wrap-up myungchul kim [email protected]. ch 5. mac in wmns myungchul kim [email protected]

37
Wrap-up Myungchul Kim [email protected]

Upload: louise-wilson

Post on 18-Jan-2016

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

Wrap-up

Myungchul Kim

[email protected]

Page 2: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

Ch 5. MAC in WMNs

Myungchul Kim

[email protected]

Page 3: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

• IEEE 802.11 DCF protocol

Conventional wireless MAC protocols

Page 4: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

• IEEE 802.11e MAC protocol– Define the channel access functions and the traffic specification

(TSPEC) management

– Channel access function : hybrid coordination function (HCF)

• A contention-based protocol called enhanced distributed channel access (EDCA)

• A polling mechanism called HCF controlled channel access (HCCA): central control

Conventional wireless MAC protocols

Page 5: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

• IEEE 802.11e MAC protocol– EDCA: enhance the original DCF by providing prioritized

medium access based on different traffic classes, access categories (ACs)

– TXOP: a bounded time interval in which a node is allowed to transmit a series of frames.

Conventional wireless MAC protocols

Page 6: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

• IEEE 802.11e MAC protocol

Conventional wireless MAC protocols

Page 7: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

• IEEE 802.11e MAC protocol

Conventional wireless MAC protocols

Page 8: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

• Common channel framework (optional)– Simultaneous transmissions on multiple channels

– Request-to-switch (RTX) and clear-to-switch (CTX)

Advanced MAC features proposed by the 802.11 TDs group

Page 9: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

Ch 6. Security in WMNs

Myungchul Kim

[email protected]

Page 10: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

– Generic security services

Security technology overview

Page 11: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

Performance of VoIP in a 802.11 Wireless Mesh Networks

by D. Niculescu, S. Ganguly, K. Kim and R. Izmailov Infocom 2006

Myungchul Kim

[email protected]

Page 12: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

12

• Fig 1

• With 2Mbps link speed, 8 calls in single hop to one call after 5 hops due to the following:– Decrease in the UDP throughput because of self interference

– Packet loss over multiple hops

– High protocol overhead for small VoIP packets

Page 13: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

13

• Aggregation– 802.11 networks incur a high overhead to transfer one packet

– For a 20 byte VoIP payload (43.6 microsec at 11 Mbps)

• RTP/UDP/IP 12+8+20 = 40 bytes

• MAC header + ACK = 38 bytes

• MAC/PHY procedure overhead = 754 microsec– DIFS(50microsec), SIFS(10microsec)

– Preamble + PLCP(192microsec) for data and ACK

– Contention (approx 310microsec)

• 800 microsec at 11 Mbps -> 1250 packets per sec -> G.729a: 12 calls (2Mbps -> 8 calls)

• Throughput: T(x) = 8x / (754 + (78 + x) 8/B)) where x is the payload size in bytes and B is the raw bandwidth of the channel

Page 14: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

14

– Reducing the overhead

• Aggregation (Fig 12) -> increase packet delay

• Header compression– Fig 12

Page 15: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

Toward an Improvement of H.264 Video Transmission over IEEE 802.11e through a

Cross-Layer Architectureby A. Ksentini, M. Naimi, and A. Gueroui

IEEE Communications Mag. Jan. 2006

Myungchul Kim

[email protected]

Page 16: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

16

The proposed cross-layer architecture

• Table 1. 802.11 MAC parameters

Page 17: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

17

The proposed cross-layer architecture

• Figure 1

Page 18: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

18

Simulation and results

• Result analysis– Fig 2 IDR loss rate

Page 19: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

19

Simulation and results

• Result analysis– Fig 4 Partition B loss rate

Page 20: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

20

Simulation and results

• Result analysis– Fig 5 Partition C loss rate

Page 21: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

21

Simulation and results

• Result analysis (final decoded frame #76)– Dropped frames: DCF(87), EDCA(41) out of 250 frames

– Fig 8 a) DCF, b) EDCA, c) QoS architecture

Page 22: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

Link Layer Assisted Mobility Support Using SIP for Real-time Multimedia

Communications

October 1, 2004

Wooseong Kim, Myungchul Kim, Kyounghee Lee

Information and Communications Univ.{wskim, mckim, leekhe}@icu.ac.kr

Chansu Yu

Cleveland State [email protected]

Ben Lee

Oregon State [email protected]

Page 23: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

Mobiwac 04 23

Problem Definition

Handoff delay of SIP mid-call mobility [12]– Handoff Delay = Tn (n=0 to 5)– Link layer handoff delay (T0)– Movement Detection (T1)– DHCP transaction (T2)– Configuration time (T3)– re-INVITE (T4)– RTT/2 (T5)– DHCP [2]: T2 > 1 sec, – DRCP [8]: T2 = 100 ~ 180 ms [7,10] – Total handoff delay of SIP mid-call mobility is not

adoptable to real-time applications

DHCPMN CN

Ha

nd

off D

ela

y

L2 HandoffStart

L2 HandoffFinish

RTP session disconnect

T0

T5

T4

T3

T2

T1

< SIP Mobility Handoff Flow >

Page 24: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

Mobiwac 04 24

Proposed scheme: PAR-SIP (cont’d)

Handoff delay of PAR-SIP mid-call mobility

• PAR-SIP handoff delay

= Tn ( n=0,1,3,5) < SIP handoff delay• DHCP transaction time(T2) and SIP re-INVITE

procedure time (T4) are removed • Movement detection time (T1) is diminished• T0,T3 and T5 is same as SIP terminal mobility

L2 HandoffStart

L2 HandoffFinish

RTP sessionAddressReserve

Address Reply

Pre RE-INVITE

200 OK

cBS nBSMN1 MN2

Handoff D

elay

RTP packets

RTP packets

CellPredictionThreshold

DiscoveryOffer

Request

ACK

RTP session disconnect

T0

T3

T1

T5

< PAR-SIP Mobility handoff flow >

Page 25: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

Mobiwac 04 25

Experiments (cont’d)

Handoff Delay of Conventional SIP Mobility – SIP_Handoff_Delay = Tn ( n=0 to 5) = 50 ms +5 ms + 1.35 sec + 10 ms + 10 ms +

RTT/2 1.4 s.

– Both nodes can not receive packets for 1.5 seconds. Rx delay of a MN is a little longer than that of a CN due to re-INVITE delay

< MN transmission rate during Handoff > < CN transmission rate during Handoff >

0

5

10

15

20

25

30

0 1 2 3 4

second

kbps

SIP_MN_RX

SIP_MN_TX

0

5

10

15

20

0 0.5 1 1.5 2second

kbps

SIP_CN_RXSIP_CN_TX

Page 26: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

Mobiwac 04 26

Experiments (cont’d)

Handoff Delay of PAR-SIP Mobility – PAR-SIP_Handoff_Delay = Tn ( n=0,1,3,5) = T0+T1+T3+T5 = 50 ms +1 ms + 7 ms

+ RTT/2 60ms.

– A MN transmission rate is a little shorter than a CN because a CN keeps bi-casting for a MN during handoff

< MN transmission rate during Handoff >

< CN transmission rate during Handoff >

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6second

kbps

PARSIP_MN_RX

PARSIP_MN_TX

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6

second

kbps

PARSIP_CN_RX

PARSIP_CN_TX

Page 27: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

Mobiwac 04 27

Experiments (cont’d)

Average transmission rate variation during handoff• PAR-SIP Mobility shows better transmission rate due to handoff than existing SIP mobility while receiving

2500 packets.• PAR-SIP only drops by 2 kbps during handoff

< Average transmission rate during handoff >

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500

packets

kbps

PARSIP_MN_RXSIP_MN_RX

Page 28: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

Mobiwac 04 28

Experiments (cont’d)

Packet loss• Low latency handoff and bi-casting can reduce the number of lost packets• Packet loss of PAR-SIP mobility using all kinds of codecs shows about 1% of total packets comparing to 5%

in conventional SIP mobility (handoff :4 times/sec)

< Packet loss rate Comparison>

0

1

2

3

4

5

6

7

GSM LPC10 MULAW ALAW SPEEX

codec

rate

(%)

PARSIP_MN_RX PARSIP_CN_RX

SIP_CN_RX SIP_MN_RX

Page 29: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

The Symbiosis of Cognitive Radio and WMNs

from “Guide to WMNs” by Sudip Misra and et al, 2009

Myungchul Kim

[email protected]

Page 30: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

• Spectrum usage

– new spectrum increasingly scarce

– Spectrum is vastly under-used: 5.2% usage

• Change

– “command and control” approach to spectrum regulation

Background

Page 31: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

• Static core topology– For CR, the fixed network changes the problem of

collecting awareness of the network’s surroundings

• Spectrum information collection– The WMN presents a distributed infrastructure to collect

spectrum data at a large number of locations

– CR devices act as sensors to gauge interference levels

• Traffic awareness– Fairly easy to obtain from the gateway

Directions for future research

Page 32: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

• Data distribution and decision making– Within the mesh itself

• Spectrum monitoring and policing– Primary spectrum rights should be protected

– The WMN may be able to collaborate to detect users and determine the location of illegal transmissions

Directions for future research

Page 33: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

Construction and Evaluation of a WMN Testbed

from “Guide to WMNs” by Sudip Misra and et al, 2009

Myungchul Kim

[email protected]

Page 34: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

• OLSR– Link-state routing protocol

– MPR

• Methodology

Performance evaluation

Page 35: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

• Measurement discussion

Performance evaluation

Page 36: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

• Measurement discussion

Performance evaluation

Page 37: Wrap-up Myungchul Kim mckim@cs.kaist.ac.kr. Ch 5. MAC in WMNs Myungchul Kim mckim@cs.kaist.ac.kr

• Existing testbeds

Related work