x-ray observations of ultra fast outflows in...

38
X-ray Observations of Ultra Fast Outflows in AGN James Reeves (UMBC/Keele) Main Collaborators:- Emanuele Nardini (Arcetri), Michele Costa, Andrew Lobban (Keele), Valentina Braito, Gabi Matzeu (Brera), Jane Turner (UMBC), Francesco Tombesi (GSFC/UMD), Stuart Sim (Belfast), Ken Pounds (Leicester)

Upload: others

Post on 19-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • X-rayObservationsofUltraFastOutflowsinAGN

    James Reeves (UMBC/Keele)Main Collaborators:- Emanuele Nardini (Arcetri), Michele Costa,

    Andrew Lobban (Keele), Valentina Braito, Gabi Matzeu (Brera), Jane Turner (UMBC), Francesco Tombesi (GSFC/UMD), Stuart Sim

    (Belfast), Ken Pounds (Leicester)

  • Outflows from Active Galactic Nuclei

    Introduction – ObservationsofwindsinActiveGalacticnucleiandthediscoveryofultrafastoutflows.

    Case Study 1 – Thepowerful,wideangle,diskwindintheluminousquasarPDS456.Whataretheoutflowenergetics?Revealingtheoutflowvariabilityandstructure.Possibledrivingmechanism

    Case Study 2 – thelargeXMM-Newtoncampaignonthenearbynarrowlinequasar,PG1211+143.Observationsofarapidlyvariableaccretiondiskwind.ThesoftX-raysignatureofthefastwind.

    Discussion – statisticsandoccurrence.Energeticsandroleinfeedback.Whatarethesignaturesofthefastoutflow?Drivingmechanismandacceleration.

  • DiscoveryofAccretionDiskWindsinAGN• Initial discovery in PG 1211, PDS 456 and APM

    08279 (Chartas et al. 2002).• Disk winds simulations of Sim et al. (2010),

    Proga & Kallman (2004). Produces blue-shifted Fe K absorption

    • Also MHD wind models (Ohsuga & Mineshige2011, Fukumura et al. 2015).

    PG1211+143,z=0.0809(Poundsetal.2003)

    PDS456,z=0.184,(Reevesetal.03)

  • King 2010

    Tombesi+ 2010

    Maiolino+ 2012

    Powerful disc winds are naturally expected at high accretion rates:

    Tombesi et al. (2015, Nature)

  • AGN Winds in Charleston (15th October 2011)

    Results & Examples16/47 objects found to have significant Fe K absorption (in 20/61 spectra.) => 4 have absorption in more than one obs, w/ evidence for variability (e.g. PDS456)

    Lines No.

    Fe XXV+Fe XXVI(same Vout)

    6

    Fe

  • (RQQSO,z=0.184)

    Outflow velocity of 0.25-0.30c, if associated with Fe XXV/XXVI resonance lines (at 6.7-6.97 keV).

  • Suzaku OutflowSample(Gofford etal.2013,2015)

    • 20/51AGNfoundtohavesignificantironKabsorption(18/51at>99%significancefromMonteCarlo).

    • Thiscorrespondsto28/73 ofthefittedX-rayspectra(or40%).Theabsorptionlinesystemsbreakdownasfollows:-

    9/28systemslikelyassociatedwithFeXXVILyα4/28withFeXXVorlowerionization.12/28associatedwithatleast2linesduetoFeXXVandFeXXVI.3/26mayhavemultiplevelocitysystems.

    • Overall12/20oftheAGNhaveoutflowvelocities>10000km/s ofwhich8 havev>0.1c.Only3/19areconsistentwithno-netvelocity-shift.

    • Meanionizationparameter,logxi=4,columnlog(NH/cm-2)=23

  • Suzaku OutflowSample(Gofford etal.2013,2015)

    • 20/51AGNfoundtohavesignificantironKabsorption(18/51at>99%significancefromMonteCarlo).

    • Thiscorrespondsto28/73 ofthefittedX-rayspectra(or40%).Theabsorptionlinesystemsbreakdownasfollows:-

    9/28systemslikelyassociatedwithFeXXVILyα4/28withFeXXVorlowerionization.12/28associatedwithatleast2linesduetoFeXXVandFeXXVI.3/26mayhavemultiplevelocitysystems.

    • Overall12/20oftheAGNhaveoutflowvelocities>10000km/s ofwhich8 havev>0.1c.Only3/19areconsistentwithno-netvelocity-shift.

    • Meanionizationparameter,logxi=4,columnlog(NH/cm-2)=230.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

    vout/c

    0

    2

    4

    6

    8

    10

    12

    Num

    ber

    ofso

    urc

    es

    ⌘=

    0.06

    ⌘=

    0.34(b)

  • 1021102210231024102510261027102810291030

    log(

    Ṁout/

    gs�

    1)

    3C11

    13C

    390.

    34C

    +74.

    26A

    PM

    0827

    9C

    BS

    126

    ES

    O10

    3-G

    035

    MC

    G-6

    -30-

    15M

    R22

    51-1

    78M

    rk27

    9M

    rk76

    6N

    GC

    1365

    NG

    C32

    27N

    GC

    3516

    NG

    C37

    83N

    GC

    4051

    NG

    C41

    51N

    GC

    4395

    NG

    C55

    06P

    DS

    456

    SW

    J212

    7

    10�3

    10�2

    10�1

    100

    101

    102lo

    g(Ṁ

    out/

    Ṁed

    d)

    Howpowerfularediskwinds?

    Majoruncertainties:launchradius+solidangle

    Gofford etal.2015,SampleofironKoutflowswithSuzaku

  • Howpowerfularediskwinds?

    Thedetectionofnarrow,blueshifted X-rayabsorptionlinesdoesnotprovideanysolidconstraintonthetotalenergeticsofawind

    ★ Solidangle: frequencyofBHwindsignaturesamonglocalAGN

    ★Columndensity: modelling ofabsorptionbyphoto-ionised gas

    ★Outflowvelocity:line’senergyshiftfollowingidentification

    ★ Launchradius:ionisation stateofthegasandescapevelocity

    Itisstillunclearwhetherdiskwindshavesufficientmechanicalenergytopowerfeedbackongalacticscales

  • PDS456:theRosettaStoneofAGNdiskwinds

    2013/14campaign:5simultaneousXMM+NuSTAR observations

    Rest-frameenergy(keV)

    Ratio

    Mostluminousradio-quietAGNinthelocalUniverse

    Reeves+03

    Systematicdetectionofadeeptroughabove7keV rest-frame:evidenceforalargecolumnofhighlyionised matteroutflowingataboutonethirdofthespeedoflight

    IdealtargetforstudyingBHwindsintheEddington-limitedregime

    MB ∼ −27 Lbol ∼ 1047 erg s−1 MBH ∼ 109 M⊙

  • TheWideAngleUFOistheQuasarPDS456

    Nardini+15,Science

  • Apersistent,wide-anglewind

    Apparentresponsetocontinuumchangesover7-10days

    P-Cygni-likeprofileresolvedatanyepoch(aperture>50° fromFWHM)

    Nardini+15

  • Somerelevantnumbers

    AlltheinformationcannowbedeterminedfromthedataThesolidangle isobtainedfromtheemitted/absorbedluminosityratio,andthelaunchradius fromthevariabilitytimescale

    Thedepositionofafew%ofthetotalradiatedenergyisenoughtopromptsignificantfeedbackonthehostgalaxy (Hopkins&Elvis10).Overalifetimeof107 yr theenergyreleasedthroughtheaccretiondiskwindlikelyexceedsthebindingenergyofthebulge

  • OneYearintheLifeofPDS456…(Matzeu etal.2016)

    (Aug2013)

    (Feb2014)

    (Feb-March2013)

  • VariabilityofWindvelocityinPDS456(Matzeu etal.2017)

    CentroidenergyofironKabsorptionappearstoincreasewithincreasingluminosityover12XMM/NuSTAR/Suzaku observationsfrom2001-2014.Windvelocityincreaseswithionizingluminosity(asLX1/4)MaybeexplainedintermsofradiativedrivingintheEddingtonlimitedregime.

    CentroidsofFeKabsorption Windvelocityvsluminosity

    L

  • Signaturesoffast(0.15c)“BAL”likeprofilesinsoftX-rayswithXMM-Newton/RGS.Velocitywidthsσ≈10000km/s.

    BroadSoftX-rayAbsorptionProfilesinPDS456(Reevesetal.2016,ApJ)

    OBSB

    OBSE

  • SoftX-rayabsorbinggasthelikelysignatureofaninhomogeneouswind,partiallyobscuringtheAGN.Velocitiesofupto0.2c.AbsorptionprimarilyduetohighlyionizedFe(FeXX-XXIV)aswellasNeIX/X

    BroadSoftX-rayAbsorptionLines−4

    −20

    24

    OBS CD

    ABS2

    ABS1

    −4−2

    02

    4

    OBS EEMIS

    1

    ABS1

    ABS2

    0.8 1 1.2 1.4

    −50

    Rest Energy (keV)

    2001

    AB

    S1

    −4−2

    02

    4

    OBS B

    RGS$

    0.9

    11.

    1ra

    tio

    XMM, OBS B.

    ABS1

    ABS2

    0.9

    11.

    1ra

    tio

    XMM, OBS CD.

    ABS1

    ABS2

    0.9

    11.

    1ra

    tio

    XMM, OBS E.

    ABS1

    ABS2

    EMIS

    1

    0.8 1 1.2 1.4 1.6 1.8

    0.8

    0.9

    11.

    11.

    2

    ratio

    Rest Energy (keV)

    XMM, 2001

    ABS1

    ABS2

    MOS$

  • TheUVconnection– isPDS456aBALQSO?

    1400 1500 1600 1700 1800Observed wavelength (Å)

    1

    2

    3

    4

    5

    Flux

    dens

    ity(e

    rgs�

    1cm

    �2

    �1 )

    ⇥10�

    Figure 2: Comparison between the two HST observations ofPDS 456. The red one was taken in May 2000 with STIS, the blueone in April 2014 with COS. There is a remarkable flux variabilityover this decade. Notably, in the lower state the broad Ly↵ absorp-tion trough looks much shallower. The behavior of the optical/UVflux is therefore fundamental to understand the properties and fate ofthe SMBH X-ray wind at larger scales.

    through the UVOT data.At the same time, these observations will allow us toderive a preliminary slope for the power spectral densityof PDS 456. Together with the already available Swiftand XMM–Newton data, the coverage in frequency spacecould be enough to test for a broken power law shape.The break energy is known to correlate with the SMBHmass (McHardy et al. 2006, Nature, 444, 730), nomeasure of which is available for PDS 456 to date.

    3. Justification of Requested Observing Time, Feasi-bility, and Visibility

    The simultaneous monitoring of optical/UV and X-rayfluxes is fundamental to understand the relation betweenthe accretion disk and the X-ray corona in AGN, andSwift is unrivalled to perform this kind of study. Therecent Suzaku and XMM–Newton/NuSTAR programshave proven that one week is the typical timescale todetect significant spectral changes. On top of that, all thehistorical X-ray light curves of PDS 456 exhibit plenty ofsharp flares, during which the flux increases by factors of⇠3–5 in about a day. These flares have an undoubtedlyintrinsic origin (Matzeu et al. 2015, submitted). Bythe light-crossing time argument, the steep flux riseobserved in a flare poses stringent constraints on thesize of the X-ray corona, which should not exceed a fewtens of gravitational radii. Since the absorption-induced

    Figure 3: In spite of the very different range of flux variability ob-served over weeks/months in the optical/UV and X-ray bands (⇠10%against 600%), the emission from the accretion disk and from theX-ray corona in PDS 456 are clearly related. Even the most ex-treme X-ray states are consistent with the optical/UV emission oncecorrected for absorption, returning the correct accretion rate (⇠0.8)expected for this source. The combined data sets are from XMM–Newton/OM (blue, August 2013), Suzaku (black, March 2013) andNuSTAR (red, February 2014) observations, fitted with the energeti-cally self-consistent optxagn model by Done et al. (2012).

    and intrinsic variations occur with clearly differenttimescales, the best approach to disentangle the twoeffects is to combine short- and long-term monitoringinto a single campaign.During cycle 12, PDS 456 is not visible for Sun con-straints from October 28, 2016 to January 28, 2017.This leaves a continuous visibility window of morethan 6 months from April 2016. We then request toperform the proposed monitoring during this period, fora total span of 26 weeks. We request a 2-ks snapshotevery week with (reasonably) exact spacing, plus a moreintense sampling over two consecutive weeks with twoadditional pointings (separated by 2 or 3 days) in orderto better explore the frequent short-term flares. As theflares are almost ubiquitous, there is a large chance offinding at least one of them with 7 visits over any periodof 14 days, which can be chosen freely according tothe mission schedule. In summary, the campaign willconsist of 30 observations (26 plus 4) of 2-ks exposureeach. Moon constraints are fully compatible with thesuggested monitoring strategy.Considering the average flux state of PDS 456, weexpected at least 400 counts per observation in the X-rayspectrum, which are enough to determine with goodaccuracy the spectral slope and reveal the presence

    3

    C IV!

    Lyα / N V Lyα absn!

    ×10-13!

    HST/STIS2000HST/COS2014

    VerybroadUVemissionprofiles,e.g.Lyα/CIV12000-15000km/s.Highlyblueshifted,CIV=5000km/s.Broadabsorptiontroughbluewards ofLyalpha orhighlyblueshifted CIV?

  • TheXMM-NewtonLargeProgramme onPG1211+143(Lobban etal.2015,2016;Poundsetal.2016a,b)

    PG1211+143,luminous(Lbol~1046 erg/s),nearby,narrow-linedtypeIquasar(z=0.0809),theinitialproto-typeexampleofanultrafastoutflow(Poundsetal.2003).

    7SequenceswithXMM-NewtoninJune/July2014.Totalexposure~630ks.Notelowestfluxduringrev2659withXMM-Newton.

  • UltraFastFeKOutflowinTheQuasarPG1211+143

    600ks observation of PG 1211 from XMM/2014 campaign.

    Spectrum shows a wealth of high ionization absorption lines from Fe XXV and Fe XXVI.

    The line profiles are fitted with a disk wind model (Sim et al. 2008, 2010), with two streamlines at different radii/velocities

    Wind launch radius of Rmin=64RGand 250RG

    Resultant wind terminal velocities of v=0.07c and 0.14c (consistent with analysis in Pounds et al. 2016).

    10−3

    1.5×10−3

    2×10−3

    Flux

    (keV

    cm

    −2 s

    −1 ) | | | | | |

    PG 1211+143, XMM 2014

    4 5 6 7 8 90.80.9

    11.11.2

    ratio

    Observed Energy (keV)

    Overallwindparametersin2014:-MassoutflowrateMout/MEdd =0.72±0.13IonizationLX/LEdd =3%,inclination=57°.

    Disk wind model

  • 10 15 20 25

    0.8

    11.

    21.

    4ra

    tio

    Rest Wavelength (Å)

    Ne IX−XFe XIX−XXI

    Fe UTA O VIII O VII N VII

    | | | | | | |

    IsthereevidenceforthefastoutflowinthesoftX-rayspectrumofPG1211?MeanRGSspectrum(June2014,600ksexposure)

    Blue-shiftedabsorptionprofilesrevealedindeepRGSexposureofPG1211+143,e.g.fromN,O,Ne,Fe.Systematicvelocityshiftof0.06-0.07c.NotepositionoflowionizationUTAcomponentandstrongemission(OVII/OVIII).

  • 8 10 12 14 16 18

    0.8

    0.9

    11.

    1

    ratio

    Rest Wavelength (Å)

    PG 1211+143 (z=0.0809)

    ComparisonbetweenXMM-Newton(RGS)spectraoftheQSOsPG1211+143(z=0.0809)vsMR2251-178(z=0.064)

    FastWind(0.062c)

    NeX NeIX FeUTA

  • SlowWind(

  • 18 20 22 24 26

    0.8

    11.

    2

    ratio

    Rest Wavelength (Å)

    PG 1211+143 (z=0.081)

    Softbandcomparison– notealsothepresenceofbroadsoftX-rayemissionlines(e.g.OVIIandOVIII)inadditiontotheblueshifted absorption.

    OVIIOVIII NVII

  • 18 20 22 24 26

    0.8

    11.

    21.

    4

    ratio

    Rest Wavelength (Å)

    MR 2251−178 (z=0.064)

    OVIII OVII NVII

  • RapidVariabilityofUltraFastOutflowinPG1211+143

    10.5 2 5

    10−3

    2×10

    −3

    νFν F

    lux

    (keV

    cm

    −2 s

    −1)

    Energy (keV)

    rev 2659rev 2661rev 2663rev 2664

    Lowfluxspectruminrev2659.Sourcethenprogressivelybrightens.

    SoftX-rayabsorptionisrapidlyvariable(within2orbits),decreasingwithincreasingflux.

    PG1211undergoesabsorptioneventduringrev2659,increasinginlowerionizationabsorption.

    SoftX-rayabsorbernotaconventionalwarmabsorber.Fast(0.07c)andrapidlyvariableontimescalesof<1week.Impliesabsorberiscompact,onscalesof10sRs,likelypartofclumpydiskwind.

  • 10 15 20 25

    0.5

    11.

    5ra

    tio

    Rest Wavelength (Å)

    REV 2652

    Ne IX/X Fe UTA O VIIO VIII N VII

    VariabilityofPG1211windseeninRGSspectrum

  • VariabilityofPG1211windseeninRGSspectrum

    10 15 20 25

    0.5

    11.

    5ra

    tio

    Rest Wavelength (Å)

    REV 2659

    Ne IX/X Fe UTA O VIIO VIII N VII

  • VariabilityofPG1211windseeninRGSspectrum

    10 15 20 25

    0.5

    11.

    5ra

    tio

    Rest Wavelength (Å)

    REV 2661

    Ne IX/X Fe UTA O VIIO VIII N VII

  • VariabilityofPG1211windseeninRGSspectrum

    10 15 20 25

    0.5

    11.

    5ra

    tio

    Rest Wavelength (Å)

    REV 2663

    Ne IX/X Fe UTA O VIIO VIII N VII

  • VariabilityofPG1211windseeninRGSspectrum

    10 15 20 25

    0.5

    11.

    5ra

    tio

    Rest Wavelength (Å)

    REV 2664

    Ne IX/X Fe UTA O VIIO VIII N VII

  • VariabilityofPG1211windseeninRGSspectrum

    10 15 20 25

    0.5

    11.

    5ra

    tio

    Rest Wavelength (Å)

    REV 2666

    Ne IX/X Fe UTA O VIIO VIII N VII

  • VariabilityofPG1211windseeninRGSspectrum

    10 15 20 25

    0.5

    11.

    5ra

    tio

    Rest Wavelength (Å)

    REV 2670

    Ne IX/X Fe UTA O VIIO VIII N VII

  • VariabilityofSoftX-rayWindZonesinPG1211vsXMMorbit.

    2652

    2659

    26612663/64 2666

    2670

  • AbsorberrapidlyrespondstothelevelofthesoftX-rayexcessbelow2keV ontimescalesof~2XMMorbits(about300ks).Opacityisinverselyproportionaltothecontinuum.Windisclumpyandmulti-phase,lowestionizationphaseismostcompact(△R~1014 cm)onscalesofR~1017cm.

  • TheWindStructure

    101610171018 102 103 104

    R(cm) R(Rg)

    Innermosthighlyionizedwind launchedfromwithin100Rg (1016 cm)ofblackhole– ultrafastironKabsorption(0.3c).InhomogeneoussoftX-rayabsorberR≈1017-1018 cm,ne≈107-108 cm-3,withthicknessΔR≈1015 cm.Fillingfactorf≈10-3.UVBLRemission (absorption)profilesR≈1018 cm– highvelocityCIVinUV.

  • Discussion

    Whatisthestatisticaloccurrenceoftheoutflows.Istheirstillanydoubtabouttheirdetectionandorigins?

    Howcanwemeasureaccuratelytheenergeticsofthewindsandaretheylikelytobesignificantforfeedback?

    WhatistheevidencefortheultrafastoutflowsasidefromatironK?

    Whatisthedrivingmechanismforthediskwind?Radiation,Magneticdrivingorboth?Whatistheroleoftheclumpygas,isitneededtoacceleratethegas?

    Future- Whatistheoccurrenceofthewindsamongstthehigherluminosity(orhigherredshift)QSOs.