vsper, molecular orbitals, and organic molecules

28
LS50 2015 Lecture 10: VSPER, molecular orbitals, and organic molecules Cassandra Extavour Dpts. OEB & MCB

Upload: duongdien

Post on 08-Jan-2017

227 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: VSPER, Molecular Orbitals, and Organic Molecules

LS50  2015  

Lecture  10:  VSPER,  molecular  orbitals,  and  organic  molecules  

Cassandra  Extavour  Dpts.  OEB  &  MCB  

Page 2: VSPER, Molecular Orbitals, and Organic Molecules

Recap:  what  happened  in  Lecture  09  

You  learned  how  to:    •  Describe  and  explain  some  basic  properJes  of  an  element  

based  on  periodic  trends  •  Figure  out  the  number  of  valence  electrons  for  an  atom  •  Understand  electronegaJvity;  use  this  to  predict  formaJon  of  

compounds  in  general  terms  •  State  the  octet  rule  

–  name  and  define  the  types  of  bonds  that  atoms  can  engage  in  to  saJsfy  it  –  recognize  the  three  major  types  of  violaJons  of  this  rule  

•  Draw  Lewis  dot  structures  of  atoms,  ionic  compounds,  and  covalent  compounds  

Page 3: VSPER, Molecular Orbitals, and Organic Molecules

Learning  goals  for  today  

By  the  end  of  this  lecture,  you  should  be  able  to:    •  Use  VSPER  to  predict  molecular  geometries  •  Understand  and  apply  basic  chemical  nomenclature  to  name  chemical  compounds  •  Use  molecular  orbitals  to  explain  observed  bond  angles  and  magneJc  properJes  of  

compounds  •  Draw  organic  structures  based  on  chemical  formula  •  Understand  different  schemaJc  representaJons  of  organic  compounds  •  Determine  polarity  of  bonds  as  well  as  molecules  •  Define  dipole  moments  and  hydrogen  bonds    •  Name  the  six  most  abundant  elements  found  in  biological  molecules  

Page 4: VSPER, Molecular Orbitals, and Organic Molecules

Resonance  

•  SomeJmes  you  realize  that  there  is  more  than  one  possible  correct  Lewis  dot  structure  –  Resonance:  the  same  atoms  are  linked  to  each  other  but  in  a  different  

bonding  paVern    

–  Structural  isomers:  different  atoms  are  linked  to  each  other    

•  e.g.  O3,  CO32-­‐  

 

Page 5: VSPER, Molecular Orbitals, and Organic Molecules

Resonance  –  one  example  

O O O

O O O

O O OBoth  structures  are  correct!  

Ozone  O3  

•  The  bonding  is  an  “average”  of  these  two  structures:  electrons  are  “delocalized”  between  the  atoms  

•  So  bond  strength  is  (2+1)/2  =  1.5  rather  than  an  integer  

Page 6: VSPER, Molecular Orbitals, and Organic Molecules

Resonance  –  another  example  

What  is  the  bond  strength?  

Carbonate*  CO32-­‐  

*  this  is  an  example  of  a  polyatomic  ion  –  we’ll  talk  about  those  in  a  couple  of  slides  

Page 7: VSPER, Molecular Orbitals, and Organic Molecules

Compound  Nomenclature  •  Ionic  compounds  

–  First  part  of  the  name  =  name  of  the  metal  element  –  Second  part  of  the  name  –  name  of  the  non-­‐metal  element  with  “ide”  suffix  –  For  transiJon  metals,  you  have  to  indicate  the  charge  on  the  metal  ion  since  they  can  have  

more  than  one  charge:  use  roman  numerals  in  parentheses  afer  the  name  of  the  ion  to  do  this  

–  Examples:  what  are  the  names  of  these  compounds?  •  Al2O3  •  FeCl2  •  FeCl3  

•  Covalent  compounds  –  Nonmetal  atoms  can  combine  in  >1  set  of  atomic  raJos  –  To  prevent  ambiguity,  use  greek  prefixes  to  indicate  the  number  of  atoms  of  each  element  in  

the  compound  •  mono,  di,  tria,  tetra,  penta,  hexa,  hepta,  octa  •  if  there  is  no  prefix,  mono  is  assumed  

–  Examples:  what  are  the  names  of  these  compounds?  •  NO  •  NO2  •  N2S3  •  PS5  

 

Page 8: VSPER, Molecular Orbitals, and Organic Molecules

Compound  Nomenclature  Polyatomic  ions:  •  Two  or  more  nonmetal  ions  covalently  bonded  with  an  overall  charge  •  a  metal  ion  or  other  atom  could  bond  ionically  with  it  •  3  rules  for  naming  these:  1.  if  you  add  H,  add  “hydrogen”  to  the  beginning  of  the  name  (you  have  to  know  

the  name  of  the  covalent  ion  first:  see  Table  in  Lecture  10  road  map)  –  e.g.  CO3

2-­‐  carbonate,  HCO3-­‐  hydrogen  carbonate  

2.  if  you  remove  an  O,  change  the  end  of  the  name  of  the  ion  from  “ate”  to  “ite”  –  e.g.  NO3

-­‐  nitrate,  NO2-­‐  nitrite  (note  the  charge  is  unchanged)  

–  if  you  lose  a  further  O  call  it  “hypo_ite”  –  if  you  add  an  extra  O,  call  it  “per_ate”  

3.  if  you  replace  the  central  atom  in  the  ion  with  another  atom  from  the  same  group,  just  replace  the  corresponding  part  of  the  name  –  e.g.  SO4

2-­‐  sulfate,  SeO42-­‐  selenate  (selenium),  TeO4

2-­‐  tellurate  (tellurium)  –  there  are  a  number  of  polyatomic  ions  that  you  can  learn  the  names  of  to  help  you  

apply  the  above  rules  –  see  Table  in  Lecture  10  road  map  

Page 9: VSPER, Molecular Orbitals, and Organic Molecules

Valence  Shell  Electron  Pair  Repulsion  (VSEPR)  

•  Used  to  give  you  informaJon  about  the  shape  of  covalent  compounds  (the  geometry  around  a  central  atom)  

•  Basic  premise:  electrons  repel  each  other,  and  arrange  themselves  in  space  so  as  to  minimize  the  repulsion  

•  A  region  of  space  around  a  central  atom  that  has  at  least  one  electron  pair  is  a  domain  =  a  concentraJon  of  electron  charge  density  in  space  

•  The  number  of  domains  determines  the  geometry  in  roughly  predictable  ways  •  The  number  of  domains,  not  the  number  of  pairs  (bond  order)  is  what  is  important  •  For  resonance  structures,  you  can  use  any  one  of  the  resonance  forms  to  idenJfy  

the  number  of  domains  and  predict  the  gross  shape  

•  VSEPR  caveats:  –  Ligands  that  are  poorly  electronegaJve  may  not  have  the  expected  shape  –  It  mostly  ignores  the  repulsive  effects  of  ligands  –  It  is  not  good  at  predicJng  shapes  of  transiJonal  metal  complexes  –  Doesn’t  give  us  informaJon  about  magneJc  properJes  of  molecule  –  à  that’s  what  molecular  orbitals  are  for  (coming  up)  

Page 10: VSPER, Molecular Orbitals, and Organic Molecules

VSEPR  Examples:  2  domains  Basic Geometries for 2, 3, and 4 Electron Pairs

BeCl2 Cl Be Cl

Two pairs minimize repulsions if oriented 180o from oneanother, giving a linear geometry.

BCl3 B

Cl

Cl Cl

Three pairs minimize repulsions if oriented 120o from oneanother, giving a trigonal planar geometry.

CH4 C

H

HH

H

Four pairs minimize repulsions if oriented 109.5o from oneanother, giving a tetrahedral geometry.

•  Two  electron  pairs  (two  domains)  minimize  repulsion  if  they  are  oriented  180º  away  from  each  other  

•  à  Linear  geometry  

Double and Triple Bond Domains

L Shape is determined by the number of electron domains(regions), not simply the number of electron pairs.

CH H

O

4 pairs in 3 regionsY trigonal planar

O C O

4 pairs in 2 regionsY linear

H C N4 pairs in 2 regions

Y linear

•  Four  electron  pairs  in  two  domains  •  à  Linear  geometry  

Double and Triple Bond Domains

L Shape is determined by the number of electron domains(regions), not simply the number of electron pairs.

CH H

O

4 pairs in 3 regionsY trigonal planar

O C O

4 pairs in 2 regionsY linear

H C N4 pairs in 2 regions

Y linear

•  Four  electron  pairs  in  two  domains  •  à  Linear  geometry  

Check:  what  are  the  names  of  these  compounds?  

CO2  

CHN  

BeCl2  

Page 11: VSPER, Molecular Orbitals, and Organic Molecules

VSEPR  Examples:  3  and  4  domains  

Basic Geometries for 2, 3, and 4 Electron Pairs

BeCl2 Cl Be Cl

Two pairs minimize repulsions if oriented 180o from oneanother, giving a linear geometry.

BCl3 B

Cl

Cl Cl

Three pairs minimize repulsions if oriented 120o from oneanother, giving a trigonal planar geometry.

CH4 C

H

HH

H

Four pairs minimize repulsions if oriented 109.5o from oneanother, giving a tetrahedral geometry.

Check:  what  are  the  names  of  these  compounds?  

Page 12: VSPER, Molecular Orbitals, and Organic Molecules

VSEPR  geometry  representaJons  

What  are  those  green  knobs?  

Page 13: VSPER, Molecular Orbitals, and Organic Molecules

VSEPR  Examples:  central  atom  with  some  non-­‐bonded  pairs  

•  Molecules  with  non-­‐bonding  pairs  on  a  central  atom  sJll  have  shapes  based  on  arrangement  of  electron  domains  

•  However  they  may  have  bond  angles  altered  (compared  to  what  is  shown  on  the  previous  slide)  by  some  other  factors:  –  repulsions  between  lone  pairs  and  bond  pairs:  lone  pairs  are  

“stronger”  (have  larger  domains)  than  bond  pairs  –  More  electronegaJve  ligands  are  “weaker”  (have  smaller  domains)  

than  less  electronegaJve  ones  –  Double  and  triple  bonds  are  “stronger”  (have  larger  domains)  than  

single  bonds  

•  e.g.  H2O    

Note:  this  is  why  you  needed  to  know  how  to  draw  Lewis  dot  structures!  It  was  good  for  something  aHer  all!  

 

Page 14: VSPER, Molecular Orbitals, and Organic Molecules

VSEPR  Examples:  central  atom  with  some  non-­‐bonded  pairs  

Page 15: VSPER, Molecular Orbitals, and Organic Molecules

Molecular  orbitals  (MO):    fun  for  the  whole  family  (of  atoms  in  a  molecule)  

•  Atoms  that  combine  into  molecules  share  electrons  to  some  extent  à  the  electrons  “belong”  to  the  molecule  now,  not  the  individual  atoms  

•  For  this  reason,  Lewis  dot  structures  alone  can’t  explain  the  magneJc  properJes  or  shapes  of  molecules  with  covalent  bonds  à  MO  can  help  us  determine  molecular  structure  (nice!)  

•  Central  idea:  the  electron  distribuIon  for  an  atom  in  a  molecule  is  different  from  the  electron  distribuIon  it  has  in  isolaIon  

•  Step  1:  Combine  atomic  orbitals  (AO).    –  remember  s,  p,  d  etc.?  Now  you’ll  be  glad  you  learned  them!  –  The  MO  outcome  depends  on  which  AOs  you  are  combining  –  Since  orbitals  are  wave  funcJons,  you  have  to  consider  the  outcome  of  combining  

AO  in  phase  and  out  of  phase  (the  MO  has  its  own  Ψ)  –  The  number  of  MO  has  to  equal  the  total  number  of  AO  

•  Step  2:  Determine  the  relaJve  energy  states  of  the  MO.  •  Step  3:  Fill  the  MO  with  all  of  the  valence  electrons  brought  into  the  

structure  by  its  consJtuent  atoms.    –  follow  the  Auqau  and  Pauli  principles  just  like  for  AO  

Page 16: VSPER, Molecular Orbitals, and Organic Molecules

Since  AO  are  wave  funcJons  (Ψ),  consider  the  outcome  of  combining  AO  in  phase  and  out  of  phase  to  create  the  Ψ  of  the  MO  

Page 17: VSPER, Molecular Orbitals, and Organic Molecules

Combining  two  s  orbitals:  H2  

Sigma  (σ)  bonds  •  Cylindrically  symmetrical  about  the  plane  of  the  internuclear  axis  •  permit  rotaJon  •  used  in  single  bonds  and  only  one  of  the  electron  pairs  in  bonds  with  order  >1  •  Can  be  created  by  mixing  two  s  AO,  two  p  AO,  or  combining  a  hybrid  AO  with  s  or  p  AO  

1.  Combine  AO  to  make  MO  (#  AO  has  to    =  #  MO)  

2.  Determine  relaJve  energy  states  3.  Fill  them  with  electrons  (Auqau,  Pauli)  

1s   σ*1s  AnJ-­‐bonding  1s  

σ1s  bonding  

Page 18: VSPER, Molecular Orbitals, and Organic Molecules

MO  theory  can  help  understand  why  some  molecules  don’t  exist:  He2  

Bond  order  •  Recall:  this  is  the  #  bonds  between  a  pair  of  atoms  •  Calculate  this  from  MO  as  follows:  (#  bonding  electrons  -­‐  #  anJbonding  electrons)/2  •  For  He2  we  see  that  bond  order  =  0!  •  This  means  they  won’t  bond:  not  enough  energeJc  advantage  for  this  to  happen  •  In  other  words,  they  are  not  more  stable  together  than  they  are  apart  

He-He

Page 19: VSPER, Molecular Orbitals, and Organic Molecules

Combining  s  and  p  orbitals:  CH4  (methane)  

HybridizaHon  of  AO  •  Combine  the  AO  within  an  atom  to  get  MO  for  that  atom  within  a  parJcular  molecule  •  The  number  and  types  of  bonds  shown  in  the  Lewis  diagram  dictate  what  classes  of  MO  

will  form  •  Different  hybrid  MO  have  different  specific  geometries  (e.g.  sp3:  tetrahedron)  •  Hybrid  MO  only  form  σ bonds  

sp3  Hybrid  orbitals  

Page 20: VSPER, Molecular Orbitals, and Organic Molecules

Combining  s  and  p  orbitals:  C2H4  (ethylene)  

Pi  (π)  bonds  •  Above  or  below  the  plane  of  the  internuclear  axis  •  Do  not  permit  rotaJon  •  Used  in  bonds  with  order  >1  •  Can  be  created  by  mixing  two  p  AO  

Page 21: VSPER, Molecular Orbitals, and Organic Molecules

Elements  of  life  

“I  cannot,  so  to  say,  hold  my  chemical  water  and  must  tell  you  that  I  can  make  urea  without  thereby  needing  to  have  kidneys,  or  anyhow,  an  animal,  be  it  human  or  dog.”  

–  Friedrich  Wöhler  1828  

•  90%  of  our  bodies  are  made  of  C,  H,  O,  N  –  about  70%  H2O  

•  Across  all  life,  most  molecules  contain  principally  6  elements  –  H  C,  N,  O,  P,  S  

Page 22: VSPER, Molecular Orbitals, and Organic Molecules

51

=

CH2

CH3 CH3

C

H

R C H

H

C

C

C

C

C

C H

H

H

H H

H

H

H

H

H H

H=

where it is now recognised that there are CH3 groups at the points where the lines stop.

This comes in handy when drawing large molecules such as C10H22. Instead of laboriously drawing the

molecule out we can draw –

Question 5.6 What are the molecular formulae of the following compounds?

(i)

(ii)

(iii)

One last thing on shorthand is the use of “R”. When chemists write a molecule as

the “R” simply signifies an organic group which they are not particularly interested in! That is to say that the

“R” group will remain unchanged during a chemical reaction.

Rings Alkanes, alkenes and alkynes are all linear molecules, where the carbon atoms are in a chain. There is however

another way of joining carbons together and that is in rings. Consider for example the following molecule.

Here we have six carbon atoms joined in a ring. The naming of these compounds is still based upon the

number of carbon atoms so this molecule is called cyclohexane. You will notice that the molecular formula for

cyclohexane is C6H12. For all cycloalkanes the carbon:hydrogen ratio is Cn:H2n. This is exactly the same ratio as

for alkenes. However, cycloalkanes are saturated molecules and they will have a very different chemistry from

alkenes with the same molecular formula, so beware!

How  to  draw  organic  structures  •  Organic  compounds  contain  so  many  C  and  H  atoms  that  we  

develop  highly  simplified  ways  of  represenJng  the  structures  •  We  were  already  starJng  to  do  this  with  Lewis  dot  structures:  

replacing  the  two  dots  of  an  electron  pair  with  a  single  line  •  Organic  compound  shorthand  conJnues  this  trend:  you’ll  see  any  

combinaJon  of  the  following  Jme-­‐saving  methods  used:  –  Don’t  show  any  dots:  show  bonding  pairs  as  lines;  lone  pairs  are  

assumed  to  be  there  –  Don’t  show  the  atomic  symbol  for  H  bonded  to  C  –  Don’t  show  C  (“skeletal”)  –  Don’t  draw  out  funcJonal  groups;  instead  

•  Write  chemical  formula  •  Write  “R”  

Page 23: VSPER, Molecular Orbitals, and Organic Molecules

Remember  electronegaJvity?  

Differences  in  electronegaIvity  can  have  an  impact  on  the  distribuIon  of  shared  electrons.  

Page 24: VSPER, Molecular Orbitals, and Organic Molecules

Polar  (covalent)  bonds  I  

•  In  organic  chemistry  we’re  mainly  concerned  with  covalent  bonds  •  However,  not  all  covalent  bonds  are  created  equal:  electrons  may  

not  be  shared  equally  between  atoms  

•  If  the  electronegaJvity  difference  between  two  atoms  in  a  bond  is  great,  then  the  more  electronegaJve  atom  “has  more”  of  the  electrons  

•  The  δ+  and  δ-­‐  symbols  indicate  the  polarity  of  the  bond  

7

ion-dipole intermolecular forces: ion (polar) ↔  polar

H O H

+ -

+

Na+

Page 25: VSPER, Molecular Orbitals, and Organic Molecules

Polar  (covalent)  bonds  II  

•  The  polarity  of  the  bond  is  quanJfied  by  a  vector  quanJty  called  a  dipole  moment  µ –  Describes  the  overall  distribuJon  of  electrons  in  the  bond  –  Is  a  product  of  charge  magnitude  (scalar  q)  and  bond  length  (vector  r)  –  In  units  of  debyes  (D)  –  µ  =  0  for  a  nonpolar  bond  

•  Polar  molecules  have  permanent  µ > 0

•  In  molecules  with  >1  polar  bond,  the  net µ for  the  molecule  is  the  vector  sum  of  all  µ  for  each  bond  

µ  >  0    

Page 26: VSPER, Molecular Orbitals, and Organic Molecules

Diversify  your  bonds  

Covalent  Increasing  Ionic  Character  

Polar  Covalent  

Ionic  

Page 27: VSPER, Molecular Orbitals, and Organic Molecules

Hydrogen  bonds  

•  Dipole-­‐dipole  interacJons    are  those  between  permanent  dipoles  of  two  polar  molecules  –  Only  found  in  molecules  with  net  dipole  µ  >  0  

•  Hydrogen  bonds  are  a  specific  type  of  dipole-­‐dipole  interacJon  

•  Happens  when  an  H  (usually  bonded  to  an  O,  N  or  F)  is  electrostaJcally  aVracted  to  a  lone  pair  on  another  molecule  

19

• Hydrogen bonding typically occurs when a hydrogen atom bonded to O, N, or F, is electrostatically attracted to a lone pair of electrons on an O, N, or F atom in another molecule.

Hydrogen Bonding

Page 28: VSPER, Molecular Orbitals, and Organic Molecules

Recap:  learning  goals  for  today  Hopefully,  you  now  feel  able  to:    •  Use  VSPER  to  predict  molecular  geometries  •  Understand  and  apply  basic  chemical  nomenclature  to  name  chemical  compounds  •  Use  molecular  orbitals  to  explain  observed  bond  angles  and  magneJc  properJes  of  

compounds  •  Draw  organic  structures  based  on  chemical  formula  •  Understand  different  schemaJc  representaJons  of  organic  compounds  •  Determine  polarity  of  bonds  as  well  as  molecules  •  Define  dipole  moments  and  hydrogen  bonds    •  Name  the  six  most  abundant  elements  found  in  biological  molecules  

If  not,  please  ask  your  quesIons  during  secIon,  on  Piazza,  or  come  to  office  hours!  (Thursdays  at  noon  by  appointment)