willem kegel & jan groenewoldstatic.sif.it/sif/resources/public/files/va2015/kegel_iv.pdfbulk...

31
Colloids as nucleons Finite-size equilibrium structures <-> macroscopic phase separation Equilibrium clusters & periodic structures in systems with long-range repulsion and short-range attraction Willem Kegel & Jan Groenewold Van ā€˜t Hoff Laboratory Utrecht University The Netherlands

Upload: others

Post on 15-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Colloids as nucleons

Finite-size equilibrium structures <-> macroscopic phase separation Equilibrium clusters & periodic structures in systems with long-range repulsion and short-range attraction

Willem Kegel & Jan Groenewold

Van ā€˜t Hoff Laboratory

Utrecht University The Netherlands

Page 2: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Finite size ā€“micro- versus macroscopic phase separation

Free energy of dispersed matter in capillary approximation:

0F F S

Bulk Surface

Minimize F by minimizing surface area S macroscopic phase separation

ā€˜Microā€™ phase separation: internal constraints Micelles, microemulsions, vesicles, diblock copolymersā€¦

Amphiphilic building blocks

Page 3: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

ā€¦virus capsids ~ ā€˜coatsā€™ of viruses 30 nm

few nm

(Un)coating regulated by: * Hydrophobic interactions between apolar patches on protein surface ā€¢Screened-Coulomb interactions

[WKK & P. vd Schoot, BPJ 2004; 2006]

Page 4: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Patchy ā€˜colloidal moleculesā€™ [DJ Kraft ea, PNAS 2012] (with Ran Ni, Frank Smallenburg, Marjolein Dijkstra)

Page 5: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Atomic nuclei ā€“ internal constraint = long-range Coulomb repulsion

Page 6: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Outline

ā€¢ Weakly charged colloids, low screening: colloids as

nucleons (High screening has been done: DLVO)

ā€¢ Cluster phases in colloids & proteins ā€“ controversies

ā€¢ Strong attraction : non-equilibrium clusters

ā€¢ Higher densities ā€“ link with dense nuclear matter

Page 7: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Colloids & nucleons

[J. Groenewold & WKK. J. Phys. Chem. B 105, 11702 (2001); J. Phys.: Condens. Matter 16 S4877 (2004) ]

Colloidal cluster Atom nucleus

Short-range attraction +

long-range repulsion

Van der Waals / Strong nuclear force depletion (Screened) Coulomb Coulomb

Page 8: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Mass formula (nuclei of atomic number A, nuclear charge Z):

2

1/3 2 4/32/ 1vol sym surf Coul

ZF A a a a A a Z A

A

Nucleus charge vs mass

0,3

0,4

0,5

0,6

0 100 200 300 400

AZ

/A

Binding energy / nucleon

-10

-8

-6

-4

0 50 100 150 200

A

E/A

Me

V

56Fe

(neglect pairing term)

electron capture: p + e- n + Ī½

~ A+2/3

Page 9: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Colloidal equivalent:

Attractive potential of mean force by (e.g.,) depletion of polymers Quiz: equiv of charge generating term?

Charged colloids in solvents with small dielectric constant: long-range repulsion (long screening length)

0 2 4 6 8 10

0

u(r)

r/d

Ionic dissociation at low dielectric constants: dissociation energy kTĪ»B/b ā€“ ionization due to increased translational entropy of counter ions.

bond length ā€œion captureā€: C(n+1)+ + i- Cn+ Bjerrum length

/2

0 3

B be

rb

Free energy density of spherical colloidal cluster of radius R:

1 2 2

0 0

43 2 ln( / ) 1

5Bf f R R

Charges/ volume Surface tension Entropy

(ions + combinatorial)

Page 10: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Intermezzo: site-binding model

Ions can be bound to colloid surface with energy

2

0

/

4

B

B

b

e

kT

or translate freely in bulk

*Free energy

max( )

/max

max

3

ln ln

!

!( )!

!

B

ads bulk

Z Zb

ads

Z

bulk Z

F Q Q Q

ZQ e

Z Z Z

VQ

Z b

2

max / 4

colloid

Z r

nv

V

/

2

0 3

B be

rb

02 ln( / ) 1cluster

Ff

V

*Minimum Ļ * (without Coulomb term) r ā‰” colloid radius

Take Z<<Zmax

Page 11: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Expand around Ļ0:

ā€˜Entropicā€™ term ā‰” charge - generating

Similar role as symmetry term in mass formula:

2

0 0 0

0

12 ln( / ) 1 2 ( )

Now cluster free energy isomorphic to ā€˜mass formulaā€™ !

Page 12: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Map cluster free energy onto mass formula. Result:

34 /3A R v3

04 / 3Z R v

0 02vola f v v 2/34.84surfa v

0syma kT v

2 5/3

00.48Coul Ba kT v

Numbers comparable for: ~1 Ī¼m 10 and sufficient charge density

ā€¦experimentally observed? First indications: Segre ea, PRL 86, 6042, (2001)

colloids in solvent

Page 13: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

[Segre ea, PRL 86, 6042, (2001)]

Page 14: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

[Sedgwick ea , J. Phys.: Condens. Matt. 16, S4913, (2004) Stradner ea Nature 432, 492, (2004)]

Model prediction: optimum cluster radius 3

*R

[M. van Schooneveld ea JPCB 2009]

3

*.#Aggr R

[Stradner ea Nature 432, 492, (2004)] Other cluster shapes see, e.g, S. Mossa ea, Langmuir 2004

Page 15: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Origin of attraction: depletion interaction

Overlap volume

Volume inaccessible to

depletant com Depletant

Pairwise:

3

34 3 11

3 4 16p

r rU kT

gR r (Asakura-Oosawa (AO) potential)

r

rg

Page 16: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Why 3

*R

Quiz:

?

Page 17: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Why 3

*R

/2

0 3

B be

rb

?

Minimize free energy density - result

As long as Ļ ā‰ˆ Ļ0, and

3

* 2

15

8 B

R

QED

Page 18: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Stable clusters also observed in aqueous protein solutions (without added salt)

[Stradner ea Nature 432, 492, (2004)]

3

*.#Aggr R

Numbers (small R, large Īµ) make sense Cluster size cannot (much) exceed Debye length

Page 19: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

[PNAS 105, 5075, (2008)]

In case of clusters: expect constant peak with lysozyme concentration

ā€¦but ā€˜critical cluster concentrationā€™ ā‰ˆ 200 g/l !

Controversy

Page 20: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Evidence for equilibium protein clusters in vivo: [KP Johnston ea ACSNano 2012]

Cluster size >> Debye length -> expect unstable to further growth ā€¦ but clusters hardly contain water -> low local dielectric constant, ionic strength. Low screening.

Page 21: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

3

* 2

15

8 B

R

/2

0 3

B be

rb

24 r

3

*R predict

Cluster size versus attraction strength Īµ

... Opposite trend [Zhang ea Soft Matter2012]

Page 22: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Explain trend by classical nucleation theory:

Cluster formation free energy (out of colloidal gas state)

Page 23: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Result

Nucleation rate

J (Īµ = -8.8 kT) ~ 104 J (Īµ = -5.5 kT)

Initially more & smaller clusters with more attraction

Page 24: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Large nuclear densities: neutron star interiors Several scenarios; first attempt: [Baym, Bethe & Pethick, Nucl. Phys. A175, 225, (1971)]

Core: Density 1014 gcm-3

How far can we push the analogy with nuclear matter?

Page 25: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Nuclear matter at high density : several predictions, e.g.,

ā€œSpaghettiā€ ā€œLasagnaā€ ā€œanti ā€“ spaghettiā€

[Watanabe, Sato, Yasuoka, Ebisuzaki, Phys. Rev. C66, 012801, (2002); 68, 035806, (2003)]

Page 26: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Periodic structures in MD simulation of MONODISPERSE ā€˜colloidalā€™ system

Model potential

[A. De Candia ea, PRE 74, 010403(R), (2006)]

ā€˜disorderedā€™

columnar lamellar

Page 27: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Experiments at higher colloid volume fractions : gelation. Force gel into columnar ā€“ like state by E-field and see what happens [Zhang ea, Soft Matter 2015 ]

After preparation: gel Field on : columnar

Field off ā€“ after 4 days

Field off ā€“ after 7 days

MD simulations of polydisperse systems: periodic structures unstable beyond 1% polydispersity [Zhang ea, Soft Matter 2015 ]

Page 28: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Conclusions and further work

Improve theory:

ā€¢ beyond spherical clusters ā€¢ inhomogeneous charge distributions ā€¢ interactions between clusters ā€¢ allow for dielectric constant variation

ā€¢ Clusters are stable (colloidal) state of matter under conditions of long range repulsion (relative to the size of a colloid) and short-range attraction

ā€¢ Non-equilibrium clusters appear at strong attractions

ā€¢ At high colloid concentrations, colloidal gel is the stable state

Page 29: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Thank You!

Page 30: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Controversies related to equilibrium protein clusters

ā€¢1 Zero-Q peak: Long-range attraction in protein solutions

[Y. Liu, E. Fratini, P. Baglioni, R-R Chen, S.H. Chen, PRL 95, 118102, (2005)]

Page 31: Willem Kegel & Jan Groenewoldstatic.sif.it/SIF/resources/public/files/va2015/Kegel_IV.pdfBulk Surface Minimize F phaseby minimizing surface area S ... Free energy density of spherical

Zero Q peak appears several days after sample preparation,

related to impurities

[A. Stradner, F. Cardinaux, P. Schurtenberger, PRL 96, 219801, (2006)]