z. feng mtu ee4800 cmos digital ic design & analysis 2.1 ee4800 cmos digital ic design &...

36
Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis Analysis 2. 2.1 EE4800 CMOS Digital IC Design & Analysis Lecture 2 CMOS Circuits and Layout Zhuo Feng

Upload: alexander-rose

Post on 03-Jan-2016

238 views

Category:

Documents


7 download

TRANSCRIPT

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.11

EE4800 CMOS Digital IC Design & Analysis 

Lecture 2 CMOS Circuits and LayoutZhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.22

Complementary CMOS■ Complementary CMOS logic gates

►NMOS pull-down network►PMOS pull-up network

pMOSpull-upnetwork

outputinputs

nMOSpull-downnetwork

Pull-up OFF Pull-up ON

Pull-down OFF Z (float) 1

Pull-down ON 0 X (shorted)

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.33

Series and Parallel■ NMOS: 1 = ON■ PMOS: 0 = ON■ Series: both must be ON■ Parallel: either can be ON

(a)

a

b

a

b

g1

g2

0

0

a

b

0

1

a

b

1

0

a

b

1

1

OFF OFF OFF ON

(b)

a

b

a

b

g1

g2

0

0

a

b

0

1

a

b

1

0

a

b

1

1

ON OFF OFF OFF

(c)

a

b

a

b

g1 g2 0 0

OFF ON ON ON

(d) ON ON ON OFF

a

b

0

a

b

1

a

b

11 0 1

a

b

0 0

a

b

0

a

b

1

a

b

11 0 1

a

b

g1 g2

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.44

Conduction Complement■ Complementary CMOS gates always produce 0 or 1■ Ex: NAND gate

► Series nMOS: Y=0 when both inputs are 1► Thus Y=1 when either input is 0► Requires parallel pMOS

■ Rule of Conduction Complements► Pull-up network is complement of pull-down► Parallel -> series, series -> parallel

A

B

Y

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.55

Compound Gates■ Compound gates can do any inverting

function■ Example:

(AND-AND-OR-INVERT, AOI22)Y A B C D

A

B

C

D

A

B

C

D

A B C DA B

C D

B

D

YA

CA

C

A

B

C

D

B

D

Y

(a)

(c)

(e)

(b)

(d)

(f)

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.66

Example: O3AI

Y A B C D

A B

Y

C

D

DC

B

A

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.77

Signal Strength■ Strength of signal

► How close it approximates ideal voltage source

■ VDD and GND rails are strongest 1 and 0

■ NMOS pass strong 0► But degraded or weak 1(the high voltage is less than VDD)

■ PMOS pass strong 1► But degraded or weak 0

■ Thus nMOS are best for pull-down network

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.88

Pass Transistors■ Transistors can be used as switches

► Pass transistor: NMOS or PMOS is used alone as an imperfect switch

g

s d

g = 0

s d

g = 1

s d

0 strong 0

Input Output

1 degraded 1

g

s d

g = 0

s d

g = 1

s d

0 degraded 0

Input Output

strong 1

g = 1

g = 1

g = 0

g = 0

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.99

Transmission Gates■ Pass transistors produce degraded outputs■ Transmission gates pass both 0 and 1 well

g = 0, gb = 1

a b

g = 1, gb = 0

a b

0 strong 0

Input Output

1 strong 1

g

gb

a b

a b

g

gb

a b

g

gb

a b

g

gb

g = 1, gb = 0

g = 1, gb = 0

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.1010

Tristates■ Tristate buffer produces Z when not enabled

EN A Y

0 0 Z

0 1 Z

1 0 0

1 1 1

A Y

EN

A Y

EN

EN

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.1111

Nonrestoring Tristate■ Transmission gate acts as tristate buffer

► Only two transistors► But nonrestoring

▼ Noise on A is passed on to Y▼ After several stages of nonrestoring logic, a signal can be too

degraded to recognize▼ Delay of a series of such nonrestoring gates increases

quadratically with the number of gates in series

A Y

EN

EN

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.1212

Tristate Inverter■ Tristate inverter produces restored output

► Violates conduction complement rule (when EN=0)► Distributing enable signals in a timely fashion across a

entire chip is very difficult► Multiplexers are preferred

A

YEN

A

Y

EN = 0Y = 'Z'

Y

EN = 1Y = A

A

EN

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.1313

Multiplexers■ Key components in CMOS memory elements

and data manipulation structures■ 2:1 multiplexer chooses between two inputs

S D1 D0 Y

0 X 0 0

0 X 1 1

1 0 X 0

1 1 X 1

0

1

S

D0

D1Y

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.1414

Gate-Level Mux Design■ ■ How many transistors are needed? 20

1 0 (too many transistors)Y SD SD

44

D1

D0S Y

4

2

2

2 Y2

D1

D0S

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.1515

Transmission Gate Mux■ Nonrestoring mux uses two transmission

gates► Only 4 transistors

S

S

D0

D1

YS

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.1616

Inverting Mux■ Inverting multiplexer

► Use compound AOI22► Or pair of tristate inverters► Essentially the same thing

■ Noninverting multiplexer adds an inverter

S

D0 D1

Y

S

D0

D1Y

0

1S

Y

D0

D1

S

S

S

S

S

S

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.1717

4:1 Multiplexer■ 4:1 mux chooses one of 4 inputs using two

selects► Two levels of 2:1 muxes► Or four tristates

S0

D0

D1

0

1

0

1

0

1Y

S1

D2

D3

D0

D1

D2

D3

Y

S1S0 S1S0 S1S0 S1S0

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.1818

D Latch■ When CLK = 1, latch is transparent

► D flows through to Q like a buffer

■ When CLK = 0, the latch is opaque► Q holds its old value independent of D

■ a.k.a. transparent latch or level-sensitive latch

CLK

D Q

Latc

h D

CLK

Q

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.1919

D Latch Design■ Multiplexer chooses D or old Q

1

0

D

CLK

QCLK

CLKCLK

CLK

DQ Q

Q

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.2020

D Latch Operation

CLK = 1

D Q

Q

CLK = 0

D Q

Q

D

CLK

Q

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.2121

D Flip-flop■ When CLK rises, D is copied to Q■ At all other times, Q holds its value■ a.k.a. positive edge-triggered flip-flop, master-slave

flip-flop■ Collection of two or more D flip-flops sharing a common

clock input is called a register (multi-bit)

Flo

p

CLK

D QD

CLK

Q

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.2222

D Flip-flop Design■ Built from master and slave D latches

QM

CLK

CLKCLK

CLK

Q

CLK

CLK

CLK

CLK

D

Latc

h

Latc

h

D QQM

CLK

CLK

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.2323

D Flip-flop Operation

CLK = 1

D

CLK = 0

Q

D

QM

QMQ

D

CLK

Q

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.2424

Race Condition■ Back-to-back flops can malfunction from clock

skew► Second flip-flop fires late► Sees first flip-flop change and captures its result► Called hold-time failure or race condition

CLK1

D Q1

Flo

p

Flo

p

CLK2

Q2

CLK1

CLK2

Q1

Q2

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.2525

Nonoverlapping Clocks■ Nonoverlapping clocks can prevent races

► As long as nonoverlap exceeds clock skew► Industry manages skew more carefully

1

11

1

2

22

2

2

1

QMQD

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.2626

Layout■ Chips are specified with set of masks■ Minimum dimensions of masks determine

transistor size (and hence speed, cost, and power)

■ Feature size f = distance between source and drain

► Set by minimum width of polysilicon

■ Feature size improves 30% every 3 years or so

■ Normalize for feature size when describing design rules

■ Express rules in terms of = f/2► E.g. = 0.3 m in 0.6 m process

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.2727

Simplified Design Rules■ Conservative rules to get you started

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.2828

Inverter Layout■ Transistor dimensions specified as Width /

Length► Minimum size is 4 / 2sometimes called 1 unit► In f = 0.6 m process, this is 1.2 m wide, 0.6 m long

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.2929

Gate Layout■ Layout can be very time consuming

► Design gates to fit together nicely► Build a library of standard cells

■ Standard cell design methodology► VDD and GND should abut (standard height)

► Adjacent gates should satisfy design rules► nMOS at bottom and pMOS at top► All gates include well and substrate contacts

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.3030

Example: Inverter

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.3131

Example: NAND3■ Horizontal N-diffusion and P-diffusion strips■ Vertical polysilicon gates

■ Metal1 VDD rail at top

■ Metal1 GND rail at bottom■ 32 by 40

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.3232

Stick Diagrams■ Stick diagrams help plan layout quickly

► Need not be to scale► Draw with color pencils or dry-erase markers

c

AVDD

GND

Y

AVDD

GND

B C

Y

INV

metal1

poly

ndiff

pdiff

contact

NAND3

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.3333

Wiring Tracks■ A wiring track is the space required for a wire

► 4 width, 4 spacing from neighbor = 8 pitch

■ Transistors also consume one wiring track

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.3434

Well spacing■ Wells must surround transistors by 6

► Implies 12 between opposite transistor flavors► Leaves room for one wire track

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.3535

32

40

Area Estimation■ Estimate area by counting wiring tracks

► Multiply by 8 to express in

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2.3636

Example: O3AI■ Sketch a stick diagram for O3AI and estimate

area►

Y A B C D

AVDD

GND

B C

Y

D

6 tracks = 48

5 tracks = 40