xmm-newton contribution

29
MM-Newton contribution

Upload: eros

Post on 06-Feb-2016

49 views

Category:

Documents


0 download

DESCRIPTION

XMM-Newton contribution. 1E1207-52. EPIC 230 ksec. 1 st direct measurent of the magnetic field of an isolated neutron star (where cyclotron absorption is taking place ). 2.1 keV. 2.8 keV. 1.4 keV. 0.7 keV. Conclusions. For electrons: 8 10 10 G - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: XMM-Newton contribution

XMM-Newton contribution

Page 2: XMM-Newton contribution

EPIC 230 ksec

1E1207-52

Page 3: XMM-Newton contribution

0.7 keV

1.4 keV 2.1 keV 2.8 keV

1 st direct measurent of the magnetic field of an isolated neutron star (where cyclotron

absorption is taking place)

Page 4: XMM-Newton contribution
Page 5: XMM-Newton contribution

Conclusions

For electrons: <B> 8 1010 Gfor protons : <B> 1.6 1014 G

PROBLEMpdot:(1.4 0.3) 10-14 s/s

implies B= 2-3 1012

but also an age of 5 105 yversus the SN age ( circa 104 ys)

Page 6: XMM-Newton contribution

EPIC 100 ksec

Geminga

MOS

Page 7: XMM-Newton contribution

Energetics Edot 3 1034 erg/secD = 160 pc=170 mas/yvtr =120 km/sec

Geminga luminosity 3 1031 erg/sec (0.1-5 keV)Tails luminosity 6.8 1028 erg/sec

The tails account for 2 10-6 Edot

Page 8: XMM-Newton contribution

224 NSISMSO

VcR

E

VNS=D/cos(i)

Page 9: XMM-Newton contribution

224 NSISMSO

VcR

E

VNS=D/cos(i)

from bow-shock

0.06 < ISM < 0.15 at/cm-3

which implies 7 < M < 20

we can obtain

Page 10: XMM-Newton contribution

What produces the X-rays

Power law spectrum -> synchrotron radiation

-> need for electrons and magnetic field

Page 11: XMM-Newton contribution

From bow-shock theory

shock = 4 ISM

Since B is frozen-in

shock = 4 ISM

shock = 10-5 G

Page 12: XMM-Newton contribution

To produce keV photons in 10-5 G B field one needs 1014 eV electrons

Page 13: XMM-Newton contribution

1014 eV electrons will have a Larmor radius of 3.4 1016 cm thickness 6.8 1016 cm 27”

1014 eV electrons will lose half of their energy in 800 y . 180 “ / 170 mas/y = 1,000 y

Caraveo et al. 2003Science 301, 1345

Page 14: XMM-Newton contribution

Pn data ~ 53,000 photons

Time-averaged spectroscopy

Page 15: XMM-Newton contribution

Timing analysis

Common minimumGamma peaks

Page 16: XMM-Newton contribution

Phase-resolved spectroscopy

Page 17: XMM-Newton contribution

Phase-resolved spectroscopy

Caraveo et al, 2004 Science 305,376

Page 18: XMM-Newton contribution

Phase-resolved emission (160 pc)

Page 19: XMM-Newton contribution

Conclusions

-hot spot ( ~1.9 M °K), radius 0-60 m Probably polar cap seen at 70°-80° inclination cos x R (R/c)1/2 (~300m)

luminosity 1.5 1029 erg/sec

rotating

-Cool black-body ( ~.48 M °K), Eurasia size

luminosity 2.6 1031 erg/sec

-Power law photon index 1.7 0.1 luminosity 7.7 1029 erg/sec

Page 20: XMM-Newton contribution
Page 21: XMM-Newton contribution
Page 22: XMM-Newton contribution

Is Geminga unique?

Page 23: XMM-Newton contribution

EPIC view of PSRs B1055 & B0656

pn 60 ksec

85,000 photons

1055-52

MOS 83 ksec

0656+14

MOS 40 ksec

pn 35 ksec

120,000 photons

Page 24: XMM-Newton contribution
Page 25: XMM-Newton contribution

Phase-averaged spectra

Page 26: XMM-Newton contribution

They all show phase spectral variations

0656 1055

Geminga

Page 27: XMM-Newton contribution

1055-58

0656

Geminga

Cool bb: is it the surface of the NS?

problem0656+14

Page 28: XMM-Newton contribution

1055-58

0656

Geminga

hot spot(s) sizes?

0656+14

Hot bb:

rotator inclinations?

Page 29: XMM-Newton contribution

their dimensions are vastly different

although they should not !!!

Hot bb: heated polar cap(s) ?

theoretical cap radii ~250-320 m

real EPIC radii: 60, 800, 1500 m