your main challenges

1
MACHINABILITY & WORKPIECE MATERIAL PROPERTIES YOUR MAIN CHALLENGES LINK WORKPIECE MATERIAL PROPERTIES TO MACHINABILITY 3. MACHINABILITY POLAR DIAGRAM 1. WORKPIECE MATERIAL PROPERTIES This overview represents a generic approach to link workpiece material properties to general machinability rating. For more detailed analysis of machinability ratings for specific workpiece materials, please contact your business partner at Seco. A machinability polar diagram visualizes the influence of five important material properties on the machinability. Below is an example for Inconel 718. In this example can be observed that mainly the high strain hardening and the low thermal conductivity of this material determines the machinability of the material. 2. WORKPIECE MATERIAL CLASSIFICATION Main workpiece material property Most important with materials Biggest machinability issue ISO MAT. GROUP Average material properties ISO-P Achieve conditions for free cutting (energy ef fcient machining) High hardness ISO-H High mechanical and thermal loads on the cutting edges High abrasiveness ISO-K / ISO-S High scratching effects on the cutting surfaces High adhesion tendency and ductility ISO-M / ISO-S / ISO-N Bad chip formation and formation of built-up edge on the cutting edge High strain hardening factor ISO-M / ISO-S Local high loads on cutting edges Low thermal conductivity ISO-M / ISO-S High temperatures in the cutting zone Cutting material Toughness Tough coating Toughness High compressive strength Hard or tough (feed dependant) Abrasion resistance Cutting conditions Temperature control Low cutting speed High feed and DOC Low cutting speed and feed Low feed and DOC Low speed and feed High DOC Cutting geometry Sharp edge radius High rake angle Small nose radius Adapted cutting edge geometry High rake angle, strong cutting point and edge Small rake angle Cutting edge strength Tool wear Micro chipping (BUE) Flaking, notch wear Plastic deformation Chipping / notching Plastic deformation High wear rate Plastic deformation Chipping / breakage Flank - crater wear Notching High adhesion / ductility High strain hardening tendency Low thermal conductivity High hardness High abrasiveness Bad chip formation High localised loads High temperatures in cutting zone High mechanical and thermal loads Low tool utilisation 1. THIS MATERIAL PROPERTY: 2. ... CAUSES ... 3. ... LEADS TO 4. GENERAL RECOMMENDATIONS FOR TOOL SELECTION AND CUTTING CONDITION SELECTION 100% Adhesion Abrasiveness Strain hardening Low thermal conductivity Hardness 80% 60% 40% 20% 0% Inconel 718 42CrMo4 s l e e t s s s e l n i a t s c i t i s n e t r a m d n a c i t i r r e f , s l e e t S k e c n e r e f e R s e i t r e p o r P n o i t p i r c s e D G M S c1.1 m c R < 0 6 3 s l e e t s g n i t t u c - e e r F 1 P m < 880 11 SMn30 R m = 385 N/mm 2 1500 0,14 P2 Low-alloy ferritic steels, C < 0.25%wt Low-alloy weldable general structural steels 320 < R m < 600 S235JRG2 R m = 420 N/mm 2 1600 0,23 P3 Ferritic & ferritic/pearlitic steels, C < 0.25%wt Weldable general structural steels Case-hardening steels 430 < R m < 610 16 MnCr 5 R m = 550 N/mm 2 1800 0,14 P4 Low-alloy general structural steels, 0.25% < C < 0.67%wt Low-alloy Quench & Temper steels 520 < R m < 1200 C 45E R m = 660 N/mm 2 2000 0,15 P5 Structural steels, 0.25% < C < 0.67%wt Quench & Temper steels 550 < R m < 1200 42 CrMo 4 R m = 700 N/mm 2 2020 0,18 P6 Low-alloy through-hardening steels, C > 0.67%wt Low-alloy spring and bearing steels 520 < R m < 1200 C 100S R m = 600 N/mm 2 2100 0,17 P7 Through-hardening steels, C > 0.67%wt Spring and bearing steels 600 < R m < 1200 100 Cr 6 R m = 650 N/mm 2 2160 0,17 P8 Tool steels High Speed Steels (HSS) 600 < R m < 1200 X 40 CrMoV 5 1 R m = 700 N/mm 2 2400 0,20 R < 5 1 4 s l e e t s s s e l n i a t s c i t i s n e t r a m & c i t i r r e F 1 1 P m < 1200 X 20 Cr 13 R m = 675 N/mm 2 2000 0,15 P12 Maraging and precipitation-hardening stainless steels 500 < R m < 1200 X 5 CrNiCuNb 16 4 R m = 1100 N/mm 2 2100 0,17 s l e e t s s s e l n i a t s x e l p u d d n a c i t i n e t s u a , g n i t t u c - e e r F k e c n e r e f e R s e i t r e p o r P n o i t p i r c s e D G M S c1.1 m c 4 1 , 0 0 0 7 1 9 8 1 S i N r C 0 1 X s l e e t s s s e l n i a t s c i t i n e t s u a g n i t t u c - e e r F 1 M 8 1 , 0 0 2 9 1 0 1 8 1 i N r C 5 X s l e e t s s s e l n i a t s c i t i n e t s u a y o l l a - w o L 2 M 7 1 , 0 0 7 0 2 3 4 1 8 1 o M i N r C 2 X s l e e t s s s e l n i a t s c i t i n e t s u a y o l l a - m u i d e M 3 M 6 1 , 0 0 3 2 2 3 5 2 2 N o M i N r C 2 X s l e e t s s s e l n i a t s x e l p u d d n a c i t i n e t s u a y o l l a - h g i H 4 M M5 Dif 3 1 , 0 0 1 5 2 4 7 5 2 N o M i N r C 2 X s l e e t s s s e l n i a t s x e l p u d d n a c i t i n e t s u a y o l l a - h g i h t l u c s n o r i t s a C k e c n e r e f e R s e i t r e p o r P n o i t p i r c s e D G M S c1.1 m c 2 3 , 0 0 3 9 0 5 2 - L J G - N E ) I C G ( s n o r i t s a c y e r G 1 K 5 3 , 0 0 0 0 1 0 0 4 - V J G - N E ) I G C ( s n o r i e t i h p a r g d e t c a p m o C 2 K 7 3 , 0 0 5 0 1 4 - 0 5 5 - B M J G - N E ) I C M ( s n o r i t s a c e l b a e l l a M 3 K 7 3 , 0 0 6 1 1 7 - 0 0 5 - S J G - N E ) I G S ( s n o r i t s a c r a l u d o N 4 K 5 - 0 0 0 1 - S J G - N E ) I D A ( s n o r i e l i t c u d d e r e p m e t s u A 5 K 2 - 6 - 5 1 r C u C i N X - A L J G - N E s n o r i t s a c r a l l e m a l c i t i n e t s u A 6 K 4 - 3 2 n M i N X - A S J G - N E s n o r i t s a c r a l u d o n c i t i n e t s u A 7 K s l a t e m s u o r r e f - n o N k e c n e r e f e R s e i t r e p o r P n o i t p i r c s e D G M S c1.1 m c 5 7 0 7 - W A % 9 < i S , s y o l l a m u i n i m u l A 1 N 0 0 2 4 4 - C A % 6 1 < i S < % 9 , s y o l l a m u i n i m u l A 2 N Si = 12% 5 u C 7 1 i S l A % 6 1 > i S , s y o l l a m u i n i m u l A 3 N 6 2 , 0 0 4 7 N 4 1 6 W C s y o l l a r e p p o C 1 1 N m u i n a t i t d n a s y o l l a r e p u S k e c n e r e f e R s e i t r e p o r P n o i t p i r c s e D G M S c1.1 m c y o l l a c s i D s y o l l a r e p u s d e s a b - n o r I 1 S 1 2 e t i l l e t S s y o l l a r e p u s d e s a b - t l a b o C 2 S 1 2 , 0 0 3 5 2 8 1 7 l e n o c n I s y o l l a r e p u s d e s a b - l e k c i N 3 S S11 Titanium, low alloyed, ( i T ) S12 Titanium, medium alloyed, ( + 4 2 , 0 0 0 5 1 4 V 6 l A i T ) S13 Titanium, high alloyed, (near and l A 3 e F 2 V 0 1 i T ) s l a i r e t a m d r a H k e c n e r e f e R s e i t r e p o r P n o i t p i r c s e D G M S c1.1 m c 5 r C n M 6 1 2 6 < C R H < 8 5 s l e e t s d e n e d r a h - e s a C 3 H 60 HRC 2070 0,14 4 o M r C 2 4 6 5 < C R H < 8 3 s l e e t s d e r e p m e T & d e h c n e u Q 5 H 50 HRC 2320 0,18 H7 Quenched & Tempered steels Bearing steels 56 < HRC < 64 100 Cr 6 60 HRC 2480 0,17 H8 Tool steels High Speed Steels (HSS) 38 < HRC < 64 X 40 CrMoV 5 1 50 HRC 2750 0,20 3 1 r C 0 2 X 0 5 < C R H < 8 3 s l e e t s s s e l n i a t s c i t i s n e t r a M 1 1 H 45 HRC 2300 0,15 H12 Maraged and precipitation-hardened stainless steels 1200 < R m < 1650 X 5 CrNiCuNb 16 4 R m = 1450 N/mm 2 2410 0,17 2 1 n M 0 2 1 X 4 6 < C R H < 3 2 s l e e t s e s e n a g n a M 1 2 H 50 HRC ) 1 1 r C X ( 0 0 6 V H - N J G - N E 4 6 < C R H < 0 5 s n o r i t s a c e t i h W 1 3 H 55 HRC f i d r e h t O cult materials k e c n e r e f e R s e i t r e p o r P n o i t p i r c s e D G M S c1.1 m c C 7 . 0 - e F 8 0 0 0 - F s l a i r e t a m - M P y o l l a - w o L 1 M P 8 0 6 4 - C L F s l a i r e t a m - M P y o l l a - m u i d e M 2 M P Fe2Cu1.8Ni 0.5Mo0.2Mn0.8C PM3 High-alloy PM-materials Exhaust valve seat materials, etc. HF1 Hardfacing alloys Welded or plasma-deposited iron-based alloys HF2 Hardfacing alloys Welded or plasma-deposited cobalt- and nickel-based alloys 0 5 G e d i b r a c n e t s g n u t d e r e t n i S 1 C C s e t i s o p m o C d n a s c i t s a l P k e c n e r e f e R s e i t r e p o r P n o i t p i r c s e D G M S c1.1 m c ) F U ( e d y h e d l a m r o f a e r U s r e m y l o p g n i t t e s o m r e h T 1 S T TS2T hermosetting carbon- . . . ) 1 2 M ( y x o p E - A M I S - A T H 0 0 8 T 0 0 7 T 0 0 3 T s e t i s o p m o c e r b TS3T hermosetting glass- . . . ) . . . 1 8 7 7 ( s s a l g E / ) . . 2 4 ( . . X H - y x o p E s e t i s o p m o c e r b TS4T hermosetting aramide- 9 4 r a l v e K s e t i s o p m o c e r b ) C P ( e t a n o b r a c y l o P s r e m y l o p c i t s a l p o m r e h T 1 P T TP2T hermoplastic carbon- . . 0 0 3 T - K E E P / S P P s e t i s o p m o c e r b TP3T hermoplastic glass- . . . s s a l g A r o s s a l g E - K E E P / S P P s e t i s o p m o c e r b TP4T hermoplastic aramide- bre composites e t i h p a r G k e c n e r e f e R s e i t r e p o r P n o i t p i r c s e D G M S c1.1 m c 0 0 5 8 R e t i h p a r G 1 R G

Upload: others

Post on 03-Feb-2022

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: YOUR MAIN CHALLENGES

MACHINABILITY & WORKPIECEMATERIALPROPERTIES

YOUR MAIN CHALLENGESLINK WORKPIECE MATERIALPROPERTIES TO MACHINABILITY

3. MACHINABILITY POLAR DIAGRAM

1. WORKPIECE MATERIAL PROPERTIES

This overview represents a generic approach to link workpiece material properties to general machinability rating. For more detailed analysis of machinability ratings for specific workpiece materials, please contact your business partner at Seco.

A machinability polar diagram visualizes the influence of five important material properties on the machinability. Below is an example for Inconel 718. In this example can be observed that mainly the high strain hardening and the low thermal conductivity of this material determines the machinability of the material.

2. WORKPIECE MATERIAL CLASSIFICATION

Main workpiece material property Most important with materials Biggest machinability issueISO MAT.GROUP

Average material properties ISO-PAchieve conditions for free cutting

(energy efficient machining)

High hardness ISO-HHigh mechanical and thermal

loads on the cutting edges

High abrasiveness ISO-K / ISO-SHigh scratching effects

on the cutting surfaces

High adhesion tendency and ductility ISO-M / ISO-S / ISO-NBad chip formation and formation

of built-up edge on the cutting edge

High strain hardening factor ISO-M / ISO-S Local high loads on cutting edges

Low thermal conductivity ISO-M / ISO-SHigh temperatures in

the cutting zone

Cutting materialToughness

Tough coatingToughness

High compressive

strength

Hard or tough

(feed dependant)Abrasion resistance

Cutting conditions Temperature controlLow cutting speed

High feed and DOC

Low cutting speed

and feedLow feed and DOC

Low speed and feed

High DOC

Cutting geometrySharp edge radius

High rake angle

Small nose radius

Adapted cutting edge geometry

High rake angle,

strong cutting point and edgeSmall rake angle Cutting edge strength

Tool wearMicro chipping (BUE)Flaking, notch wear

Plastic deformation

Chipping / notching

Plastic deformation

High wear rate

Plastic deformation

Chipping / breakage

Flank - crater wear

Notching

High adhesion / ductility High strain hardening tendency Low thermal conductivity High hardness High abrasiveness

Bad chip formation High localised loads High temperatures in cutting zone High mechanical and thermal loads Low tool utilisation

1. THIS MATERIAL PROPERTY:

2. ... CAUSES ...

3. ... LEADS TO

4. GENERAL RECOMMENDATIONS FOR TOOL SELECTION AND CUTTING CONDITION SELECTION

100%

Adhesion

Abrasiveness Strain hardening

Low thermal conductivityHardness

80%

60%

40%

20%

0%

Inconel 718

42CrMo4

sleets sselniats citisnetram dna citirref ,sleetS

kecnerefeRseitreporPnoitpircseDGMS c1.1 mc

R < 063sleets gnittuc-eerF1P m < 880 11 SMn30

Rm = 385 N/mm2

1500 0,14

P2 Low-alloy ferritic steels, C < 0.25%wt

Low-alloy weldable general structural steels

320 < Rm < 600 S235JRG2

Rm = 420 N/mm2

1600 0,23

P3 Ferritic & ferritic/pearlitic steels, C < 0.25%wt

Weldable general structural steels

Case-hardening steels

430 < Rm < 610 16 MnCr 5

Rm = 550 N/mm2

1800 0,14

P4 Low-alloy general structural steels, 0.25% < C < 0.67%wt

Low-alloy Quench & Temper steels

520 < Rm < 1200 C 45E

Rm = 660 N/mm2

2000 0,15

P5 Structural steels, 0.25% < C < 0.67%wt

Quench & Temper steels

550 < Rm < 1200 42 CrMo 4

Rm = 700 N/mm2

2020 0,18

P6 Low-alloy through-hardening steels, C > 0.67%wt

Low-alloy spring and bearing steels

520 < Rm < 1200 C 100S

Rm = 600 N/mm2

2100 0,17

P7 Through-hardening steels, C > 0.67%wt

Spring and bearing steels

600 < Rm < 1200 100 Cr 6

Rm = 650 N/mm2

2160 0,17

P8 Tool steels

High Speed Steels (HSS)

600 < Rm < 1200 X 40 CrMoV 5 1

Rm = 700 N/mm2

2400 0,20

R < 514sleets sselniats citisnetram & citirreF11P m < 1200 X 20 Cr 13

Rm = 675 N/mm2

2000 0,15

P12 Maraging and precipitation-hardening stainless steels 500 < Rm < 1200 X 5 CrNiCuNb 16 4

Rm = 1100 N/mm2

2100 0,17

sleets sselniats xelpud dna citinetsua ,gnittuc-eerF

kecnerefeRseitreporPnoitpircseDGMS c1.1 mc

41,000719 81 SiNrC 01 Xsleets sselniats citinetsua gnittuc-eerF1M

81,0029101 81 iNrC 5 Xsleets sselniats citinetsua yolla-woL2M

71,007023 41 81 oMiNrC 2 Xsleets sselniats citinetsua yolla-muideM3M

61,003223 5 22 NoMiNrC 2 Xsleets sselniats xelpud dna citinetsua yolla-hgiH4M

M5 Dif 31,001524 7 52 NoMiNrC 2 Xsleets sselniats xelpud dna citinetsua yolla-hgih tluc

snori tsaC

kecnerefeRseitreporPnoitpircseDGMS c1.1 mc

23,0039052-LJG-NE)ICG( snori tsac yerG1K

53,00001004-VJG-NE)IGC( snori etihparg detcapmoC2K

73,005014-055-BMJG-NE)ICM( snori tsac elbaellaM3K

73,006117-005-SJG-NE)IGS( snori tsac raludoN4K

5-0001-SJG-NE)IDA( snori elitcud derepmetsuA5K

2-6-51rCuCiNX-ALJG-NEsnori tsac rallemal citinetsuA6K

4-32nMiNX-ASJG-NEsnori tsac raludon citinetsuA7K

slatem suorref-noN

kecnerefeRseitreporPnoitpircseDGMS c1.1 mc

5707-WA%9 < iS ,syolla muinimulA1N

00244-CA%61 < iS < %9 ,syolla muinimulA2N

Si = 12%

5uC71iSlA%61> iS ,syolla muinimulA3N

62,0047N416WCsyolla reppoC11N

muinatit dna syollarepuS

kecnerefeRseitreporPnoitpircseDGMS c1.1 mc

yollacsiDsyollarepus desab-norI1S

12 etilletSsyollarepus desab-tlaboC2S

12,00352817 lenocnIsyollarepus desab-lekciN3S

S11 Titanium, low alloyed, ( iT)

S12 Titanium, medium alloyed, ( + 42,000514V6lAiT)

S13 Titanium, high alloyed, (near and lA3eF2V01iT)

slairetam draH

kecnerefeRseitreporPnoitpircseDGMS c1.1 mc

5 rCnM 6126 < CRH < 85sleets denedrah-esaC3H

60 HRC

2070 0,14

4 oMrC 2465 < CRH < 83sleets derepmeT & dehcneuQ5H

50 HRC

2320 0,18

H7 Quenched & Tempered steels

Bearing steels

56 < HRC < 64 100 Cr 6

60 HRC

2480 0,17

H8 Tool steels

High Speed Steels (HSS)

38 < HRC < 64 X 40 CrMoV 5 1

50 HRC

2750 0,20

31 rC 02 X05 < CRH < 83sleets sselniats citisnetraM11H

45 HRC

2300 0,15

H12 Maraged and precipitation-hardened stainless steels 1200 < Rm < 1650 X 5 CrNiCuNb 16 4

Rm = 1450 N/mm2

2410 0,17

21 nM 021 X46 < CRH < 32sleets esenagnaM12H

50 HRC

)11rCX(006VH-NJG-NE46 < CRH < 05snori tsac etihW13H

55 HRC

fid rehtO cult materials

kecnerefeRseitreporPnoitpircseDGMS c1.1 mc

C7.0-eF 8000-Fslairetam-MP yolla-woL1MP

8064-CLFslairetam-MP yolla-muideM2MP

Fe2Cu1.8Ni

0.5Mo0.2Mn0.8C

PM3 High-alloy PM-materials

Exhaust valve seat materials, etc.

HF1 Hardfacing alloys

Welded or plasma-deposited iron-based alloys

HF2 Hardfacing alloys

Welded or plasma-deposited cobalt- and nickel-based alloys

05Gedibrac netsgnut deretniS1CC

setisopmoC dna scitsalP

kecnerefeRseitreporPnoitpircseDGMS c1.1 mc

)FU( edyhedlamrof aerUsremylop gnittesomrehT1ST

TS2T hermosetting carbon- ...)12M( yxopE - AMI S-ATH 008T 007T 003Tsetisopmoc erb

TS3T hermosetting glass- ...)...1877( ssalg E/)..24(..XH - yxopEsetisopmoc erb

TS4T hermosetting aramide- 94 ralveKsetisopmoc erb

)CP( etanobracyloPsremylop citsalpomrehT1PT

TP2T hermoplastic carbon- ..003T - KEEP/SPPsetisopmoc erb

TP3T hermoplastic glass- ...ssalg A ro ssalg E - KEEP/SPPsetisopmoc erb

TP4T hermoplastic aramide- bre composites

etihparG

kecnerefeRseitreporPnoitpircseDGMS c1.1 mc

0058 RetihparG1RG