xfel the european x-ray laser project x-ray free-electron laser tomasz czarski, maciej linczuk,...

22
XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw LLRF ATCA Meeting, 4-5.12.2007 LLRF-ATCA LOW LEVEL APPLICATIONS Tomasz Czarski, Maciej Linczuk Institute of Electronic Systems, WUT, Warsaw

Upload: chrystal-skinner

Post on 02-Jan-2016

230 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw LLRF ATCA

XFELThe EuropeanX-Ray Laser Project X-Ray Free-Electron Laser

Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, WarsawLLRF ATCA Meeting, 4-5.12.2007

LLRF-ATCA LOW LEVEL APPLICATIONS

Tomasz Czarski, Maciej Linczuk Institute of Electronic Systems, WUT, Warsaw

Page 2: XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw LLRF ATCA

Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, WarsawLLRF ATCA Meeting, 4-5.12.2007 2

XFELThe EuropeanX-Ray Laser Project X-Ray Free-Electron Laser

AGENDA

1. ATCA architecture for low level applicationsrequirements, architecture, communication, scalability

2. ATCA motherboard for low level applications architecture, resources, communication

3. Multiprocessor computation and distribution of algorithms

4. Review of current algorithms5. Future algorithm development

6. Experimental results

Page 3: XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw LLRF ATCA

Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, WarsawLLRF ATCA Meeting, 4-5.12.2007 3

XFELThe EuropeanX-Ray Laser Project X-Ray Free-Electron Laser

ATCA architecture for low level applications

Requirements for LLRF System:

● Total length of the facility: 3.4 km, Accelerator tunnel: 2.1km, Depth underground: 6 - 38 meters

● Wavelength of X-ray radiation: 6 to 0.085 nm

● ~1000 s.c. cavities (1.3 GHz), 30 RF station 30MV/m(10 MW klystron)

● Required field stability : 10-5 in amplitude, 0.01° in phase

● Continuous operation is required: only one maintenance day per month

Advantages:

Scalable / Flexible (modularity - partially upgradeable, add new, not know during design, functionality)

● Reliable / Redundant (VM, timing, power, etc...)

● Fast and high resolution inputs, > 100 inp. a. ch. / RF St.

● Low latency (fast communication links)

● Support modern control algorithms

● Reliability, operability and maintainability

Page 4: XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw LLRF ATCA

Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, WarsawLLRF ATCA Meeting, 4-5.12.2007 4

XFELThe EuropeanX-Ray Laser Project X-Ray Free-Electron Laser

VME SIMCON-DSP

Limits of current architecture:● Communications: ● One FPGA chip for cavity contorller and system communications● Slow VME bus communication● Limits for number of I/O signals● No dual CPU VME boards for support

Page 5: XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw LLRF ATCA

Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, WarsawLLRF ATCA Meeting, 4-5.12.2007 5

XFELThe EuropeanX-Ray Laser Project X-Ray Free-Electron Laser

ATCA architecture for low level applications

● Architecture

● Communication

● Scalability

Page 6: XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw LLRF ATCA

Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, WarsawLLRF ATCA Meeting, 4-5.12.2007 6

XFELThe EuropeanX-Ray Laser Project X-Ray Free-Electron Laser

LLRF-ATCA STANDARD

ATCA and AMC Boards:

● AMC module 8xADC + FPGA (100MHz)

● AMC Vector Modulator + 2xDAC (800MHz) + memory + FPGA

● AMC Vector Modulator + 1xDAC (1600MHz) + memory

● AMC module Timming receiver (Trigger) + clock synthezer

● AMC Piezo Sensors

● AMC Transient Detections

● AMC module 64 ch. digital IO

● AMC for signal processing (FPGA, DSP)

● AMC module 32 ch. slow analog I/O (1MHz)

● AMC stepper motor controller

● RF Reference receiver and distribution

Easy system upgrade -> new AMC boards -> new functionality

Communication to AMC boards

Page 7: XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw LLRF ATCA

Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, WarsawLLRF ATCA Meeting, 4-5.12.2007 7

XFELThe EuropeanX-Ray Laser Project X-Ray Free-Electron Laser

LLRF-ATCA Board

Page 8: XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw LLRF ATCA

Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, WarsawLLRF ATCA Meeting, 4-5.12.2007 8

XFELThe EuropeanX-Ray Laser Project X-Ray Free-Electron Laser

LLRF-ATCA Board

Communications:

GigaBit Ethernet

PCI-E

DLinks

DSP-DSP bus

User-Defined ProtocolsFPGA-FPGA, FPGA-AMC

Resources:

• FPGA

• 3 x DSP TS201

• Easy upgrade via specialized AMC cards !!!

Page 9: XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw LLRF ATCA

Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, WarsawLLRF ATCA Meeting, 4-5.12.2007 9

XFELThe EuropeanX-Ray Laser Project X-Ray Free-Electron Laser

Multiprocessor Computation

Multiprocessor computation and distribution of algorithms

Cluster of Dual CPU Intel Processors Unit (ADLINK CPU-6890 board)

Fast GigaBit Ethernet on backplane

Up to 8 Boards

Page 10: XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw LLRF ATCA

Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, WarsawLLRF ATCA Meeting, 4-5.12.2007 10

XFELThe EuropeanX-Ray Laser Project X-Ray Free-Electron Laser

Low Level Applications

Procedures and supplementary data processing

necessary to execute control algorithms

1. Communication

2. System Identification

3. Control Algorithms

4. Beam Monitoring

5. Tuner Control

6. Exception Detection and Handling

Page 11: XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw LLRF ATCA

Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, WarsawLLRF ATCA Meeting, 4-5.12.2007 11

XFELThe EuropeanX-Ray Laser Project X-Ray Free-Electron Laser

Functional block diagram of LLRF control structure

~1.3 GHz~1.3 GHz

W a v e g u i d eMULTI-CAVITY

MODULE

VectorModulator

CONTROL & IDENTIFICATION SYSTEM

C O N T R O L L E R

Multi-channelI/Q Detector

Amplifier

DAQ memory

M u l t i – c h a n n e l Down-Converter ~250 KHz

C O N T R O L T A B L E S

VectorSum

Couplers

Calibration

M u l t i – c h a n n e l ADC

Field sensors

Klystron

DAC

MasterOscillator

andTiming

Circulator

F P G A SYSTEM

RF SYSTEM

Page 12: XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw LLRF ATCA

Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, WarsawLLRF ATCA Meeting, 4-5.12.2007 12

XFELThe EuropeanX-Ray Laser Project X-Ray Free-Electron Laser

Low Level Applications functional arrangement

OUTPUT

CONTROL ALGORITHMS

INPUTMulti

ChannelADC

F C O N T R O L L E R

DAC

Con

trol

D

ata

MULTI-CAVITY SYSTEM

ADC

SYSTEM IDENTIFICATION

TUNER Control BEAM Monitoring

G M E M O R Y

InputData

DOOCS

M O D E L

Output Data

P Exception Detection and Handling

A C O M M U N I C A T I O N

Page 13: XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw LLRF ATCA

Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, WarsawLLRF ATCA Meeting, 4-5.12.2007 13

XFELThe EuropeanX-Ray Laser Project X-Ray Free-Electron Laser

Functional block diagram of Multi-Cavity Control System

ADC

CALIBRATOR

DAC

ErrorCORRECTORFeedback

Accelerator Cavities System

– +

+

N-channels

Vector Sum

Control

Feed-Forward Set-Point

Control & Identification System

FPGA SYSTEM I/Q DETECTOR

Gain Coefficients

Page 14: XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw LLRF ATCA

Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, WarsawLLRF ATCA Meeting, 4-5.12.2007 14

XFELThe EuropeanX-Ray Laser Project X-Ray Free-Electron Laser

Algebraic model of multi-cavity control system

Calibrator

Ei

Internal CAVITY model

uk = Dk·xk

SPk

{ vik+1 = Ai

k·vik + Bi·uk }

{ Aik = (1-Tωi

1/2) + T∆ωik·i }

– +

N - channels

FFk

Correctorerror

phasor

feedback

phasor+

Klystron Output

{vik}

Controllerphasor

vk

uk

xk

∑ {vik}

B = ∑i (Bi)Ak·vk = ∑i(Aik·vi

k)vk = ∑i (vik)

Multi-Cavity model

klystron

phasor

Cavity phasor

Multi-Cavity

phasor

B = B·eiφ Fk = B·Dk∆ωk = Σαj·wj(k)Ak = (1-Tω1/2) + T∆ωk·i

Calibration:Ei·Ci

= 1vk+1 = Ak·vk + B·uk (= Fk·xk)

Gk Ci

Page 15: XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw LLRF ATCA

Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, WarsawLLRF ATCA Meeting, 4-5.12.2007 15

XFELThe EuropeanX-Ray Laser Project X-Ray Free-Electron Laser

Cavity control systemFunctional block diagram of MATLAB implementation

D A T A M A T R I X DOOCS

Cavity gradient

[ 1:8 ]Calibration

factors

CTRL

[I Q]Estimation

KLY

[I Q] DetectionEstimation

uk

vk

xk

CAV [1:8]

[I Q]

DetectionCalibrationEstimationVector Sum

Base functionsMatrix

W

input factor

Fk = B·Dk

coupling factor

B = B·eiφdynamic factor

Ak = (1-Tω1/2)+T∆ωk·i

P A R A M E T E R S E S T I M A T I O N

Klystron uk = Dk·xk

Controller

xk+1 = FFk + Gk·(SPk – vk)

Cavityvk+1 = Ak·vk + Fk·xk

MODEL

Gain: GkSetting-Point: SPkFeed-forward: FFk

CONTROL TABLES

Page 16: XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw LLRF ATCA

Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, WarsawLLRF ATCA Meeting, 4-5.12.2007 16

XFELThe EuropeanX-Ray Laser Project X-Ray Free-Electron Laser

The functional block diagram of the FPGA controller structure with channel numbers of data flow

[5:6]

SEL 2[1:42]

[1:32]SELECTOR 1-10

SIMULATOR

[9:10]

ErrorCORRECTORFeedback+

FEED-FORWARD

SET-POINT

I/Q DETECTOR

GAIN

[7:8]

COEFFICIENTS

MU

X8

cha

nnel

s

Vector

Sum

DAQ (11:20)

[3:4]

Σ

[33:42]ADC

DAQ (01:10)

[11:12]

– +

I – [13:20]CALIBRATOR

Q – [21:28]

Controller out

I Q M e m o r y

DAC

10 channels~250 KHz

[1:2]

[33:40]

Page 17: XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw LLRF ATCA

Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, WarsawLLRF ATCA Meeting, 4-5.12.2007 17

XFELThe EuropeanX-Ray Laser Project X-Ray Free-Electron Laser

Adaptive Control Algorithmbased on System Identification

CAVITYSYSTEM

CONTROLLER

CONTROL DATAdetermination

PARAMETERSidentification

MATLAB SYSTEM

CONTROL TABLES

FPGA SYSTEM

DAQ MEMORY

DATA MATRIX

IDENTIFICATION

CAVITY SYSTEM

CONTROL

vk+1 = Ak·vk + Fk·xk

CONTROLLER modelController

phasor

Cavityphasor

xk+1 = FFk + Gk·(SPk – vk)

MULTI - CAVITY model

vk+1 = Ak·vk - Fk·Gk-1·vk-1 + Fk·(FFk-1 + Gk-1·SPk-1)

Page 18: XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw LLRF ATCA

Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, WarsawLLRF ATCA Meeting, 4-5.12.2007 18

XFELThe EuropeanX-Ray Laser Project X-Ray Free-Electron Laser

Single cavity control (ACC1 – cavity 4)Adaptive Feed Forward (gain = 0)

0 500 1000 1500 2000

0

2

4

6

8

10

12Cavity output envelope

MV

IQAbs

0 500 1000 1500-2

0

2

4

6

8Klystron output

mA

IQAbs

0 500 1000 1500 2000-0.2

-0.15

-0.1

-0.05

0

0.05

time [10-6 s]

rad

Phase of cavity and klystron [rad]

klystron

cavity

0 500 1000 1500 2000-50

0

50

100

150

200

250

time [10-6 s]

Detuning and half-bandwidth estimation

Hz detuning

half-bandwidth

Page 19: XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw LLRF ATCA

Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, WarsawLLRF ATCA Meeting, 4-5.12.2007 19

XFELThe EuropeanX-Ray Laser Project X-Ray Free-Electron Laser

Single cavity control (ACC1)Adaptive Feed Forward (gain = 0)

0 500 1000 15000

10

20

30

40

KW

Power estimation

time [10-6 s]time [10-6 s]

forwardreflected

0 200 400 600 800 1000 1200

0

20

40

60Controller output

%

200 400 600 800 1000 12000

0.2

0.4

0.6

0.8

1Normalized Klystron characteristics

Abs [ ]

Phase [rad]

600 800 1000 1200

0

0.5

1

1.5

System Gain

Abs [ ]

Phase [rad]

IQ

Page 20: XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw LLRF ATCA

Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, WarsawLLRF ATCA Meeting, 4-5.12.2007 20

XFELThe EuropeanX-Ray Laser Project X-Ray Free-Electron Laser

Vector sum control of 8 cavities – ACC1Adaptive Feed Forward (gain=0)

0 500 1000 1500 2000

0

5

10

15

MV

IQAbs

0 500 1000 1500

0

5

10

mA

Klystron outputCavity envelope

IQAbs

0 500 1000 1500 2000-0.4

-0.2

0

0.2

0.4

time [10-6 s]

rad

Phase of cavity and klystron

klystroncavity

0 500 1000 1500 2000-100

0

100

200

time [10-6 s]

Detuning and half-bandwidth

Hz

detuninghalf-bandwidth

Page 21: XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw LLRF ATCA

Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, WarsawLLRF ATCA Meeting, 4-5.12.2007 21

XFELThe EuropeanX-Ray Laser Project X-Ray Free-Electron Laser

Vector sum control of MTS moduleAdaptive Feed Forward (gain=0)

0 500 1000 1500

0

5

10

15

20Cavity output envelope

MV

0 500 1000 1500

-5

0

5

10

Klystron output

mA

0 500 1000 1500-0.6

-0.4

-0.2

0

0.2

0.4

time [10-6

s]

rad

Phase of cavity and klystron

0 500 1000 1500

-50

0

50

100

150

200

250

time [10-6

s]

Detuning estimation

Hz

IQAbs

cavity

klystron

IQAbs

filling

filling

flattop

flattophalf-bandwidth = 220 Hz

Page 22: XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw LLRF ATCA

Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, WarsawLLRF ATCA Meeting, 4-5.12.2007 22

XFELThe EuropeanX-Ray Laser Project X-Ray Free-Electron Laser

Thank you for your attention