · v}

= H(P )

or a discrtet Lax-Oleinik equation

u(x) + L(P ) = infx′∈Rd

{u(x′) + τL

(x′,

x− x′

τ

)− τP · (x− x′)

}L(P ) = −H(P )

Roma 2011, Sapienza Zero temperature limite 7/23

Page 12: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

A semi-discretized cell equation

The discrete dynamical programming principal: The discretevalue function u(x) = uε,τ satisfies

εu(x) + supv∈Rd

{(1− ετ)

u(x)− u(x− τv)τ

−L(x− τv, v) +P · v}

= 0

versus a semi-discrete cell equation:

supv∈Rd

{u(x)− u(x− τv)τ

− L(x− τv, v) + P · v}

= H(P )

or a discrtet Lax-Oleinik equation

u(x) + L(P ) = infx′∈Rd

{u(x′) + τL

(x′,

x− x′

τ

)− τP · (x− x′)

}L(P ) = −H(P )

Roma 2011, Sapienza Zero temperature limite 7/23

Page 13: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

A semi-discretized cell equation

The discrete dynamical programming principal: The discretevalue function u(x) = uε,τ satisfies

εu(x) + supv∈Rd

{(1− ετ)

u(x)− u(x− τv)τ

−L(x− τv, v) +P · v}

= 0

versus a semi-discrete cell equation:

supv∈Rd

{u(x)− u(x− τv)τ

− L(x− τv, v) + P · v}

= H(P )

or a discrtet Lax-Oleinik equation

u(x) + L(P ) = infx′∈Rd

{u(x′) + τL

(x′,

x− x′

τ

)− τP · (x− x′)

}L(P ) = −H(P )

Roma 2011, Sapienza Zero temperature limite 7/23

Page 14: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

A semi-discretized cell equation

Conclusion:

The cell equation admits “approximate” solutions satisfing anequation of the form

u(x) + E = minx′{u(x′) + E(x′, x)},u(x) is 1-periodic in x,E(x′, x) = E(x′ + 1, x+ 1),E(x′, x) is strictly convex, superlinear in ‖x− x′‖

The nul sets{(x′, x) : x′ = argminx′{u(x′)− u(x) + E(x′, x)− E}

}give the set of equations describing the ground configurations of theFrenkel-Kontorova model associated to the interaction energyE(x′, x).

Roma 2011, Sapienza Zero temperature limite 8/23

Page 15: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

A semi-discretized cell equation

Conclusion:

The cell equation admits “approximate” solutions satisfing anequation of the form

u(x) + E = minx′{u(x′) + E(x′, x)},u(x) is 1-periodic in x,E(x′, x) = E(x′ + 1, x+ 1),E(x′, x) is strictly convex, superlinear in ‖x− x′‖

The nul sets{(x′, x) : x′ = argminx′{u(x′)− u(x) + E(x′, x)− E}

}give the set of equations describing the ground configurations of theFrenkel-Kontorova model associated to the interaction energyE(x′, x).

Roma 2011, Sapienza Zero temperature limite 8/23

Page 16: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

Objectives

The ultimate goal of the project:To interprete the solution of the cell equation in Hamilton-Jacobi as aground state, that is, a zero temperature limite of Gibbs measures

1 A short introduction on the semi-discretized cell problem

2 A dynamical interpretation by the Frenkel-Kontorova model

3 Gibbs measures and phase transition

Roma 2011, Sapienza Zero temperature limite 9/23

Page 17: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

The Frenkel-Kontorova model

The physical model: The model describes the set of configurationof a chain of atoms at equilibrium

xi1xi−1 xi xi2

Elastic interaction

Periodic potential

The original 1D-FK:

E(x, y) = W (x, y) + V (x),

W (x, y) =12|y − x|2, V (x) =

K

(2π)2

(1− cos(2πx)

)Eλ(x, y) = E0(x, y)− λ(y − x).

Roma 2011, Sapienza Zero temperature limite 10/23

Page 18: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

The Frenkel-Kontorova model

The physical model: The model describes the set of configurationof a chain of atoms at equilibrium

xi1xi−1 xi xi2

Elastic interaction

Periodic potential

The original 1D-FK:

E(x, y) = W (x, y) + V (x),

W (x, y) =12|y − x|2, V (x) =

K

(2π)2

(1− cos(2πx)

)Eλ(x, y) = E0(x, y)− λ(y − x).

Roma 2011, Sapienza Zero temperature limite 10/23

Page 19: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

The Frenkel-Kontorova model

Question: How to define a notion of configuration x := (xk)k∈Zwith the smallest total energy

Etot(x) :=+∞∑

k=−∞

E(xk, xk+1) ≤ Etot(y), ∀ y

Minimizing configuration: x := (. . . , x−1, x0, x1, . . .) such that E(xm, xm+1, . . . , xn) :=∑n−1k=mE(xk, xk+1)

E(xm, . . . , xn) ≤ E(ym, . . . , yn)∀ y configuration s.t. ym = xm and yn = xn

Remark: Let Eλ(x, y) := E(x, y)− λ · (y − x) then

(xk)k∈Z is minimizing for E ⇐⇒ (xk)k∈Z is minimizing for Eλ

Roma 2011, Sapienza Zero temperature limite 11/23

Page 20: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

The Frenkel-Kontorova model

Question: How to define a notion of configuration x := (xk)k∈Zwith the smallest total energy

Etot(x) :=+∞∑

k=−∞

E(xk, xk+1) ≤ Etot(y), ∀ y

Minimizing configuration: x := (. . . , x−1, x0, x1, . . .) such that E(xm, xm+1, . . . , xn) :=∑n−1k=mE(xk, xk+1)

E(xm, . . . , xn) ≤ E(ym, . . . , yn)∀ y configuration s.t. ym = xm and yn = xn

Remark: Let Eλ(x, y) := E(x, y)− λ · (y − x) then

(xk)k∈Z is minimizing for E ⇐⇒ (xk)k∈Z is minimizing for Eλ

Roma 2011, Sapienza Zero temperature limite 11/23

Page 21: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

The Frenkel-Kontorova model

Question: How to define a notion of configuration x := (xk)k∈Zwith the smallest total energy

Etot(x) :=+∞∑

k=−∞

E(xk, xk+1) ≤ Etot(y), ∀ y

Minimizing configuration: x := (. . . , x−1, x0, x1, . . .) such that E(xm, xm+1, . . . , xn) :=∑n−1k=mE(xk, xk+1)

E(xm, . . . , xn) ≤ E(ym, . . . , yn)∀ y configuration s.t. ym = xm and yn = xn

Remark: Let Eλ(x, y) := E(x, y)− λ · (y − x) then

(xk)k∈Z is minimizing for E ⇐⇒ (xk)k∈Z is minimizing for Eλ

Roma 2011, Sapienza Zero temperature limite 11/23

Page 22: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

The Frenkel-Kontorova model

Effective potential (Chou-Griffiths): A periodic C0 function u(x){u(y) + E = minx{u(x) + E(x, y)}, ∀ y (backward)u(x) + E = maxy{u(y)− E(x, y)}, ∀ x (forward)

(effectif potential = discrete viscosity solution = calibrated solution= corrector)

Ground configuration: A configuration (xk)k∈Z such that

∃ u(x) effective potential s.t.u(xk+1) + E = u(xk) + E(xk, xk+1), ∀ k ∈ Z

Easy results:There exist effective potential (E is unique)All ground configuration are minimizing

Roma 2011, Sapienza Zero temperature limite 12/23

Page 23: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

The Frenkel-Kontorova model

Effective potential (Chou-Griffiths): A periodic C0 function u(x){u(y) + E = minx{u(x) + E(x, y)}, ∀ y (backward)u(x) + E = maxy{u(y)− E(x, y)}, ∀ x (forward)

(effectif potential = discrete viscosity solution = calibrated solution= corrector)

Ground configuration: A configuration (xk)k∈Z such that

∃ u(x) effective potential s.t.u(xk+1) + E = u(xk) + E(xk, xk+1), ∀ k ∈ Z

Easy results:There exist effective potential (E is unique)All ground configuration are minimizing

Roma 2011, Sapienza Zero temperature limite 12/23

Page 24: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

The Frenkel-Kontorova model

Effective potential (Chou-Griffiths): A periodic C0 function u(x){u(y) + E = minx{u(x) + E(x, y)}, ∀ y (backward)u(x) + E = maxy{u(y)− E(x, y)}, ∀ x (forward)

(effectif potential = discrete viscosity solution = calibrated solution= corrector)

Ground configuration: A configuration (xk)k∈Z such that

∃ u(x) effective potential s.t.u(xk+1) + E = u(xk) + E(xk, xk+1), ∀ k ∈ Z

Easy results:There exist effective potential (E is unique)All ground configuration are minimizing

Roma 2011, Sapienza Zero temperature limite 12/23

Page 25: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

The Frenkel-Kontorova model

Deep result (Aubry-Mather): Assume d = 1“recurrent” minimizing configurations are ground configuration forsome Eλ

λ→ E(λ) is a C1 concave function ( H(P ) ' − 1τ2 E(τP ) )

“recurrent” minimizing configurations admit rotation vectors

ω := limn−m→+∞

xn − xmn−m

= −dEdλ

(λ)

If ω ∈ Q then

Λ(ω) := {λ s.t. ω = −dEdλ

(λ)}

has non empty interior. If ω 6∈ Q, int(Λ(ω)) = ∅.

Roma 2011, Sapienza Zero temperature limite 13/23

Page 26: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

The Frenkel-Kontorova model

Deep result (Aubry-Mather): Assume d = 1“recurrent” minimizing configurations are ground configuration forsome Eλ

λ→ E(λ) is a C1 concave function ( H(P ) ' − 1τ2 E(τP ) )

“recurrent” minimizing configurations admit rotation vectors

ω := limn−m→+∞

xn − xmn−m

= −dEdλ

(λ)

If ω ∈ Q then

Λ(ω) := {λ s.t. ω = −dEdλ

(λ)}

has non empty interior. If ω 6∈ Q, int(Λ(ω)) = ∅.

Roma 2011, Sapienza Zero temperature limite 13/23

Page 27: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

The Frenkel-Kontorova model

Deep result (Aubry-Mather): Assume d = 1“recurrent” minimizing configurations are ground configuration forsome Eλ

λ→ E(λ) is a C1 concave function ( H(P ) ' − 1τ2 E(τP ) )

“recurrent” minimizing configurations admit rotation vectors

ω := limn−m→+∞

xn − xmn−m

= −dEdλ

(λ)

If ω ∈ Q then

Λ(ω) := {λ s.t. ω = −dEdλ

(λ)}

has non empty interior. If ω 6∈ Q, int(Λ(ω)) = ∅.

Roma 2011, Sapienza Zero temperature limite 13/23

Page 28: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

The Frenkel-Kontorova model

Deep result (Aubry-Mather): Assume d = 1“recurrent” minimizing configurations are ground configuration forsome Eλ

λ→ E(λ) is a C1 concave function ( H(P ) ' − 1τ2 E(τP ) )

“recurrent” minimizing configurations admit rotation vectors

ω := limn−m→+∞

xn − xmn−m

= −dEdλ

(λ)

If ω ∈ Q then

Λ(ω) := {λ s.t. ω = −dEdλ

(λ)}

has non empty interior. If ω 6∈ Q, int(Λ(ω)) = ∅.

Roma 2011, Sapienza Zero temperature limite 13/23

Page 29: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

The Frenkel-Kontorova model

Phase locking at rational rotation number:

Eλ,K(x, y) =12|y − x|2 − λ(y − x) +

K

(2π)2

(1− cos(2πx)

)K = 3, ω = −∂E

∂λ(λ,K)

0 0.1 0.2 0.3 0.4 0.50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

λ

ω

0 0.1 0.2 0.3 0.4 0.50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

λ

ω

1/81/71/6

1/52/9

1/4

2/7

1/3

3/82/5

3/7

1/2

Roma 2011, Sapienza Zero temperature limite 14/23

Page 30: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

The Frenkel-Kontorova model

Phase transition with respect to K:

Eλ,K(x, y) =12|y − x|2 − λ(y − x) +

K

(2π)2

(1− cos(2πx)

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

0.5

1

1.5

2

2.5

3

3.5

4

λ

K

Roma 2011, Sapienza Zero temperature limite 15/23

Page 31: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

The Frenkel-Kontorova model

Conclusion:

The effective Hamiltonian H(P ) and the ergodic value E(λ) arerelated by

H(P,K) ' − 1τ2E(τP, τ2K)

HP,K(x, p) =12|p+ P |2 − K

(2π)2(1− cos(2πx))

Eλ,K(x, y) =12|y − x|2 − λ(y − x) +

K

(2π)2(1− cos(2πx))

H can be considered as the ground energy of some configurations inthe Frenkel-Kontorova model. The ground energy is also interpretedas the energy of the system at zero temperature.

Roma 2011, Sapienza Zero temperature limite 16/23

Page 32: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

The Frenkel-Kontorova model

Conclusion:

The effective Hamiltonian H(P ) and the ergodic value E(λ) arerelated by

H(P,K) ' − 1τ2E(τP, τ2K)

HP,K(x, p) =12|p+ P |2 − K

(2π)2(1− cos(2πx))

Eλ,K(x, y) =12|y − x|2 − λ(y − x) +

K

(2π)2(1− cos(2πx))

H can be considered as the ground energy of some configurations inthe Frenkel-Kontorova model. The ground energy is also interpretedas the energy of the system at zero temperature.

Roma 2011, Sapienza Zero temperature limite 16/23

Page 33: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

Objectives

The ultimate goal of the project:To interprete the solution of the cell equation in Hamilton-Jacobi as aground state, that is, a zero temperature limite of Gibbs measures

1 A short introduction on the semi-discretized cell problem

2 A dynamical interpretation by the Frenkel-Kontorova model

3 Gibbs measures and phase transition

Roma 2011, Sapienza Zero temperature limite 17/23

Page 34: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

Gibbs measures and phase transition

Full discrete Frenkel-Kontorova:S is a finite set (discretization in space)x = (xk)k∈Z ∈ SZ configurationΣ := SZ full shiftE(x) = E(x0, x1) : Σ→ R short range interaction

E(x0, . . . , xn) =∑n−1k=0 E ◦ σk(x) ergodic sum

σ : Σ→ Σ is the left shift

Sub shift of finite type SFT:G an irreducible directed graph on SΣ+G = {(xk)k≥0 ∈ SZ : xk → xk+1 is admissible }

E : Σ+G → R a Holder function depending only on (x0, x1, . . .)

Roma 2011, Sapienza Zero temperature limite 18/23

Page 35: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

Gibbs measures and phase transition

Full discrete Frenkel-Kontorova:S is a finite set (discretization in space)x = (xk)k∈Z ∈ SZ configurationΣ := SZ full shiftE(x) = E(x0, x1) : Σ→ R short range interaction

E(x0, . . . , xn) =∑n−1k=0 E ◦ σk(x) ergodic sum

σ : Σ→ Σ is the left shift

Sub shift of finite type SFT:G an irreducible directed graph on SΣ+G = {(xk)k≥0 ∈ SZ : xk → xk+1 is admissible }

E : Σ+G → R a Holder function depending only on (x0, x1, . . .)

Roma 2011, Sapienza Zero temperature limite 18/23

Page 36: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

Gibbs measures and phase transition

Gibbs measure at temperature β−1: Let Cn = [x0, . . . , xn] be acylinder of size n, then a Gibbs measure µβ is a probability measuresuch that

µβ is σ-invariant, σ∗(µβ) = µβ

µβ(Cn) ' exp(− β

n−1∑k=0

[E(xk, xk+1)− Eβ ]), ∀ x ∈ Cn

Correctors and Ground configurations:

u(x) + E = minx′ :σ(x′)=x

{u(x′) + E(x′)}

x is a ground configuration ⇐⇒ σk(x) ∈ {E = u ◦ σ − u+ E}, ∀ k

Roma 2011, Sapienza Zero temperature limite 19/23

Page 37: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

Gibbs measures and phase transition

Gibbs measure at temperature β−1: Let Cn = [x0, . . . , xn] be acylinder of size n, then a Gibbs measure µβ is a probability measuresuch that

µβ is σ-invariant, σ∗(µβ) = µβ

µβ(Cn) ' exp(− β

n−1∑k=0

[E(xk, xk+1)− Eβ ]), ∀ x ∈ Cn

Correctors and Ground configurations:

u(x) + E = minx′ :σ(x′)=x

{u(x′) + E(x′)}

x is a ground configuration ⇐⇒ σk(x) ∈ {E = u ◦ σ − u+ E}, ∀ k

Roma 2011, Sapienza Zero temperature limite 19/23

Page 38: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

Gibbs measures and phase transition

Results for general Holder E : Σ+G → R

Ent(µ) := limn→+∞∑Cn− 1nµ(Cn) lnµ(Cn) : the entropy of µ

Ent(Σ+G) := max{Ent(µ) : µ is σ-inv} : topological entropy

Eβ = min{∫E dµ− β−1Ent(µ) : µ is σ-inv }

Eβ → E = min{∫E dµ : µ is σ-inv }, β(Eβ − E)→ −Ent(Σ+

G)any accumulation point of µβ is a minimizing measure µmin ofmaximal topological entropy

E =∫E dµmin, Ent(µmin) = Ent(Σ+

G), supp(µmin) ⊂ GC

∃! additive eigenfunction uβ(x) of

exp(− β[uβ(x) + Eβ ]

)=

∑x′ :σ(x′)=x

exp(− β[uβ(x′) + E(x′)]

)any accumulation point of uβ is an effective potential

Roma 2011, Sapienza Zero temperature limite 20/23

Page 39: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

Gibbs measures and phase transition

Results for general Holder E : Σ+G → R

Ent(µ) := limn→+∞∑Cn− 1nµ(Cn) lnµ(Cn) : the entropy of µ

Ent(Σ+G) := max{Ent(µ) : µ is σ-inv} : topological entropy

Eβ = min{∫E dµ− β−1Ent(µ) : µ is σ-inv }

Eβ → E = min{∫E dµ : µ is σ-inv }, β(Eβ − E)→ −Ent(Σ+

G)any accumulation point of µβ is a minimizing measure µmin ofmaximal topological entropy

E =∫E dµmin, Ent(µmin) = Ent(Σ+

G), supp(µmin) ⊂ GC

∃! additive eigenfunction uβ(x) of

exp(− β[uβ(x) + Eβ ]

)=

∑x′ :σ(x′)=x

exp(− β[uβ(x′) + E(x′)]

)any accumulation point of uβ is an effective potential

Roma 2011, Sapienza Zero temperature limite 20/23

Page 40: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

Gibbs measures and phase transition

Results for general Holder E : Σ+G → R

Ent(µ) := limn→+∞∑Cn− 1nµ(Cn) lnµ(Cn) : the entropy of µ

Ent(Σ+G) := max{Ent(µ) : µ is σ-inv} : topological entropy

Eβ = min{∫E dµ− β−1Ent(µ) : µ is σ-inv }

Eβ → E = min{∫E dµ : µ is σ-inv }, β(Eβ − E)→ −Ent(Σ+

G)any accumulation point of µβ is a minimizing measure µmin ofmaximal topological entropy

E =∫E dµmin, Ent(µmin) = Ent(Σ+

G), supp(µmin) ⊂ GC

∃! additive eigenfunction uβ(x) of

exp(− β[uβ(x) + Eβ ]

)=

∑x′ :σ(x′)=x

exp(− β[uβ(x′) + E(x′)]

)any accumulation point of uβ is an effective potential

Roma 2011, Sapienza Zero temperature limite 20/23

Page 41: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

Gibbs measures and phase transition

Results for general Holder E : Σ+G → R

Ent(µ) := limn→+∞∑Cn− 1nµ(Cn) lnµ(Cn) : the entropy of µ

Ent(Σ+G) := max{Ent(µ) : µ is σ-inv} : topological entropy

Eβ = min{∫E dµ− β−1Ent(µ) : µ is σ-inv }

Eβ → E = min{∫E dµ : µ is σ-inv }, β(Eβ − E)→ −Ent(Σ+

G)

any accumulation point of µβ is a minimizing measure µmin ofmaximal topological entropy

E =∫E dµmin, Ent(µmin) = Ent(Σ+

G), supp(µmin) ⊂ GC

∃! additive eigenfunction uβ(x) of

exp(− β[uβ(x) + Eβ ]

)=

∑x′ :σ(x′)=x

exp(− β[uβ(x′) + E(x′)]

)any accumulation point of uβ is an effective potential

Roma 2011, Sapienza Zero temperature limite 20/23

Page 42: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

Gibbs measures and phase transition

Results for general Holder E : Σ+G → R

Ent(µ) := limn→+∞∑Cn− 1nµ(Cn) lnµ(Cn) : the entropy of µ

Ent(Σ+G) := max{Ent(µ) : µ is σ-inv} : topological entropy

Eβ = min{∫E dµ− β−1Ent(µ) : µ is σ-inv }

Eβ → E = min{∫E dµ : µ is σ-inv }, β(Eβ − E)→ −Ent(Σ+

G)any accumulation point of µβ is a minimizing measure µmin ofmaximal topological entropy

E =∫E dµmin, Ent(µmin) = Ent(Σ+

G), supp(µmin) ⊂ GC

∃! additive eigenfunction uβ(x) of

exp(− β[uβ(x) + Eβ ]

)=

∑x′ :σ(x′)=x

exp(− β[uβ(x′) + E(x′)]

)any accumulation point of uβ is an effective potential

Roma 2011, Sapienza Zero temperature limite 20/23

Page 43: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

Gibbs measures and phase transition

Results for general Holder E : Σ+G → R

Ent(µ) := limn→+∞∑Cn− 1nµ(Cn) lnµ(Cn) : the entropy of µ

Ent(Σ+G) := max{Ent(µ) : µ is σ-inv} : topological entropy

Eβ = min{∫E dµ− β−1Ent(µ) : µ is σ-inv }

Eβ → E = min{∫E dµ : µ is σ-inv }, β(Eβ − E)→ −Ent(Σ+

G)any accumulation point of µβ is a minimizing measure µmin ofmaximal topological entropy

E =∫E dµmin, Ent(µmin) = Ent(Σ+

G), supp(µmin) ⊂ GC

∃! additive eigenfunction uβ(x) of

exp(− β[uβ(x) + Eβ ]

)=

∑x′ :σ(x′)=x

exp(− β[uβ(x′) + E(x′)]

)

any accumulation point of uβ is an effective potential

Roma 2011, Sapienza Zero temperature limite 20/23

Page 44: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

Gibbs measures and phase transition

Results for general Holder E : Σ+G → R

Ent(µ) := limn→+∞∑Cn− 1nµ(Cn) lnµ(Cn) : the entropy of µ

Ent(Σ+G) := max{Ent(µ) : µ is σ-inv} : topological entropy

Eβ = min{∫E dµ− β−1Ent(µ) : µ is σ-inv }

Eβ → E = min{∫E dµ : µ is σ-inv }, β(Eβ − E)→ −Ent(Σ+

G)any accumulation point of µβ is a minimizing measure µmin ofmaximal topological entropy

E =∫E dµmin, Ent(µmin) = Ent(Σ+

G), supp(µmin) ⊂ GC

∃! additive eigenfunction uβ(x) of

exp(− β[uβ(x) + Eβ ]

)=

∑x′ :σ(x′)=x

exp(− β[uβ(x′) + E(x′)]

)any accumulation point of uβ is an effective potential

Roma 2011, Sapienza Zero temperature limite 20/23

Page 45: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

Gibbs measures and phase transition

Results for short range interactions E(x) = E(x0, x1):

(Bremont, Chazottes-Gambaudo-Ugalde) µβ → µmin exists

consequence: zero temperature limit gives a selection principle toobtain ground configurations and correctors

(Garibaldi, Thieullen) There exists a formal algorithm whichdescribes µmin with respect to the initial data E(x, y)The existence of E and µmin are related to a problem of singularmatrices: let

Mβ :=[e−βE(x,y)

]x,y∈S

LβMβ = λβLβ , MβRβ = λβRβ ,∑x

Lβ(x)Rβ(x) = 1

then λβ = e−βEβ ∼ λ0e−βE and Lβ(x)Rβ(x)→ µmin(x)

Roma 2011, Sapienza Zero temperature limite 21/23

Page 46: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

Gibbs measures and phase transition

Results for short range interactions E(x) = E(x0, x1):

(Bremont, Chazottes-Gambaudo-Ugalde) µβ → µmin exists

consequence: zero temperature limit gives a selection principle toobtain ground configurations and correctors

(Garibaldi, Thieullen) There exists a formal algorithm whichdescribes µmin with respect to the initial data E(x, y)The existence of E and µmin are related to a problem of singularmatrices: let

Mβ :=[e−βE(x,y)

]x,y∈S

LβMβ = λβLβ , MβRβ = λβRβ ,∑x

Lβ(x)Rβ(x) = 1

then λβ = e−βEβ ∼ λ0e−βE and Lβ(x)Rβ(x)→ µmin(x)

Roma 2011, Sapienza Zero temperature limite 21/23

Page 47: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

Gibbs measures and phase transition

Results for short range interactions E(x) = E(x0, x1):

(Bremont, Chazottes-Gambaudo-Ugalde) µβ → µmin exists

consequence: zero temperature limit gives a selection principle toobtain ground configurations and correctors

(Garibaldi, Thieullen) There exists a formal algorithm whichdescribes µmin with respect to the initial data E(x, y)

The existence of E and µmin are related to a problem of singularmatrices: let

Mβ :=[e−βE(x,y)

]x,y∈S

LβMβ = λβLβ , MβRβ = λβRβ ,∑x

Lβ(x)Rβ(x) = 1

then λβ = e−βEβ ∼ λ0e−βE and Lβ(x)Rβ(x)→ µmin(x)

Roma 2011, Sapienza Zero temperature limite 21/23

Page 48: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

Gibbs measures and phase transition

Results for short range interactions E(x) = E(x0, x1):

(Bremont, Chazottes-Gambaudo-Ugalde) µβ → µmin exists

consequence: zero temperature limit gives a selection principle toobtain ground configurations and correctors

(Garibaldi, Thieullen) There exists a formal algorithm whichdescribes µmin with respect to the initial data E(x, y)The existence of E and µmin are related to a problem of singularmatrices: let

Mβ :=[e−βE(x,y)

]x,y∈S

LβMβ = λβLβ , MβRβ = λβRβ ,∑x

Lβ(x)Rβ(x) = 1

then λβ = e−βEβ ∼ λ0e−βE and Lβ(x)Rβ(x)→ µmin(x)

Roma 2011, Sapienza Zero temperature limite 21/23

Page 49: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

Gibbs measures and phase transition

b > a

a

b

c'

c'(c+c')/2

=1abc /3...minH =[1

3, 1

3, 1

3]

=1cc ' /2...minH =[0 , 1

2, 1

2]

(c+c')/2 < (a+b+c)/3

a < (a

+b+c

)/3

b < (a+b+c)/3

=1b...minH =[1

2,0 , 1

2]

(c+c

')/2

< a

(c+c')/2 < b=1a...minH =[1

2, 1

2,0 ]

=1cc ' /2...minH =[1,1 ,1]/32

=12cc ' /2...minH =[ 1

4, 1

2, 1

4]

=12cc ' /2...minH =[ 1

4, 1

4, 1

2]

=12a...minH =[ 1

2, 1

4, 1

4]

=1a...minH =[1 ,1 ,1]/32

=1 b...minH =[1 ,1,1]/32

c

=1a...minH =[ ,1 , 1]/2

=1cc ' /2...minH =[1 , , 1]/2

=1cc ' /2...minH =[1 ,1 , ]/2

c

S = {1, 2, 3}

Mβ =

1 e−βa e−βb

e−βa 1 e−βc

e−βb e−βc′

1

a, b, c, c′ > 0 c > c′

µmin = c1δ1 + c2δ2 + c3δ3

δi = Dirac measure at(..., i, i, i, ...)

ρ2 − ρ− 1 = 0

κ3 − κ− 1 = 0

Roma 2011, Sapienza Zero temperature limite 22/23

Page 50: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

Gibbs measures and phase transition

Conclusion: A possible research program

Develop a thermodynamical formalism for the the cell problem

Use the fast technics developped in MCMC (Markov chain MonteCarlo) method to obtain the effective Hamiltonian H(P ) and theviscosity solutions u(x) as limits of quantities at equilibrium whenthe system is freezing

Roma 2011, Sapienza Zero temperature limite 23/23

Page 51: Zero temperature limite and the cell problem in Hamilton ...pthieull/Recherche/... · Zero temperature limite and the cell problem in Hamilton-Jacobi equation Philippe Thieullen Universit

0. 1. 2. 3.

Gibbs measures and phase transition

Conclusion: A possible research program

Develop a thermodynamical formalism for the the cell problem

Use the fast technics developped in MCMC (Markov chain MonteCarlo) method to obtain the effective Hamiltonian H(P ) and theviscosity solutions u(x) as limits of quantities at equilibrium whenthe system is freezing

Roma 2011, Sapienza Zero temperature limite 23/23