will reliability limit moore’s law? · 2017. 11. 29. · 1e-12 1e-11 n10 pure cu n10 cual doping...

42
© 2011 TSMC, Ltd 1 Will Reliability Limit Moore’s Law? Tony Oates, TSMC

Upload: others

Post on 27-Jan-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

  • © 2011 TSMC, Ltd

    1

    Will Reliability Limit Moore’s Law?

    Tony Oates, TSMC

  • © 2011 TSMC, Ltd

    2

    Outline

    Trends Interconnect Transistors Soft Errors in Memory and Logic Conclusions

  • © 2011 TSMC, Ltd

    3

    Market Growth

    0

    500

    1,000

    1,500

    2,000

    2,500

    1980 1985 1990 1995 2000 2005 2010 2015

    Elec

    tron

    ic E

    quip

    men

    t Rev

    enue

    ($B

    )

    1st Wave: Desktop PC

    2nd Wave: Mobile Phone

    3rd Wave: Mobile Computing

  • © 2011 TSMC, Ltd

    4

    ?W, “2D”

    ~7B Logic transistors 20B vias, 20Km metal

    System Integration and Scaling in 3D

    200x to match brain 2nm node or +7 generations (>15years) Next 10 years: reasonably clear to ~5nm Many new innovations are possible beyond 10 years

    Si-based 3D green CMOS + Si wafer-based 3D Chip Stacking Faster, smaller/thinner, lighter, lower power, and higher system

    value = Si-Based System Scaling

    ~20W, “3D”

    ~100B Neural Cells (~1T Transistors)

    Human Brain

    vs.

    Thousands of Cores 28nm HKMG

    “3D + 3D” Si-Based Green System Scaling

    3D CMOS (FinFET, ..)

    TSV/3D-Stacking

    vs.

  • © 2011 TSMC, Ltd

    5

    Moore’s Law: Innovation Based IC Scaling

    Edelstein 2007

  • © 2011 TSMC, Ltd

    6

    Reliability Improvement Has Enabled IC Progress

    But will reliability limit the pace of future progress?

    Bohr, 2009

  • © 2011 TSMC, Ltd

    7

    Shrinking Reliability Margins Fa

    ilure

    Rat

    e

    EM, TDDB, BTI, HCI etc.. SER Defects

  • © 2011 TSMC, Ltd

    8

    Interconnect Requirements

    • RC reduction

    Interconnects dominate system delay

    • Jmax Increase

    8 12 16 20 24 28 32 36 40 440.0

    0.5

    1.0

    1.5

    2.0

    2.5

    ITRS 2010

    Jmax

    (MA/

    cm2 )

    @ 1

    10 C

    Technology Node (nm)

  • © 2011 TSMC, Ltd

    9

    Porous Low-k Dielectrics

    Pores reduce breakdown path length

    Cu

    Cap

    SiOC

    1 2 3 4 5 6 7

    K=2.0(P~40%)

    K=2.5(P~25%)

    K=2.9(Porosity~15%)

    T=125C

    TDDB

    Life

    time

    E-Field (MV/cm)

    Rapid reduction of reliability with increasing porosity

  • © 2011 TSMC, Ltd

    10

    Porous Low-k Reliability Scaling

    10

    Lee IRPS 2011

    k reduction is limited by reliability

    Independent of voltage acceleration model

    0 10 20 30 40 50 60

    K=3.9

    E= 4 MV/cm, T=125C

    Model

    2.02.32.52.82.9

    Media

    n Tim

    e to F

    ail (t 6

    3%)

    Porosity (%)

    Percolation Theory

  • © 2011 TSMC, Ltd

    11

    Solutions for Low-k Scaling

    0 10 20 30 40 50 60 70

    Model of control porcess increase to by ~10X increase BD path length by ~30% SiO2 Air Gap data Porous SiOC Air Gap data

    K=3.9

    E= 4 MV/cm,T=125C

    Model EeaLtt γβ −

    =1

    00 )(

    2.02.32.52.83.0M

    edia

    n Ti

    me

    to F

    ail (

    t 63%)

    Porosity (%)

    Air Gap / non-porous materials

  • © 2011 TSMC, Ltd

    12

    Low-k TDDB – Variability Interaction

    0.1%

    1%

    10%

    99%

    63%

    Failure Time

    LER, Via Overlay

    LER and via overlay sources of variability are aggravated by scaling

  • © 2011 TSMC, Ltd

    13

    LER Variability: Minimal Impact at Use Voltage

    0.85 0.90 0.95 1.00 1.05 1.10 1.15

    LER σ = 3%s0, β=3, N=10000, E=0.5 MV/cm

    t = t0N(s)-1/βe-γV/s

    Failu

    re T

    ime

    Normalized dielectric thickness

    0.85 0.90 0.95 1.00 1.05 1.10 1.15

    LER σ = 3%s0, β=3, N=10000, E = 6 MV/cm

    t = t0N(s)-1/βf(V/s)

    f(V/S)= E-model f(V/S)= Sqrt(E) model f(V/S)= 1/E model

    Failu

    re T

    ime

    Normalized dielectric thickness

    sfail = snom

    sfai l= smin

    Accelerated Test

    Circuit Use β=2.68β=1.06β=0.68β=0.49E=0.6 (MV/cm)E=3E=5E=7

    0.1%

    1%

    10%

    99%

    63%

    Time

    LER s = 10% s0

  • © 2011 TSMC, Ltd

    14

    0

    2

    4

    6

    8

    10 Trench mode

    Slit mode

    T5

    0 (a

    .u.)

    Technology node (nm)

    Scaling of Cu Electromigration

    Critical geometry, fast transport limit reliability

    2KwAV

    tds

    cf

    i

    i

    i≈=

    ν

  • © 2011 TSMC, Ltd

    15

    A Paradigm Change

    8 12 16 20 24 28 32 36 40 440.00.51.01.52.02.53.03.54.04.55.05.56.0

    Short length benefit, L

  • © 2011 TSMC, Ltd

    16

    Short – Length Electromigration Scaling

    0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.180

    2

    4

    6

    8

    10

    12

    t 0.1%

    (L) /

    t 0.1

    %(L

    =250

    µm)

    tb/w

    L=5 µm L=10 µm L=250 µm

    10nm 16nm 20nm 28nm

    Short-length reliability reduces fastest! (barrier thickness reduction)

  • © 2011 TSMC, Ltd

    17

    Short and Long Length Failure Times are NOT Independent

    )( ciisivv

    ds

    cf jjA

    wdKLAV

    ti

    ii

    i

    i

    i −≈=

    ν

    So…solutions are independent of length

  • © 2011 TSMC, Ltd

    18

    Electromigration Process Solutions for Continued Jmax Increase

    Liner

    Cap

    Cu/cap interface

    bulk Grain Boundary

    Reduction of grain boundary transport is key

    Metal Caps – interface Cu Alloys – g.b.

  • © 2011 TSMC, Ltd

    19

    1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.71E-201E-191E-181E-171E-161E-151E-141E-131E-121E-11

    N10 Pure Cu N10 CuAl doping N10 CuMn doping N10 Co-cap+Co barrier

    110

    N10 target N7 target N5 target

    350Temperature (oC)

    300275 250 225 200 175 150 125

    V dT/

    j (K

    cm3 /A

    sec

    )

    1000/T (K-1)

    Viability of Cu Process Solutions

    Cu Drift Velocity

    Cu alloys: limited options for 10 nm and below

    10 nm 7 nm 5 nm

    CuAl Cu

    CuMn

    CuCo Goal

  • © 2011 TSMC, Ltd

    20

    Process Variability Impact on Electromigration Failure Times

    Volume=Vc

    Area=As Lv

    dv

    j )( ciis

    ivv

    ds

    cf jjA

    wdKLAV

    ti

    ii

    i

    i

    i −≈=

    ν

    Vc, As, jci are statistically distributed random variables

  • © 2011 TSMC, Ltd

    21

    Impact of Process Variability: Failure when j < jc

    0 1000 2000 3000

    108

    112

    116

    120

    124

    R (o

    hm)

    Time(a.u.)

    ∆R~15Ω j=0.7jc

    0 100 200 300 400 500 600 700 800 900 100015400

    15600

    15800

    16000

    16200

    16400

    L=50 µm, j=0.5 jc

    R (o

    hm)

    Time(a.u.)

    Short length immortality cannot be applied to circuits

    Multi-link N=50

    L=10 µm

  • © 2011 TSMC, Ltd

    22

    Impact of Process Variation: New Extrapolation Procedures

    Lognormal fitting does not work

    Lognormal fit jc=3.4

  • © 2011 TSMC, Ltd

    23

    Transistor Structure and Materials Trends

    HKMG Planar

    FinFET

    10nm 2015

    16/14nm 2013

    20nm 2012

    7nm 2017

    100X

    Mobility (performance)

    Moore’s Law

    10X

    1X

    3D transistors and new materials on Si substrate

    5nm 2019

    III-V on Si CMOS

    N16 FinFET

    (TSMC, VLSI’04)

    Nanowire FET

  • © 2011 TSMC, Ltd

    24

    Scaling of HK/MG Transistor Degradation Mechanisms

    Linder, DAC, 2013

    SiO2/HfO2

  • © 2011 TSMC, Ltd

    25

    Technology Scaling Impact on NBTI

    2.5 3.0 3.5 4.0 4.5 5.0

    EOT1 > EOT2 > EOT3 > EOT4 > EOT5 > EOT6 > EOT7 > EOT8 > EOT9

    NBTI

    Life

    time

    due

    to ∆

    Vit (

    a.u.

    )

    Electric Field (MV/cm)

    NBTI R-D Model EOT1 EOT4 EOT7 EOT2 EOT5 EOT8 EOT3 EOT6 EOT9

    Interface State Generation

    ( ) ( ) 61

    ox32

    C t3E 2γexpEEOTAΔVt ⋅

    ⋅⋅⋅=

    No additional impact of HK/MG and FinFET transitions

    Franco, IEDM, 2010

    ITRS

  • © 2011 TSMC, Ltd

    26

    SiGe Channel: NBTI Scaling Solution

    0

    0.2

    0.4

    0.6

    0.8

    1

    6 8 10 12 14 16 18 20 22

    Max

    . |V G

    -Vth

    | for

    10Y

    [V]

    Tinv (≈EOT+4Å) [Å]

    Ultra-Thin EOT

    T=125ºC

    MIPS RMG

    SiGe

    Franco et al, TED, 2013

    Si VB

    (Si)GeCB

    SiO2

    HfO2

  • © 2011 TSMC, Ltd

    27

    New Channel Materials Ge PMOS NBTI (SiO2 / HfO2)

    PBTI becomes the dominant degradation mechanism?

    Franco, TED, TDMR 2013

    InAs NMOS PBTI

    Deora, TDMR 2013

    0

    0.4

    0.8

    1.2

    1.6

    6 10 14 18 22 26 30

    Max

    imum

    |VG-V

    th| [

    V]

    Tinv [Å]

    Si baselineSiGe 55%, Tinv1SiGe 55%,Tinv2SiGe 45%, Tinv3SiGe finFETr-Ge (planar)s-Ge (planar & finFET)ITRS Target

    T=125C

    Si

    (Si)Ge

    But gate stack quality is critical

  • © 2011 TSMC, Ltd

    28

    New Gate Stack Materials: SiO2 IL Replacement by High-k IL

    Gate Dielectric TDDB

    Al2O3/HfO2

    SiO2/HfO2

    ITRS

    Sahoo and Oates, TDMR 2013

  • © 2011 TSMC, Ltd

    29

    Circuit Impact of BTI: SRAM

    PMOS (WM)

    NMOS (WM)

    NMOS (RM)

    PMOS (RM)

    (+)0(-)

    (+)

    0

    Vcc,

    min

    Shi

    ft

    ∆Vt

    • Cell design is critical to minimize RM increase

    0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62(-)

    (+)

    0

    RM+WM Mixed

    WM Dominated

    RMDominated

    Vcc,

    min

    Drif

    t Med

    ium

    Val

    ues

    (mV)

    Alpha RatioLin IRPS 2007

    HK/MG

    RM = Read margin WM = Write margin

    PGon

    PUon

    II

    ratio,

    ,=α

  • © 2011 TSMC, Ltd

    30

    Circuit Impact of NBTI: Digital Logic

    0.8 0.9 1.0 1.1 1.20.1

    15

    204060809599

    99.9Data (symbols)T1000 ~ Nil aging

    Simulation (lines)T1000 ~ Nil agingT10yrs ~ 1.65%

    T0 (HTOL-Data) T1000 (HTOL-Data)T0 (HTOL-sim) T1000 (HTOL-sim)T10yrs (0.9V 100C-sim)

    Prob

    abili

    ty %

    Norm. Freq (a.u.)

    ARM11, 40nm

    • Process variation can obscure aging

    Vaidyanathan IRPS 2011

    Vdd=1.4V, 125 oC, 1000 hours

  • © 2011 TSMC, Ltd

    31

    BTI is a Time-Dependent Variability Source

    σ(∆V

    t) (m

    V)

    1/(AGOX)0.5 (um-1)

    GOXAVthEOTKVth )()( ∆∗∗=∆ µσ

    Scaling

  • © 2011 TSMC, Ltd

    32

    BTI Aging and Process Variation: New Definitions of Reliability

    fall-outpoint definedby 3σ or 99.9%probability ofoccurence

    w/o NBTI w/ NBTI

    Prob

    abili

    ty d

    ensi

    ty

    Circuit/Device parameter

    Reliability can be defined in terms of “fall-out” from a process variability window

  • © 2011 TSMC, Ltd

    33

    Variability and Degradation of Circuits

    Reliability “fall-out” improves with scaling

    1 10Pr

    oces

    s va

    riatio

    nIn

    duce

    d 3σ

    Id (a

    .u.)

    NBTI

    ∆Id

    , ∆Fr

    eq (%

    )@

    10yr

    s, V

    dd, 1

    25C

    Tech. node (a.u.) 1 10

    NBTI

    Indu

    ced

    dela

    y fa

    ll-ou

    t @

    10yr

    s (%

    )

    Tech. node (a.u.)

    Ring Osc. Fall-out Variability and NBTI Scaling

    Transistor, DC Transistor, AC Ring Oscillator

    Process Variation

  • © 2011 TSMC, Ltd

    34

    SER Scaling Trends

    100

    1000

    10000

    130nm 90nm 65nm 40nm 28nm

    Technology

    SER

    per

    Meg

    a-D

    evic

    es SRAM FF

    Component trends are favorable - but system trends are not

    0.00001

    0.0001

    0.001

    0.01

    0.1

    1

    0.1 1 10 100MCU Cluster Size (um)

    MC

    U P

    roba

    bilit

    y

    65nm wi DNW45nm wiDNW40nm wiDNW 45nm woDNW 28m wo DNW

    SRAM Multi-bit

    DNW=Deep N Well

    Alpha and Fast Neutrons

  • © 2011 TSMC, Ltd

    35

    Challenges: SER of Combinational Logic

    Above ~1 GHz, logic errors can dominate system SER

    FF

    R-OSC

    Comparator

    TSMC 40 nm Fast Neutrons

  • © 2011 TSMC, Ltd

    36

    Virtual SER Qualification

    Accurate ASIC cell and circuit EDA tools available

    100

    150

    200

    250

    300

    350

    FF A FF B FF C FF D FF E

    Neu

    tron

    SER

    per

    MFF

    s N40G Exp.TFIT Simulation

    IROC TFIT: 40 nm Flip-Flops p

    0.0%

    0.1%

    1.0%

    10.0%

    100.0%

    1 2 3 4 5 6 7+Cell#

    Prob

    abili

    ty

    Exp.Sim.

    (b) p

    0.0%

    0.1%

    1.0%

    10.0%

    100.0%

    1 2 3 4 5 6 7+Cell#

    Prob

    abili

    ty

    Exp.Sim.

    (b)IROC TFIT: SRAM Multi-bits

    Assess logic circuit reliability

  • © 2011 TSMC, Ltd

    37

    Challenge: Thermal Neutrons B10 incorporation in BEOL of advanced nodes

    Negligible < 28 nm

    1

    10

    100

    65nm 40nm 28nm 20nm

    SER

    per

    Cel

    l (A

    .U.)

    ( )

    Symbols: exp. dataLines: model

    Thermal neutron

    Alpha

    SRAM

    1

    10

    100

    65nm 40nm 28nm 20nm

    SER

    per

    Cel

    l (A

    .U.)

    ( )

    Symbols: exp. dataLines: model

    Thermal neutron

    Alpha

    SRAM

    Fang, TDMR 2013

  • © 2011 TSMC, Ltd

    38

    Challenges: Muon SER – A New Issue

    Muons are the most abundant high energy cosmic ray particle

    Sierawski IRPS 2011

    Ibe, IOLTS 2012

  • © 2011 TSMC, Ltd

    39

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    100 300 500 700 900

    Time(s)D

    rain

    Vol

    tage

    (V) LET=5

    LET=10LET=20LET=40

    Some Good News: FinFET SER

    0

    0.2

    0.4

    0.6

    0.8

    1

    100 300 500 700 900Time(ps)

    Drai

    n Vo

    ltage

    (V)

    LET=10LET=20LET=40LET=60

    Unit: MeV-cm2/mg

    Space environment only

    D S

    Ion track Bulk substrate

    G

    STI

    Horizontal Strike

    D S

    Bulk substrate

    G

    STI

    Vertical Strike

    FinFET shows reduced charge collection in the terrestrial environment

  • © 2011 TSMC, Ltd

    40

    FinFET SER

    Fast neutrons dominate

    Charge Collection Simulations

    6T-SRAM SER Trend

    0.1

    1

    10

    100

    1000

    40G 28HP 20SOC 16FF

    FIT/

    Mbi

    t

    AlphaNeutron

  • © 2011 TSMC, Ltd

    41

    SER with III-V Channels

    SRAM FF

    Increased SER (Vdd > 0.5V)

    Liu, TDMR 2013

    Simulations

  • © 2011 TSMC, Ltd

    42

    Conclusions

    Reliability progress/containment has enabled Moore’s law to continue to work its magic

    But clearly, technology scaling is accompanied by a shrinking of reliability margins

    The reliability challenges to be overcome cover the entire spectrum of known issues

    Holistic approaches will ensure that reliability does not limit the pace of technology progression

    Will Reliability Limit Moore’s Law?OutlineMarket GrowthFoliennummer 4Moore’s Law: Innovation Based IC ScalingReliability Improvement Has Enabled IC ProgressFoliennummer 7Interconnect RequirementsPorous Low-k DielectricsFoliennummer 10Solutions for Low-k ScalingLow-k TDDB – Variability InteractionLER Variability: Minimal Impact at Use Voltage Scaling of Cu ElectromigrationFoliennummer 15Short – Length Electromigration ScalingShort and Long Length Failure Times are NOT IndependentElectromigration Process Solutions for Continued Jmax IncreaseFoliennummer 19Process Variability Impact on Electromigration Failure TimesImpact of Process Variability: Failure when j < jcImpact of Process Variation: New Extrapolation ProceduresFoliennummer 23Scaling of HK/MG Transistor Degradation Mechanisms Technology Scaling Impact on NBTISiGe Channel: NBTI Scaling SolutionNew Channel MaterialsNew Gate Stack Materials: SiO2 IL Replacement by High-k ILCircuit Impact of BTI: SRAMCircuit Impact of NBTI: Digital LogicBTI is a Time-Dependent Variability SourceBTI Aging and Process Variation: New Definitions of ReliabilityVariability and Degradation of CircuitsSER Scaling TrendsChallenges: SER of Combinational LogicVirtual SER QualificationChallenge: Thermal NeutronsChallenges: Muon SER – A New IssueSome Good News: FinFET SERFinFET SERSER with III-V ChannelsConclusions

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 200 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages false /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 400 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 600 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /CreateJDFFile false /Description >>> setdistillerparams> setpagedevice