x-rays from chandra & xmm – will dunn

29
Juno Workshop: Jupiter’s Aurora Jupiter’s X-rays -- Chandra and XMM-Newton Campaigns Presenter: William Dunn ([email protected]) Investigators: G. R. Gladstone, R. Kraft, C. Jackman, G. Branduardi-Raymont, W. Dunn, J. Nichols, R. Elsner, L. Ray, T. Kimura, Y. Ezoe UCL DEPARTMENT OF SPACE AND CLIMATE PHYSICS MULLARD SPACE SCIENCE LABORATORY

Upload: trankien

Post on 14-Feb-2017

220 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: X-rays from Chandra & XMM – Will Dunn

Juno Workshop: Jupiter’s Aurora

Jupiter’s X-rays -- Chandra and XMM-Newton Campaigns

Presenter: William Dunn ([email protected]) Investigators: G. R. Gladstone, R. Kraft, C. Jackman, G. Branduardi-Raymont, W. Dunn, J. Nichols, R.

Elsner, L. Ray, T. Kimura, Y. Ezoe

UCL DEPARTMENT OF SPACE AND CLIMATE PHYSICS MULLARD SPACE SCIENCE LABORATORY

Page 2: X-rays from Chandra & XMM – Will Dunn

Summary

1)   Motivations for studying Jupiter’s X-rays 2) X-ray Auroral morphology and features 3) Possible connections between Jupiter’s X-ray Aurora and the Solar Wind 4) Upcoming X-ray campaigns: a)   Juno approach – Chandra (PI: Kraft and Jackman) & XMM-Newton (PI: Dunn) b)   Juno polar orbits -- Chandra (PI: Gladstone)

2

[email protected]

Page 3: X-rays from Chandra & XMM – Will Dunn

Motivations for Studying Jupiter’s X-ray Aurora 1)   Jupiter’s X-ray Aurora seems to exhibit relationships to the Solar Wind –- general

trends and distinctive order of magnitude brightening during CMEs. This could help to identify the nature of Jupiter’s relationship to the solar wind.

2)   Provide a partial mapping of downward current regions -- identified through the spectral lines of precipitating ions.

3)   Information about the drivers and acceleration processes in the main oval and polar regions -- variation in X-ray emission from 10-100 keV electrons and from MeV ions

3

[email protected]

Page 4: X-rays from Chandra & XMM – Will Dunn

Components of X-ray Emission

Polar Aurora Component

Equatorial/Disk Component

Disk X-rays are from fluoresced and scattered solar photons – so changes

in solar X-ray flux are reflected in Jupiter’s disk emission.

N

4

[email protected]

Page 5: X-rays from Chandra & XMM – Will Dunn

•  Big green dots = Hard X-rays (Energies: 2-5 keV)

•  Small green dots = Soft

X-rays (Energies: 0.2-1.5 keV)

Left figure shows a projection of Jupiter’s North Pole from Chandra X-ray observations in 2003 (green dots). These are superposed on a simultaneous Hubble UV projection (orange).

Main Oval

Hot Spot

Hot Spot

Hard X-ray

Branduardi-Raymont et al. 2008

Jupiter’s X-ray Morphology

5

[email protected]

Page 6: X-rays from Chandra & XMM – Will Dunn

Hard X-rays

•  Big green dots

•  Brehmsstrahlung –10s-100s keV electrons

•  Overlap Main UV oval •  Significant variation in counts

from observation to observation, may relate to solar wind

•  May relate to dawn storms

[Branduardi-Raymont et al. 2003, 2004, 2007A, 2008; Dunn et al. 2016]

Main Oval

Hot Spot

Hard X-ray

Branduardi-Raymont et al. 2008

Jupiter’s X-ray Morphology

6

[email protected]

Page 7: X-rays from Chandra & XMM – Will Dunn

Main Oval

Hot Spot

Hot Spot

Soft X-rays – the Hot Spot

•  Small green dots

•  Hot Spot – poleward of UV oval – origin beyond middle magnetosphere.

•  MeV ions Charge Exchange

•  Oxygen (O7+,8+)

•  Sulphur (S7+…16+) and/or Carbon (C5+,6+) - current spectral resolution cannot distinguish.

•  S = magnetospheric origin •  C = solar wind origin •  O = Either

[Branduardi-Raymontetal.2004,2007A;Elsner

etal.2005;Gladstoneetal.2002]Branduardi-Raymont et al. 2008

Jupiter’s X-ray Morphology

7

[email protected]

Page 8: X-rays from Chandra & XMM – Will Dunn

Main Oval

Hot Spot

Jupiter’s X-ray Morphology

The Hot Spot

Rotateswiththeplanet–65-75olaAtude;160-180olongitude

Quasi-periodicPulsa5ons:•  45minperioddetectedindisAnct

observaAons

•  12-26minperioddetectedduringCME

•  PeriodabsentinseveralobservaAons

•  SimilarperiodicityinradioandparAclefluxdata(e.g:Macdowalletal1993).

•  CoincidentUVflares(e.g:Elsneretal.2005)

[Branduardi-Raymont et al. 2004; 2007A, 2008; Gladtstone et al. 2002; Elsner et al. 2005; Dunn et al.

2016] 8

[email protected]

Page 9: X-rays from Chandra & XMM – Will Dunn

X-ray Aurora Source

•  Hot Spot Core (red) maps to near magnetopause •  Emission shows a ~50/50 mapping to closed and open field lines •  ‘Halo’ (blue) maps to several origins

•  Magnetopause mapping implies that Jupiter’s X-ray aurora may provide a diagnostic of Jupiter-Solar Wind interactions.

S3 Polar Projection Source

Kimura et al. [2016]

120RJ

15RJ

30RJ

9

[email protected]

92RJ standoff Expanded M’sphere

Page 10: X-rays from Chandra & XMM – Will Dunn

Jupiter’s X-ray Solar Wind Relationship

Branduardi-Raymont et al. [2004, 2007A] :

•  Hard and Soft X-ray Emission increased

around the time of the 2003 Halloween storms.

Kimura et al. 2016 (figure):

•  X-ray emission correlated to SW Velocity •  X-ray emission not correlated to SW density

•  During generally quieter solar wind conditions

10

[email protected]

Counts

/sec

C

ounts

/sec

Page 11: X-rays from Chandra & XMM – Will Dunn

TheMichiganSolarWindpropaga5onModel(upperfigures)predictsthearrivalofanICMEduringanX-rayobserva5onin2011.

Density Velocity BTUncertainty

What does an ICME do to Jupiter’s X-ray Aurora?

272 274 276 278 280 2820.00

0.05

0.10

0.15

0.20

0.25

0.30Obs1 Obs2

DoY

n(cm

-3)

272 274 276 278 280 282200

300

400

500

600

700

800Obs1 Obs2

DoY

Velocity

(km/s)

272 274 276 278 280 282

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Obs1 Obs2

DoY

BT(nT)

mSWiM Solar Wind Propagation Model

a) b) c)

272 274 276 278 280 2820.00

0.05

0.10

0.15

0.20

0.25

0.30Obs1 Obs2

DoY

n(cm

-3)

272 274 276 278 280 282200

300

400

500

600

700

800Obs1 Obs2

DoY

Velocity

(km/s)

272 274 276 278 280 282

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Obs1 Obs2

DoY

BT(nT)

mSWiM Solar Wind Propagation Model

a) b) c)

272 274 276 278 280 2820.00

0.05

0.10

0.15

0.20

0.25

0.30Obs1 Obs2

DoY

n(cm

-3)

272 274 276 278 280 282200

300

400

500

600

700

800Obs1 Obs2

DoY

Velocity

(km/s)

272 274 276 278 280 282

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Obs1 Obs2

DoY

BT(nT)

mSWiM Solar Wind Propagation Model

a) b) c)

Dunn et al. [2016] 11

[email protected]

Page 12: X-rays from Chandra & XMM – Will Dunn

Radio observa5ons show non-Io decametric bursts (lower figure) during the same X-ray observa5on,which suggest an ICME-induced forward shock arrived [e.g: Hess et al. 2012; 2014; Lamy et al. 2012;GurneWetal2002]

Uncertainty

What does an ICME do to Jupiter’s X-ray Aurora?

STA / Power spectral density (Log V2.Hz-1)

276.0 276.2 276.4 276.6 276.8

1000

10000

Fre

quen

cy (

kHz)

STB / Power spectral density (Log V2.Hz-1)

276.0 276.2 276.4 276.6 276.8

1000

10000

Fre

quen

cy (

kHz)

277.0 277.2 277.4 277.6 277.8

-15.8

-15.6

-15.4

-15.2

-15.0

277.0 277.2 277.4 277.6 277.8DOY 2011

-15.8

-15.6

-15.4

-15.2

-15.0

Non-Io

Non-Io Io

Non-Io/Io

Observation 1 Observation 2

Observation 1 Observation 2 272 274 276 278 280 282

0.00

0.05

0.10

0.15

0.20

0.25

0.30Obs1 Obs2

DoY

n(cm

-3)

272 274 276 278 280 282200

300

400

500

600

700

800Obs1 Obs2

DoY

Velocity

(km/s)

272 274 276 278 280 282

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Obs1 Obs2

DoY

B T(nT)

mSWiM Solar Wind Propagation Model

a) b) c)

Dunn et al. [2016]

[email protected]

12

Page 13: X-rays from Chandra & XMM – Will Dunn

TheMichigansolarwindpropaga5onmodel(upperfigures)predictsthearrivalofanICMEduringanX-rayobserva5onin2011.Radio observa5ons show non-Io decametric bursts (lower figure) during the same X-ray observa5on,which suggest an ICME-induced forward shock arrived [e.g: Hess et al. 2012; 2014; Lamy et al. 2012;GurneWetal2002]

Uncertainty

What does an ICME do to Jupiter’s X-ray Aurora?

272 274 276 278 280 2820.00

0.05

0.10

0.15

0.20

0.25

0.30Obs1 Obs2

DoY

n(cm

-3)

272 274 276 278 280 282200

300

400

500

600

700

800Obs1 Obs2

DoY

Velocity(km/s)

272 274 276 278 280 282

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Obs1 Obs2

DoY

B T(nT)

mSWiM Solar Wind Propagation Model

a) b) c)

STA / Power spectral density (Log V2.Hz-1)

276.0 276.2 276.4 276.6 276.8

1000

10000

Fre

quen

cy (

kHz)

STB / Power spectral density (Log V2.Hz-1)

276.0 276.2 276.4 276.6 276.8

1000

10000

Fre

quen

cy (

kHz)

277.0 277.2 277.4 277.6 277.8

-15.8

-15.6

-15.4

-15.2

-15.0

277.0 277.2 277.4 277.6 277.8DOY 2011

-15.8

-15.6

-15.4

-15.2

-15.0

Non-Io

Non-Io Io

Non-Io/Io

Observation 1 Observation 2

Observation 1 Observation 2

272 274 276 278 280 2820.00

0.05

0.10

0.15

0.20

0.25

0.30Obs1 Obs2

DoY

n(cm

-3)

272 274 276 278 280 282200

300

400

500

600

700

800Obs1 Obs2

DoY

Velocity(km/s)

272 274 276 278 280 282

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Obs1 Obs2

DoY

B T(nT)

mSWiM Solar Wind Propagation Model

a) b) c)

272 274 276 278 280 2820.00

0.05

0.10

0.15

0.20

0.25

0.30Obs1 Obs2

DoY

n(cm

-3)

272 274 276 278 280 282200

300

400

500

600

700

800Obs1 Obs2

DoY

Velocity(km/s)

272 274 276 278 280 282

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Obs1 Obs2

DoY

B T(nT)

mSWiM Solar Wind Propagation Model

a) b) c)

Dunn et al. [2016] 13

[email protected]

Page 14: X-rays from Chandra & XMM – Will Dunn

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

1st Observation !CME Arrival"

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

2nd Observation !CME Recovery"

X-ray Observations: S3 Polar Projections

ICME Arrival Observation ICME Recovery Observation

L=30 Contour [Grodent et al.

2008] New Emission Quadrant:

Auroral Enhancement Io Footprint

[Grodent et al. 2008]

Hot Spot Region

Dunn et al. [2016]

[email protected]

14

Page 15: X-rays from Chandra & XMM – Will Dunn

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

1st Observation !CME Arrival"

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

2nd Observation !CME Recovery"

ICME Triggers New X-ray Aurora

ICME Arrival Observation ICME Recovery Observation

Io Footprint [Grodent et al. 2008]

Hot Spot Region

New Emission Quadrant: Auroral Enhancement

L=30 Contour [Grodent et al.

2008] Dunn et al. [2016] 15

[email protected]

Page 16: X-rays from Chandra & XMM – Will Dunn

New Emission

ICME Triggers New X-ray Aurora

Dunn et al. [2016]

•  ICME Arrival •  Quieter SW

Splitting the 2 quadrants quantifies the difference between the two observations for: Upper Figure: Hot Spot Quadrant (S3 Longitude 90-180o) Lower Figure: Auroral Enhancement Quadrant (S3 Longitude 180-270o)

Hot Spot Quadrant

Auroral Enhancement

•  ICME Arrival •  Quieter SW

16

[email protected]

Page 17: X-rays from Chandra & XMM – Will Dunn

•  Order of Magnitude ‘Flare’

Enhancement triggered by ICME

•  ~1.5 hours before the non-Io radio burst

•  Heightened Emission throughout •  Hot Spot periodicity shifts: ~45 min in

second obs (like Gladstone et al. 2002); 12 and 26 min period during ICME

X-ray Lightcurves and Radio Bursts

Hot Spot Q

Aurora Enhancement

Hot Spot Q Aurora Enhancement

Quadrant

Hot Spot Quadrant

Hot Spot QuadrantAurora Enhancement Quadrant

275.9 276 276.1 276.2 276.3 276.4

10

20

30

400 60 ° 120 ° 180 ° 240 ° Non-Io 0

10

20

30

40

Day of Year

Countsper ks

Sub-Solar LongitudeFirst Observation (ICME Arrival): HSQ and AEQ Lightcurves

Hot Spot QuadrantAurora Enhancement Quadrant

277.6 277.7 277.8 277.9 278 278.1

10

20

30

400 60 ° 120 ° 180 ° 240 ° 300 ° 0 60 °

10

20

30

40

Day of Year

Countsper ks

Sub-Solar LongitudeSecond Observation (ICME Recovery): HSQ and AEQ Lightcurves

Hot Spot QuadrantAurora Enhancement Quadrant

275.9 276 276.1 276.2 276.3 276.4

10

20

30

400 60 ° 120 ° 180 ° 240 ° Non-Io 0

10

20

30

40

Day of Year

Countsper ks

Sub-Solar LongitudeFirst Observation (ICME Arrival): HSQ and AEQ Lightcurves

Hot Spot QuadrantAurora Enhancement Quadrant

277.6 277.7 277.8 277.9 278 278.1

10

20

30

400 60 ° 120 ° 180 ° 240 ° 300 ° 0 60 °

10

20

30

40

Day of Year

Countsper ks

Sub-Solar LongitudeSecond Observation (ICME Recovery): HSQ and AEQ Lightcurves

Dunn et al. [2016]

ICME Arrival Observation

Quieter Solar Wind Observation

[email protected]

17

Page 18: X-rays from Chandra & XMM – Will Dunn

Jupiter’s X-ray - Solar Wind Relationship and the Upcoming Observations Is there a solar wind parameter connected to the X-ray aurora and, if so, how does it link to the drivers of emission? •  IMF direction? -- Pulsed Dayside reconnection [Bunce et al. 2004] ?

•  SW Density/Dynamic Pressure? -- Magnetosphere Compression [Dunn et al. 2016] ?

•  SW Velocity? -- Kelvin Helmholtz [Kimura et al. 2016] ?

•  Internally Driven? -- MV Potentials on down FACs [Cravens et al. 2003] To help identify SW driver -> X-ray obs during Juno approach (PI: Kraft & Jackman;PI: Dunn) •  May 20: XMM 10 hour Observation

•  May 26: Simultaneous XMM and Chandra 10 hour Observations

•  June 1: Chandra 10 hour Observation Also simultaneous with HST observations (PI J. Nichols) which helps connect features and identify global current systems (UV = mostly upward ; X-ray = mostly downward)

18

[email protected]

Page 19: X-rays from Chandra & XMM – Will Dunn

Jupiter’s X-ray - Solar Wind Relationship and the Upcoming Observations

19

•  Ebert et al. 2014 used Ulysses data from an analogous point in the solar cycle.

•  More structured

•  ~1 week between compression and rarefaction.

For X-ray observations: •  Appropriate separation to

increase chance of alternating SW conditions

•  Simultaneous with HST

[email protected]

19

Page 20: X-rays from Chandra & XMM – Will Dunn

XMM- Newton –EPIC and RGS

High Spectral Resolution – poor spatial resolution

Chandra – High Resolution Camera

High Spatial Resolution – no spectral resolution

Branduardi-Raymont et al. 2007A

[email protected]

20 0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

1st Observation !CME Arrival"

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

2nd Observation !CME Recovery"

Page 21: X-rays from Chandra & XMM – Will Dunn

CXO Campaign During Juno Orbits

Juno presents the unique opportunity to study the X-ray emission from the hot spot, while traversing the field lines producing it. -> 80 hour Chandra campaign (PI: Gladstone). Observations during: Northern Aurora: GRAV orbits 5, 13, 22, & 34 Southern Aurora: MWR orbit 6 and GRAV orbits 11, 20, & 36 This will also help: •  Identify further connections between UV polar flares and X-rays [E.g: Elsner et al. 2005]

•  Assess the source of the quasi-periodicity

•  Identify hot spot drivers (Dayside reconnection [Bunce et al. 2004] Vs Kelvin Helmholtz [Kimura et al. 2016] Vs MV Potentials on down FACs [Cravens et al. 2003])

•  Test various mapping models VIPAL, VIP4, Grodent Anomaly….

•  Identify possible X-ray emission from the Galilean moons and Io Plasma Torus.

[email protected]

21

Page 22: X-rays from Chandra & XMM – Will Dunn

Conclusions Juno presents a unique opportunity to probe the sources of Jupiter’s X-ray Aurora: Science Questions for Approach Campaign (CXO PI: Kraft and Jackman; XMM PI: Dunn) 1.  Which solar wind parameter (if any) is connected with the X-ray aurora?

2.  What is the nature of the X-ray producing Jupiter-Solar wind interaction?

3.  How does X-ray emission connect with UV features (HST) and other wavebands?

Juno instruments ware very important for us to be able to connect SW with X-ray aurora - we are very keen to collaborate. We are also keen to collaborate with other EM wavebands. Science Goals for Polar Orbit Campaign (CXO PI: Gladstone) 1.  Test theories [e.g., Cravens et al. 2003; Bunce et al. 2004] on the source of emissions by

comparing ‘cusp’ measurements with X-ray (Chandra) and UV emissions (Juno UVS).

2.  Identify which conditions produce the ~45 min quasi-periodic X-ray intensity oscillations and how these correlate with energetic particle fluxes and radio emission.

3.  To constrain mapping models (e.g., VIP4 [Connerney et al., 1998], VIPAL [Hess et al., 2011]) with a high-quality map of X-ray emission topology

4.  Search for X-ray emission from the Galilean moons and Io Plasma Torus (IPT).

[email protected]

22

Page 23: X-rays from Chandra & XMM – Will Dunn

Back-Up Slides

[email protected]

23

Page 24: X-rays from Chandra & XMM – Will Dunn

Sub-structure within the Hot Spot?

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

120 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

120 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

150 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

150 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

210 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

210 ° SSL

1st Obs (CME Arrival) 2nd Obs (CME Recovery) Dawn

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

120 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

120 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

150 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

150 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

210 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

210 ° SSL

1st Obs (CME Arrival) 2nd Obs (CME Recovery)

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

120 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

120 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

150 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

150 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

210 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

210 ° SSL

1st Obs (CME Arrival) 2nd Obs (CME Recovery)

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

120 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

120 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

150 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

150 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

210 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

210 ° SSL

1st Obs (CME Arrival) 2nd Obs (CME Recovery)

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

120 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

120 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

150 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

150 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

210 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

210 ° SSL

1st Obs (CME Arrival) 2nd Obs (CME Recovery)

Sulphur/CarbonIons

OxygenIons

Electrons

Sca8eredSolarPhotons

EmissionFrom:

15RJ

50RJ

90RJ

120RJ

PredictedOpen-ClosedBoundary

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

120°SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

120°SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

150°SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

150°SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

210°SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

210°SSL

1st Obs (CME Arrival) 2nd Obs (CME Recovery)

Io’sFootprint

Closed

FieldLines

Vogt Models (2011): balance equatorial magnetic flux with ionospheric magnetic flux to map beyond 30 RJ.

Dunn et al. [2016] 24

[email protected]

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

120 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

120 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

150 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

150 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

210 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

210 ° SSL

1st Obs (CME Arrival) 2nd Obs (CME Recovery)

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

120 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

120 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

150 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

150 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

210 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

210 ° SSL

1st Obs (CME Arrival) 2nd Obs (CME Recovery)

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

120 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

120 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

150 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

150 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

210 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

210 ° SSL

1st Obs (CME Arrival) 2nd Obs (CME Recovery)

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

120 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

120 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

150 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

150 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

210 ° SSL

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

210 ° SSL

1st Obs (CME Arrival) 2nd Obs (CME Recovery)

Sulphur/CarbonIons

OxygenIons

Electrons

Sca[eredSolarPhotons

EmissionFrom:

Page 25: X-rays from Chandra & XMM – Will Dunn

Particle Species Magnetospheric Local Time

Equatorial Origin

Carbon and/or Sulphur 10:30 – 18:30 60 - 120 RJ and Open Flux

Oxygen 10:30 -- 18:30 80 - 120 RJ and Open Flux

High Energy Electrons 02:00 – 06:00 Middle Magnetosphere

25

Mapping the X-ray Hot Spot Source

•  Sulphur has a lower ionisation potential than oxygen.

•  So it may be that one region energises sulphur sufficiently for X-ray production, but does not inject enough energy to do the same for oxygen.

[email protected]

Page 26: X-rays from Chandra & XMM – Will Dunn

Back-Up Slides – C/S and O separation

[email protected]

26

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

North

First Observation: 200!500eV

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

North

Second Observation: 200!500eV

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

North

First Observation: 500!800eV

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

North

Second Observation: 500!800eV

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

North

First Observation: 200!500eV

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

North

Second Observation: 200!500eV

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

North

First Observation: 500!800eV

0

90

180

270

14

12

10

8

6

4

4

6

8

8

1012

14

North

Second Observation: 500!800eV

Page 27: X-rays from Chandra & XMM – Will Dunn

Back-Up Slides – PSDs from 2011 observations

a) b)

c) d)

[email protected]

27

Page 28: X-rays from Chandra & XMM – Will Dunn

Connecting Wavelengths - UV

Juno UVS alongside HST, Chandra and XMM observations will help to identify connections between UV polar flares [e.g: Bonfond et al. 2011] and X-ray events that are found in similar locations at similar times [Elsner et al. 2005]. Providing richer datasets to study the drivers of features with similar origins.

[email protected]

28

Page 29: X-rays from Chandra & XMM – Will Dunn

Connecting Wavebands - Radio

Radio events have been noted to share similar periodicity to the X-ray events [e.g: Macdowall et al. 1993; Gladstone et al. 2002]. Bursts of Jovian non-Io decametric emission coincident with strong solar activity have also been found to occur at similar times to significant brightening of the X-ray aurora, suggesting similar origins. Although the X-ray events were associated with downward moving ions, while the radio emission is thought to be associated with upward moving electrons.

[email protected]

29