a 5.25-ghz cmos folded-cascode even-harmonic mixer for low-voltage applications ming-feng huang,...

24
A 5.25-GHz CMOS Folded-Casco de Even-Harmonic Mixer for L ow-Voltage Applications Ming-Feng Huang, Chung J. Kuo, Senior Member, IEEE, and Shuen n-Yuh Lee, Member, IEEE IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 2, FEBRU ARY 2006 指指指指 : 指指指 指指 : 指指指指 體一 指指 : 指指指 Mail:[email protected] 指指 95 指 3 指 28 指

Upload: polly-lang

Post on 03-Jan-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

A 5.25-GHz CMOS Folded-Cascode Even-Harmonic Mixer for Low-Voltage ApplicationsMing-Feng Huang, Chung J. Kuo, Senior Member, IEEE, and Shuenn-Yuh Lee, Member, IEEEIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 2, FEBRUARY 2006

指導教授 :林志明 級別 :體積所碩一

學生 :呂致遠Mail:[email protected]

民國 95年 3月 28 日

Outline

Abstract Introduction Schematic Microphotograph Experimental result Comparison Conclusion References

Abstract

5.25-GHz folded-cascode evenharmonic mixer (FEHM)

Reduce the headroom voltage A current reuse circuit Frequency-doubling technique Conversion gain of 8.3 dB IIP3 of 0.03 dBm Supply voltage of 0.9 V LO power of 5.5 dBm Power consumption of 4.95 mW IF frequency of 500 kHz

Introduction

The low-voltage RF integrated-circuit (RFIC) development for portable communication equipments has been a focus due to the advances in device technology for high-speed

applications. More and more designers have proposed RFIC for high-speed and low-voltage applications.

Direct conversion receiver

Schematic(EHM)fIF=fRF-2fLO

Current reuse circuit

Frequency-doubling

circuit

Folded technique

Lowvoltage

FEHM

High impedance

CancelledOdd

Harmonics

Current reuse circuit

Larger signal (i2LO )

Operational limitation

Schematic of the proposed full monolithic FEHM

ReduceHeadroom

voltage

Bias buffer

VDD=0.9VVRF=0.5VDD

MicrophotographL_tank:st

dNT:2.5

PADNOT ON WAFER

ON PCB

C_tank:mimcap

L1:stdNT:5.5

RF-RF+

LO-LO+

VRF

IF+IF-

?

VLOVDDGND

Experimental result

Simulation(CG vs Fingers and VLO)

CG VS Fingers

Measurement(CG VS LO power and VLO)

IIP2 & IIP3

Isolation VS LO power

NF VS IF

CG VS RF POWER

SUMMARY OF THE COMPARISON

Conclusion

FEHM with folded technique Verified by experimental data Large conversion gain Low complexity High operational frequency Direct conversion receivers.

REFERENCES

[1] M. Saito, M. Ono, R. Fujimoto, H. Tanimoto, N. Ito, T. Yoshitomi, T. Ohguro, H. S. Momose, and H. Iwai, “0.15-m RF CMOS technology compatible with logic CMOS for low-voltage operation,” IEEE Trans. Electron Devices, vol. 45, no. 3, pp. 737–742, Mar. 1998. [2] T. Manku, G. Beck, and E. J. Shin, “A low-voltage design technique for RF integrated circuits,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 45, no. 10, pp. 1408–1413, Oct. 1998. [3] F. Svelto, M. Conta, V. D. Torre, and R. Castello, “A low-voltage topology for CMOS RF mixers,” IEEE Trans. Consumer Electron., vol. 45, no. 3, pp. 299–309, May 1999. [4] J. R. Long, “A low-voltage 5.1–5.8-GHz image-reject downconverter RF IC,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1320–1328, Sep. 2000. [5] E. Abou-Allam, J. J. Nisbet, and M. C. Maliepaard, “Low-voltage 1.9-GHz front-end receiver in 0.5-m CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 10, pp. 1434–1443, Oct. 2001. [6] M. N. El-Gamal, K. H. Lee, and T. K. Tsang, “Very low-voltage (0.8 V) CMOS receiver frontend for 5 GHz RF applications,” Proc. Inst. Elect. Eng. Circuits, Devices Syst., vol. 149, pp. 355–362, Oct.–Dec. 2002. [7] U. Yodprasit and C. C. Enz, “Simple topology for low-voltage and lowpower RF quadrature oscillators,” Electron. Lett., vol. 40, pp. 458–460, Apr. 2004. [8] K.Kwok and H. C. Luong, “Ultra-low-voltage high-performanceCMOS VCO’s using transformer feedback,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 652–660, Mar. 2005. [9] B. Matinpour, S. Chakraborty, and J. Laskar, “Novel DC-offset cancellation techniques for even-harmonic direct conversion receivers,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2554–2559, Dec. 2000. [10] T. Yamaji, H. Tanimoto, and H. Kokatsu, “An I/Q active balanced harmonic mixer with IM2 cancellers and a 45 phase shifter,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2240–2246, Dec. 1998. [11] T. Yamaji and H. Tanimoto, “A 2 GHz balanced harmonic mixer for direct-conversion receivers,” in Proc. IEEE Custom Integrated Circuits Conf., May 1997, pp. 9.6.1–9.6.4. [12] Z. Zhang, Z. Chen, and J. Lau, “A 900 MHz CMOS balanced harmonic mixer for direct conversion receivers,” in Proc. IEEE Radio Wireless Conf., Sep. 2000, pp. 219–222.

REFERENCES [13] S. J. Fang, S. T. Lee, and D. J. Allstot, “A 2 GHz CMOS even harmonic mixer for direct conversion receivers,” in Proc. IEEE Int. Symp. Circuits Syst. , vol. 4, 2002, pp. 807–810. [14] L. Sheng, J. C. Jensen, and L. E. Larson, “A wide-bandwidth Si/SiGe HBT direct conversion subharmonic mixer/downconverter,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1329–1337, Sep. 2000. [15] M. Goldfarb, E. Balboni, and J. Cavey, “Even harmonic double-balanced active mixer for use in direct conversion receivers,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1762–1766, Oct. 2003. [16] Z. Zhang, L. Tsui, Z. Chen, and J. Lau, “A CMOS self-mixing-free front-end for direct conversion applications,” in Proc. IEEE Int. Circuits Syst. Symp., May 2001, pp. 386–389. [17] S.-Y. Lee, M.-F. Huang, and C. J. Kuo, “Analysis and implementation of a CMOS even harmonic mixer with current reuse for heterodyne/direct conversion receivers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 9, pp. 1741–1751, Sep. 2005. [18] M.-F. Huang, S.-Y. Lee, and C. J. Kuo, “A CMOS even harmonic mixer with current reuse for low power applications,” in Proc. ACM Int. Low Power Electron. Design Symp., Aug. 2004, pp. 290–295. [19] , “Design and analysis of a CMOS even harmonic mixer with current reuse circuits,” in Proc. IEEE Asia–Pacific Circuits Syst. Conf., Dec. 2004, pp. 269–272. [20] A. N. Karanicolas, “A 2.7-V 900-MHz CMOS LNA and mixer,” IEEE J. Solid-State Circuits, vol. 31, no. 12, pp. 1939–1944, Dec. 1996. [21] S.-G. Lee and J.-K. Choi, “Current-reuse bleeding mixer,” Electron. Lett., vol. 36, pp. 696–697, Apr. 2000. [22] B. Razavi, RF Microelectronics. Englewood Cliffs, NJ: Prentice-Hall, 1998. [23] , Design of Analog CMOS Integrated Circuits, Singapore: Mc- Graw-Hill, 2001. [24] L. Sheng and L. E. Larson, “An Si–SiGe BiCMOS direct-conversion mixer with second-order and third-order nonlinearity cancellation for WCDMA applications,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 11, pp. 2211–2220, Nov. 2003. [25] E. A. M. Klumperink, S. M. Louwsma, G. J. M. Wienk, and B. Nauta, “A CMOSswitched transconductor mixer,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1231–1240, Aug. 2004.