volatility and skewness indices using state-preference pricing

71
Volatility and Skewness Indices Using State-Preference Pricing Zhangxin Frank Liu Finance Theory Module 2 March 16 th , 2013 1 / 71

Upload: others

Post on 20-Nov-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Volatility and Skewness Indices Using State-Preference Pricing

Volatility and Skewness Indices UsingState-Preference Pricing

Zhangxin Frank Liu

Finance Theory Module 2March 16th, 2013

1 / 71

Page 2: Volatility and Skewness Indices Using State-Preference Pricing

Outline

1 FIX the VIX

2 BEX and BUX

3 SIX is SICK

4 Future Research

2 / 71

Page 3: Volatility and Skewness Indices Using State-Preference Pricing

Motivation I

• WHY CARE ABOUT VOLATILITY AT ALL?

“. . . what distinguishes financial economics is thecentral role that uncertainty plays in both financialtheory and its empirical implementation. The start-ing point for every financial model is the uncer-tainty facing investors, . . . Indeed, in the absenceof uncertainty, the problems of financial economicsreduce to exercises in basic microeconomics.”

Campbell, Lo and MacKinlay (1997)

3 / 71

Page 4: Volatility and Skewness Indices Using State-Preference Pricing

Volatility Forecasting

• Volatility forecasting has been discussed in following con-texts (Poon and Granger, 2003; Andersen et al. (2005)):

• Historical volatility

• Quick and easy but how far back should one refer to?

• ARCH/GARCH volatility

• ARCH (Engle, 1982): time-varying function of currentobservables.

• GARCH (Bollerslev, 1986; Taylor, 1986):

f (ω1V̄ , ω2V̂t−1, ω3ε; t)

4 / 71

Page 5: Volatility and Skewness Indices Using State-Preference Pricing

Volatility Forecasting

• . . .• Implied volatility

• Implied from option prices

• Invert the analytical pricing formula from some option pricingmodels (if exist); or follow some model-free approaches (Du-mas, Fleming and Whaley (1998)).

5 / 71

Page 6: Volatility and Skewness Indices Using State-Preference Pricing

VIX History

• A brief history of VIX (Carr and Wu, 2006)

• Old VIX (VXO)

• First introduced by Whaley (1993)

• Based on OEX options (American style)

• An average of the Black-Scholes implied volatilities on eightnear-the-money options at the two nearest maturities

• Artificially induced upward bias from the CBOE trading dayconversion

TV(t ,T ) = ATMV(t ,T )

√NC√NT

≡ ATMV(t ,T )

√NC√

NC− 2× int(NC/7)

6 / 71

Page 7: Volatility and Skewness Indices Using State-Preference Pricing

VIX History

• . . .

• New VIX:

• CBOE revised methodology in 2003.

• Based on SPX options (European style)

• Model-free approach in Demeterfi, Derman, Kamal and Zou(DDKZ, 1999)

• Correct artificial upward bias from the previous trading dayconversion

• Trading of VIX futures contracts from May 2004; VIX optionsfrom February 2006

7 / 71

Page 8: Volatility and Skewness Indices Using State-Preference Pricing

VIX 101

• VIX formula:

σ2j =

2Tj

∑i

∆Ki

K 2i

erT Q(Ki)−1Tj

[FK0− 1]2

∀ j = 1,2

VIX = 100

√36530

[T1σ

21

NT2 − N30

NT2 − NT1

+ T2σ22

N30 − NT1

NT2 − NT1

]

• Principal of DDKZ (1999): realized volatility can becaptured by the dynamic hedging of a log contract.

8 / 71

Page 9: Volatility and Skewness Indices Using State-Preference Pricing

VIX 101

Derivation: Theoretical definition of realized variance for agiven price history is

V =1T

∫ T

0σ2(t , . . .) dt

Think about pricing a variance swap:

F = E(e−rT (V − K ))

For a zero initial value,

Kvar = E(V ) =1T

E

(∫ T

0σ2(t , . . .) dt

)

9 / 71

Page 10: Volatility and Skewness Indices Using State-Preference Pricing

VIX 101

DDKZ (1999) only assumes that future underlyer evolution isdiffusive (i.e. no jumps allowed):

dSt

St= µ(t , . . .)dt + σ(t , . . .)dZt

Itô’s lemma⇒ d(ln St ) =

(µ− 1

2σ2)

dt + σdZt

⇒ dSt

St− d(ln St ) =

12σ2dt

or σ2dt = 2(

dSt

St− d(ln St )

)

10 / 71

Page 11: Volatility and Skewness Indices Using State-Preference Pricing

VIX 101

Now we have Kvar =1T

E(∫ T

0 σ2(t , . . .) dt)

σ2dt = 2(

dStSt− d(ln St )

)

∴ E(V ) = Kvar =2T

E

(∫ T

0

dSt

St−∫ T

0d(ln St )

)

=2T

E

(∫ T

0

dSt

St

)︸ ︷︷ ︸

A

− 2T

E(

lnST

S0

)︸ ︷︷ ︸

B

11 / 71

Page 12: Volatility and Skewness Indices Using State-Preference Pricing

VIX 101

A = E

[∫ T

0(r dt + σ(t , . . .) dZt )

]Zt ∼ N(0, t)

= rT

B = E(

lnST

S0

)= E

(ln

ST

S∗

)︸ ︷︷ ︸Log contract

+ lnS∗S0

where S∗ is some arbitrary number to define the boundary ofOTM calls and puts.

12 / 71

Page 13: Volatility and Skewness Indices Using State-Preference Pricing

VIX 101How to value E(ln(ST/S∗))? Suppose we buy a portfolio of op-tions, Π, spanning all strikes K ∈ (0,∞) with expiration T andweighted inversely proportional to K 2, we have

Π =

OTM puts︷ ︸︸ ︷∫ S∗

0

1K 2 max(K − ST ,0) dK +

OTM calls︷ ︸︸ ︷∫ ∞S∗

1K 2 max(ST − K ,0) dK

=

{ ∫ S∗ST

1K 2 (K − ST ) dK , if ST < S∗∫ ST

S∗1

K 2 (ST − K ) dK , if ST ≥ S∗

= −1− ln ST +ST

S∗+ ln S∗

=ST − S∗

S∗− ln

ST

S∗

∴ E(

lnST

S∗

)= E

(ST − S∗

S∗− Π

)13 / 71

Page 14: Volatility and Skewness Indices Using State-Preference Pricing

VIX 101

Kvar =2T

(rT )− 2T

[E(

ST − S∗S∗

− Π

)+ ln

S∗S0

]=

2T

[rT − E

(ST

S∗− 1)

+ E

(∫ S∗

0

1K 2 max(K − ST ,0) dK +∫ ∞

S∗

1K 2 max(ST − K ,0) dK

)− ln

S∗S0

]

=2T

a︷ ︸︸ ︷

rT −(

S0erT

S∗− 1)− ln

S∗S0

+

b︷ ︸︸ ︷erT∫ S∗

0

P(K )

K 2 dK + erT∫ ∞

S∗

C(K )

K 2 dK

14 / 71

Page 15: Volatility and Skewness Indices Using State-Preference Pricing

VIX 101

a =2T

(ln(

erT)−(

S0erT

S∗− 1)− ln(S∗) + ln(S0)

)=

2T

(ln(

S0erT

S∗

)−(

S0erT

S∗− 1))

=2T

(ln(

FS∗

)−(

FS∗− 1))

where F = S0erT

≈ 2T

(

FS∗− 1)− 1

2

(FS∗− 1)2

︸ ︷︷ ︸Taylor expansion of ln(F/S∗)

−(

FS∗− 1)

= − 1T

(FS∗− 1)2

where S∗ ≡ K0

15 / 71

Page 16: Volatility and Skewness Indices Using State-Preference Pricing

VIX 101

b =2erT

T

(∫ S∗

0

P(K )

K 2 dK +

∫ ∞S∗

C(K )

K 2 dK

)

≈ 2erT

T

∫ S∗

KL

P(K )

K 2 dK︸ ︷︷ ︸truncation error 0→KL

+

∫ KH

S∗

C(K )

K 2 dK︸ ︷︷ ︸truncation error∞→KH

≈ 2

T

∑i

∆Ki

K 2i

erT Q(Ki)︸ ︷︷ ︸discretization error

Hence we obtain the VIX formula

Kvar = E(V ) ≈ 2T

(∑i

∆Ki

K 2i

erT Q(Ki)

)− 1

T

(FS∗− 1)2

= σ2VIX

16 / 71

Page 17: Volatility and Skewness Indices Using State-Preference Pricing

Why the switch?

• SPX options are more popular

• “Model-free approach”

• One can replicate the payoff of VIX futures and options

• VIX futures and options can be traded for volatility hedgingpurposes

17 / 71

Page 18: Volatility and Skewness Indices Using State-Preference Pricing

Any Drawbacks?

• Truncation and Discretization errors (Jiang and Tian, 2007)

• Linear interpolation may induce an error, if model-free im-plied variance does not follow a linear function of maturity.

• Mechanically higher weights are allocated to OTM puts i.e.VIX may be manipulable by trading relatively cheaper Deep-OTM put options.

• Why not consider trade volume?

18 / 71

Page 19: Volatility and Skewness Indices Using State-Preference Pricing

FIX the VIX

Let’s FIX the VIX.

19 / 71

Page 20: Volatility and Skewness Indices Using State-Preference Pricing

FIX the VIX

• A forward-looking volatility index (FIX) as a proxy for marketrealized volatility over the next 30 days.

• State-Preference Pricing Approach

• Arrow (1964) and Debreu (1959)

Pt =S∑

s=1

(Φs,t+1ds,t+1)

• View FIX2 as a financial asset pays you this dollar amount:(ln(

ST + 0.05S0

))2

• How to define state prices?

20 / 71

Page 21: Volatility and Skewness Indices Using State-Preference Pricing

FIX the VIX

• State prices (Breeden and Litzenberger, 1978):

Φ(T , . . .) =∂2C(K ,T )

∂K 2 =∂2P(K ,T )

∂K 2

• To see this, construct a butterfly spread to long one call withstrike M −∆M, long one call with strike M + ∆M and shorttwo calls with strike M (Barraclough, 2008).

ST < M − ∆M M − ∆M < ST < M M < ST < M + ∆M M + ∆M < ST

Long 1 call with M − ∆M 0 ST − (M − ∆M) ST − (M − ∆M) ST − (M − ∆M)Short 2 calls with M 0 0 −2(ST − M) −2(ST − M)

Long 1 call with M + ∆M 0 0 0 ST − (M + ∆M)

Total at t = T 0 ∆M + (ST − M) ∆M − (ST − M) 0

• Payoff is $∆M if ST = M at maturity.

21 / 71

Page 22: Volatility and Skewness Indices Using State-Preference Pricing

FIX the VIX

• Thus the cost of butterfly spread that produces a paymentof $1 if the future state is ST = M is:

P(M; ∆M) =C(M −∆M,T )− 2C(M,T ) + C(M + ∆M,T )

∆M

• Divide the above by the step size ∆M and in the limit as ∆M → 0yields:

lim∆M→0

P(M; ∆M)

∆M= lim

∆M→0

C(M −∆M,T )− 2C(M,T ) + C(M + ∆M,T )

∆M2

=∂2C(K ,T )

∂K 2

∣∣∣∣K =M

22 / 71

Page 23: Volatility and Skewness Indices Using State-Preference Pricing

FIX the VIX

• Thus the price of a security f with payoff d fM at some future

state M is

P f =

∫M

d fM︸︷︷︸

payoff

P(M; dM)︸ ︷︷ ︸state price

=

∫M

d fM︸︷︷︸

payoff

(∂2C(K ,T )

∂K 2

∣∣∣∣K =M

)dM︸ ︷︷ ︸

state price

• As an example, let’s have a look at pricing a European put option.We know the price of the put option can be found as:

P = E(e−rT (K − ST )+) =

∫ ∞0

(K − ST )+︸ ︷︷ ︸payoff

e−rT f (ST ) dST︸ ︷︷ ︸state price

=

∫ K

0(K − ST )e−rT f (ST ) dST

23 / 71

Page 24: Volatility and Skewness Indices Using State-Preference Pricing

FIX the VIX• Take the partial derivative w.r.t. K :

∂P∂K

=∂

∂K

{∫ K

0e−rT (K − ST )f (ST ) dST

}

= e−rT

{(K − K )f (K ) +

∫ K

0f (ST )dST

}= e−rT F (K )

where F (·) is the risk-neutral distribution function. Take the par-tial derivative w.r.t K again:

∂2P∂K 2 =

∂K{

e−rT F (K )}

= e−rT f (K )

• That is (note: ∂2P/∂K 2 = ∂2C/∂K 2, as implied in Put-Call Par-ity),

P =

∫ K

0(K−ST )e−rT f (ST )

::::::::dST =

∫ K

0(K−ST )

(∂2P∂K 2

∣∣∣∣K =ST

)::::::::::::

dST

24 / 71

Page 25: Volatility and Skewness Indices Using State-Preference Pricing

FIX the VIX

• How to approximate the second derivative?

Model-free approach:∂2C(K ,T )

∂X 2 ≈ Ci−1 − 2Ci + Ci+1

(∆Ki)2

or ≈ −Ci−2 + 16Ci−1 − 30Ci + 16Ci+1 − Ci+2

12(∆Ki)2 (Eberly, 2008)

25 / 71

Page 26: Volatility and Skewness Indices Using State-Preference Pricing

FIX the VIX

• It works with simulated data:

∆K True σ CBOE VIX Model-Free State-Price0.1 0.30 0.29999 0.3001955 0.30 0.30002 0.30028

25 0.30 0.30026 0.30240

where S0 = 995, T1 = 17, T2 = 45, K ∈ (100,2000),rf = 3.08% and d = 2%.

26 / 71

Page 27: Volatility and Skewness Indices Using State-Preference Pricing

FIX the VIX

• However it fails to deal with real world data:

• Equal option prices for deep OTM options→ zero state price

• Irrational bids in deep OTM options→ negative state price

• Even when prices of OTM options are rational (i.e. increas-ing/decreasing function of its strike price for a put/call), stillpossible to see Pi−1 − 2Pi + Pi+1 < 0.

27 / 71

Page 28: Volatility and Skewness Indices Using State-Preference Pricing

FIX the VIX

• Black-Scholes state prices (Breeden and Litzenberger, 1978):

Φ(Ki ,Ki+1) = e−rT (N (d2(Ki))− N (d2(Ki+1)))

where Ki < Ki+1 and

d2(K ) =ln(S0/K ) + (r − d − σ2/2)T

σ√

T

• The key input in N(d2): σ is estimated as the average ofimplied volatilities from 2 ATM calls and puts from 2 maturi-ties that are closer to 30-day (see, Latane and Rendleman(1976), Chiras and Manaster (1978), Beckers (1981), Chris-tensen and Prabhala (1998), Fleming (1998) and Carr andLee (2003, 2009)).

28 / 71

Page 29: Volatility and Skewness Indices Using State-Preference Pricing

FIX the VIX

• Data:

• Each trading day from January 4, 1996 to October 29, 2010.

• Daily SPX option quotes from Option Metrics

• Use US 1-month and 3-month T-bill yields (Federal ReserveBulletin), adjusting for the dividends (Option Metrics), as therisk-free interest rates.

29 / 71

Page 30: Volatility and Skewness Indices Using State-Preference Pricing

FIX the VIX

• . . .

• Filters:

• SPX options with maturities from 7 to 81 days

• Bid prices less than $0.05 are excluded

• ITM options are excluded

• Apply the put-call parity to exclude any mis-priced options

• Options with implied volatilities > 1 or < 0 are excluded

30 / 71

Page 31: Volatility and Skewness Indices Using State-Preference Pricing

FIX the VIX

• States range from

S ∈ (Smin,Smax) = (0.5Slowest 1996 - 2010,1.5Shighest 1996 - 2010)

≈ [300,2400]

with 0.10 increment. This results in 21,001 states per day.

• Modified state payoffs: add 0.05 to get to the center of the10 cents interval. (

ln(

statei + 0.05S0

))2

• FIX is a manipulation-free measure.

31 / 71

Page 32: Volatility and Skewness Indices Using State-Preference Pricing

FIX the VIX

• Highly correlated with VIX:

Cor(VIX,FIX) = 99.12%; Cor(∆VIX,∆FIX) = 89.87%

32 / 71

Page 33: Volatility and Skewness Indices Using State-Preference Pricing

FIX the VIXMoments FIX VIX VXO RVol30 RVol22Mean 20.44 22.21 23.14 18.71 18.15Median 19.42 21.01 22.25 16.43 15.94Maximum 84.44 80.86 87.24 90.57 87.88Minimum 8.31 9.89 0.00 5.86 5.68Std. Dev. 8.33 8.73 9.57 10.69 10.38Skewness 2.02 1.91 1.70 2.74 2.74Kurtosis 10.42 9.53 8.59 14.24 14.24Auto 0.97 0.98 0.97 0.99 0.99

Moments ∆FIX ∆VIX ∆VXO ∆RVol30 ∆RVol22Mean 0.00 0.00 0.00 0.00 0.00Median 0.00 0.00 0.00 0.00 0.00Maximum 0.54 0.50 0.53 0.66 0.66Minimum -0.55 -0.35 -0.38 -0.39 -0.39Std. Dev. 0.07 0.06 0.07 0.06 0.06Skewness 0.31 0.50 0.47 0.74 0.74Kurtosis 7.63 6.56 6.81 18.43 18.43Auto -0.17 -0.09 -0.14 -0.01 -0.01

RVolt,t+30 = 100×

√√√√√ 365

30

30∑i=1

(ln

(St+i

St+i−1

))2

; RVolt,t+22 = 100×

√√√√√ 252

22

22∑i=1

(ln

(St+i

St+i−1

))2

;

∆FIXt = ln

(FIXt

FIXt−1

)

33 / 71

Page 34: Volatility and Skewness Indices Using State-Preference Pricing

FIX the VIX

• Whaley (2009) documents that the change in VIX rises at ahigher absolute rate of change when there is a market fallthan an upswing. How about FIX?

RFIXt = α0 + α1RSPXt + α2RSPX−t + ε1

RVIXt = β0 + β1RSPXt + β2RSPX−t + ε2

RFIXt Coefficient Std. Error t-Statistics Prob. Adj. R2

RSPXt -3.5732 0.1068 -33.4548 0.0000 0.5100RSPX−

t -0.4764 0.1687 -2.8231 0.0048Intercept -0.0014 0.0011 -1.2175 0.2235

RVIXtRSPXt -3.0212 0.0859 -35.1775 0.0000 0.5651RSPX−

t -0.7765 0.1357 -5.7227 0.0000Intercept -0.0028 0.0009 -3.1278 0.0018

34 / 71

Page 35: Volatility and Skewness Indices Using State-Preference Pricing

FIX the VIX• Predictability of the market realized volatility over the next

30 days against VIX and VXO:

RVolt ,t+30 = α0 + α1FIXt + ε1RVolt ,t+30 = β0 + β1VIXt + ε2RVolt ,t+30 = γ0 + γ1VXOt + ε3

RVol30 Coefficient Std. Error t-Statistics Prob. Adj. R2 Wald TestFIX 0.9920 0.0655 15.1509 0.0000 0.9032Intercept -1.5834 1.1774 -1.3449 0.1787 0.6010VIX 0.9295 0.0601 15.4727 0.0000 0.2409Intercept -1.9479 1.1761 -1.6562 0.0978 0.5788VXO 0.8556 0.0562 15.2183 0.0000 0.0102Intercept -1.1069 1.1416 -0.9696 0.3323 0.5893

RVol22FIX 0.9626 0.0635 15.1509 0.0000 0.5557Intercept -1.5364 1.1424 -1.3449 0.1787 0.6010VIX 0.9019 0.0583 15.4727 0.0000 0.0926Intercept -1.8900 1.1412 -1.6562 0.0978 0.5788VXO 0.8302 0.0546 15.2183 0.0000 0.0019Intercept -1.0740 1.1077 -0.9696 0.3323 0.5893

The covariance matrix is computed according to Newey and West (1987) with the lag truncation of 8.

35 / 71

Page 36: Volatility and Skewness Indices Using State-Preference Pricing

FIX the VIX

• Predictability of the market realized volatility over the next30 days against others:

GARCH(1,1)vol = 100×√

GARCH(1,1)var × 36530

RVolt,t+30 = α0 + α1GARCH(1,1)t + ε1RVolt,t+30 = β0 + β1BAMLt + ε2RVolt,t+30 = γ0 + γ1JPMt + ε3

RVol30 Coefficient Std. Error t-Statistics Prob. Adj. R2 Wald TestFIX 0.9978 0.0660 15.1230 0.0000 0.9728Intercept -1.6155 1.1784 -1.3710 0.1705 0.6043GARCH(1,1) 2.6767 0.2583 10.3626 0.0000 0.0000Intercept 3.4280 1.2960 2.6451 0.0082 0.4522BAML 0.9287 0.0584 15.9078 0.0000 0.2221Intercept -1.5305 1.1138 -1.3741 0.1695 0.5941JPMorgan 0.9478 0.0639 14.8249 0.0000 0.4141Intercept -1.8253 1.2175 -1.4992 0.1339 0.5661

The covariance matrix is computed according to Newey and West (1987) with the lag truncation of 8.

36 / 71

Page 37: Volatility and Skewness Indices Using State-Preference Pricing

FIXD in DJIA

37 / 71

Page 38: Volatility and Skewness Indices Using State-Preference Pricing

FIXN in NDX

38 / 71

Page 39: Volatility and Skewness Indices Using State-Preference Pricing

Motivation II

What’s missing in VIX (Volatility)?

39 / 71

Page 40: Volatility and Skewness Indices Using State-Preference Pricing

Motivation II

where µORCL = 41.1% (Estrada, 2006).

40 / 71

Page 41: Volatility and Skewness Indices Using State-Preference Pricing

Motivation II

where µORCL = 41.1%, µMSFT = 35.5% and rf = 5% (Estrada, 2006).41 / 71

Page 42: Volatility and Skewness Indices Using State-Preference Pricing

Motivation II

• FIX hasn’t fixed everything. What’s missing in VIX?

• Volatility takes account of deviations from the mean on bothsides.

• It may be more interested in what the proportion of an upsidepotential versus a downside threat in ∆VIX .

• VIX does not tell how asymmetric the market return will be.

• Market returns are not symmetric

• Campbell, Lo and MacKinlay (1997)

• Bates (2000)

42 / 71

Page 43: Volatility and Skewness Indices Using State-Preference Pricing

LPM 101

• Lower Partial Moments Framework

• nth order LPM and UPM for some continuous distribution Fis defined as (Bawa and Lindenberg, 1977):

LPMn(h; F ) ≡∫ h

−∞(h − R)n dF (R)

UPMn(h; F ) ≡∫ ∞

h(R − h)n dF (R)

• h: safety first disaster level return (Roy, 1952)

• Markowitz (1959), semi-variance (LPM degree 2 with h =E(R)):

S := E(min(0,R − E(R))2)

43 / 71

Page 44: Volatility and Skewness Indices Using State-Preference Pricing

LPM 101

• . . .

• Mean-Semivariance model (Hogan and Warren, 1974; Bawaand Lindenberg, 1977)

• Psychological studies of Mao (1970a, 1970b), Unser (2000)and Veld and Veld-Merkoulova (2008) support the LPM overvariance as a measure of investor perception of risk.

• Cosemivariance matrix is endogenous and a closed form so-lution does not exist (Cumova and Nawrocki, 2011)

• Asset pricing with LPM (Anthonisz, 2011a, 2011b)

44 / 71

Page 45: Volatility and Skewness Indices Using State-Preference Pricing

LPM 101

• . . .

• Andersen and Bondarenko (2009):

• Data: AB use CME option prices of the S&P 500 futures. Weuse implied volatilities from option prices of S&P 500 Index(SPX) itself.

• Methodology: AB apply Positive Convolution Approximation(Bondarenko, 2003) to estimate risk-neutral densities. Weuse state-preference pricing to estimate volatilities.

• Extendibility.

45 / 71

Page 46: Volatility and Skewness Indices Using State-Preference Pricing

BEX and BUX

• Decompose FIX into a forward-looking lower partial mo-ment volatility index as a proxy for market downturn, whichwe denote the bear index (BEX); and an upper partial mo-ment counterpart, the bull index (BUX).

46 / 71

Page 47: Volatility and Skewness Indices Using State-Preference Pricing

BEX and BUX

• BEX and BUX share the same state price at each statewith modified payoffs:

BEX2t =

∑i

Φi ln(

Si + 0.05SPXt

)2

∀Si ≤ SPXte(rf−d)∗30/365

BUX2t =

∑i

Φi ln(

Si + 0.05SPXt

)2

∀Si > SPXte(rf−d)∗30/365

47 / 71

Page 48: Volatility and Skewness Indices Using State-Preference Pricing

BEX and BUX

• Predictability of the market realized LPM volatility over thenext 30 days:

RVolLPMt ,t+30 = α0 + α1BEXt + ε1

RVolLPMt ,t+30 = β0 + β1VIXt + ε2

RVolLPM30 Coefficient Std. Error t-Statistics Prob. Adj. R2 Wald Test

BEX 0.8421 0.0713 11.8090 0.0000 0.0269Intercept -0.3446 0.9900 -0.3481 0.7278 0.4296VIX 0.6259 0.0515 12.1632 0.0000 0.0000Intercept -1.0064 1.0190 -0.9876 0.3234 0.4172

RVolLPM22

BEX 0.8171 0.0692 11.8090 0.0000 0.0082Intercept -0.3344 0.9606 -0.3481 0.7278 0.4296VIX 0.6073 0.0499 12.1632 0.0000 0.0000Intercept -0.9765 0.9887 -0.9876 0.3234 0.4172

48 / 71

Page 49: Volatility and Skewness Indices Using State-Preference Pricing

BEX and BUX

• Predictability of the market realized UPM volatility over thenext 30 days:

RVolUPMt ,t+30 = γ0 + γ1BUXt + ε3

RVolUPMt ,t+30 = λ0 + λ1VIXt + ε4

RVolUPM30 Coefficient Std. Error t-Statistics Prob. Adj. R2 Wald Test

BUX 1.1765 0.0685 17.1839 0.0000 0.0100Intercept -2.2388 0.7890 -2.8373 0.0046 0.6857VIX 0.6777 0.0397 17.0599 0.0000 0.0000Intercept -1.9310 0.7732 -2.4974 0.0126 0.6567

RVolUPM22

BUX 1.1415 0.0664 17.1839 0.0000 0.0332Intercept -2.1723 0.7656 -2.8373 0.0046 0.6857VIX 0.6576 0.0385 17.0599 0.0000 0.0000Intercept -1.8737 0.7503 -2.4974 0.0126 0.6567

49 / 71

Page 50: Volatility and Skewness Indices Using State-Preference Pricing

BEX and BUX

• Daily S&P 500 Index return may be better explained by thecontemporaneous change of BEX and BUX:

RSPXt = α0 + α1RBEXt + α2RBUXt + ε1RSPXt = β0 + β1RVIXt + ε2

RSPXt Coefficient Std.Error t-Statistics Prob. Adj. R2

RBEXt 0.3369 0.0764 4.4112 0.0000RBUXt -0.4903 0.0824 -5.9482 0.0000Intercept 0.0002 0.0001 1.2863 0.1984 0.5255

RSPXtRVIXt -0.1640 0.0067 -24.6618 0.0000Intercept 0.0002 0.0001 1.4417 0.1495 0.5614

50 / 71

Page 51: Volatility and Skewness Indices Using State-Preference Pricing

BEX and BUX

• BEX may be a better estimator as “investor fear gauge” thanVIX:

RBEXt = α0 + α1RSPXt + α2RSPX−t + ε1RVIXt = β0 + β1RSPXt + β2RSPX−t + ε2

RBEXt Coefficient Std. Error t-Statistics Prob. Adj. R2

RSPXt -3.6355 0.1096 -33.1633 0.0000RSPX−

t -0.4761 0.1732 -2.7489 0.0060Intercept -0.0013 0.0011 -1.1600 0.2461 0.5051

RVIXtRSPXt -3.0212 0.0859 -35.1775 0.0000RSPX−

t -0.7765 0.1357 -5.7227 0.0000Intercept -0.0028 0.0009 -3.1278 0.0018 0.5651

51 / 71

Page 52: Volatility and Skewness Indices Using State-Preference Pricing

BEX and BUX

• If the S&P 500 Index falls by 100 basis points, then VIX willrise by

∆VIXt = −0.0028−3.0212(−0.01)−0.7765(−0.01) = 3.52%

• In contrast, BEX will rise by

∆BEXt = −3.6355(−0.01)− 0.4761(−0.01) = 4.11%

52 / 71

Page 53: Volatility and Skewness Indices Using State-Preference Pricing

Motivation III

“Volatility is only a good measure of risk if you feel thatbeing rich then being poor is the same as being poorthen rich.”

Peter Carr

53 / 71

Page 54: Volatility and Skewness Indices Using State-Preference Pricing

CBOE SKEW

• A brief history of CBOE SKEW

• Based on Bakshi, Kapadia and Madan (2003): any securitypayoff can be spanned and priced using an explicit position-ing across option strikes.

• Dennis and Mayhew (2002)• Han (2008)• Neumann and Skiadopoulos (2012)• Bali and Murray (2012)• Friesen, Zhang and Zorn (2012)• Buss and Vilkov (2012)• Rehman and Vilkov (2012)• Conrad, Dittmar and Ghysels (2012)

54 / 71

Page 55: Volatility and Skewness Indices Using State-Preference Pricing

CBOE SKEW

SKEW := 100− 10× S

S =EQ(R3)− 3EQ(R)EQ(R2) + 2E3

Q(R)

(EQ(R2)− E2Q(R))3/2

=:P3 − 3P1P2 + 2P3

1

(P2 − P21 )3/2

P1 =∑

i

−∆Ki

K 2i

erT Q(Ki )−(

1 + ln(

F0

K0

)−

F0

K0

)︸ ︷︷ ︸

ε1

P2 =∑

i

2∆Ki

K 2i

erT Q(Ki )

(1− ln

(Ki

F0

))

+2 ln(

K0

F0

)(F0

K0− 1)

+12

ln2(

K0

F0

)︸ ︷︷ ︸

ε2

P3 =∑

i

3∆Ki

K 2i

erT Q(Ki )

(2 ln

(Ki

F0

)− ln2

(Ki

F0

))

+3 ln2(

K0

F0

)(13

ln(

K0

F0

)− 1 +

F0

K0

)︸ ︷︷ ︸

ε3

55 / 71

Page 56: Volatility and Skewness Indices Using State-Preference Pricing

SIX

• Skewness is hard to measure precisely (Neuberger, 2012)

• A simple solution: the ratio of BUX to BEX forms a marketsymmetric index (SIX).

• Why do we need SIX? If market returns distribution is sym-metric, then we expect

BUXBEX

= 1

56 / 71

Page 57: Volatility and Skewness Indices Using State-Preference Pricing

SIX Recap

Pt =S∑

s=1

(Φs,t+1 ds,t+1)

Φs,t+1 =∂2C(K ,T )

∂K 2 ≈ Φ(Ki ,Ki+1) = e−rT (N (d2(Ki ))− N (d2(Ki+1)))

FIX2 : dST =

(ln(

ST + 0.05S0

))2

BEX2 : dST =

(ln(

ST + 0.05S0

))2

IST<S0

BUX2 : dST =

(ln(

ST + 0.05S0

))2

IST>S0

SIX =BEXBUX

TIX : dST =−1

(

√∑Ss=1 Φs

(ln(

Ks+0.05S0

))2)3

(ln(

ST + 0.05S0

))3

57 / 71

Page 58: Volatility and Skewness Indices Using State-Preference Pricing

SIX

58 / 71

Page 59: Volatility and Skewness Indices Using State-Preference Pricing

SIX

59 / 71

Page 60: Volatility and Skewness Indices Using State-Preference Pricing

SIX and VIX

What’s the contemporaneous relationship between the risk-neutralvolatility and skewness?

• Dennis and Mayhew (2002)

• Neuberger (2012)

• Han (2008)

60 / 71

Page 61: Volatility and Skewness Indices Using State-Preference Pricing

SIX and VIX

∆SIXt Coefficient Std. Error t-Statistic Prob. Adj. R2

∆VIXt 0.0479 0.0041 11.7741 0.0000 0.3043Intercept 0.0000 0.0000 0.7681 0.4425∆SKEWt

∆VIXt -0.5098 0.0467 -10.9212 0.0000 0.0525Intercept 0.0001 0.0013 0.0882 0.9297

∆SIXt = α0 + α1∆VIXt + εt∆SKEWt = β0 + β1∆VIXt + εt

(1)

61 / 71

Page 62: Volatility and Skewness Indices Using State-Preference Pricing

SIX and SPX

VIX responds differently to a decrease in SPX return from anincrease (Whaley, 2009). How about SIX and SKEW?

∆SIXt Coefficient Std. Error t-Statistic Prob. Adj. R2

∆SPXt -0.0840 0.0169 -4.9788 0.0000 0.1517∆ISPX−t 0.0022 0.0003 7.9525 0.0000Intercept -0.0010 0.0001 -6.6267 0.0000∆SKEWt

∆SPXt 2.6165 0.4504 5.8095 0.0000 0.0817∆ISPX−t -0.0106 0.0081 -1.3062 0.1916Intercept 0.0046 0.0041 1.1116 0.2664

∆SIXt = α0 + α1∆SPXt + α2∆ISPX−t + εt∆SKEWt = β0 + β1∆VIXt + β2∆ISPX−t + εt

(2)

62 / 71

Page 63: Volatility and Skewness Indices Using State-Preference Pricing

SIX: Return Predictability

Do SIX or SKEW have any return predictability?

• Cremers and Weinbaum (2010)

• Xing, Zhang and Zhao (2010)

• Rehman and Vilkov (2012)

• Conrad, Dittmar and Ghysels (2012)

63 / 71

Page 64: Volatility and Skewness Indices Using State-Preference Pricing

SIX: Return Predictability

∆SPXt+2 Coefficient Std. Error t-Statistic Prob. Adj. R2

∆SIXt -0.9370 0.0677 -13.8407 0.0000 0.0739Intercept 0.0004 0.0003 1.1190 0.2632∆SKEWt 0.0256 0.0027 9.4709 0.0000 0.0359Intercept 0.0003 0.0004 0.9746 0.3298

∆SPXt+7∆SIXt -0.8885 0.0760 -11.6838 0.0000 0.0296Intercept 0.0009 0.0008 1.1220 0.2619∆SKEWt 0.0278 0.0032 8.7282 0.0000 0.0188Intercept 0.0009 0.0008 1.0597 0.2893

∆SPXt+30∆SIXt -0.7970 0.1205 -6.6133 0.0000 0.0059Intercept 0.0038 0.0024 1.5985 0.1100∆SKEWt 0.0214 0.0046 4.6375 0.0000 0.0026Intercept 0.0039 0.0024 1.6240 0.1045

∆SPXt+i = α0 + α1∆SIXt + εt∆SPXt+i = β0 + β1∆SKEWt + εt

(3)

64 / 71

Page 65: Volatility and Skewness Indices Using State-Preference Pricing

SIX and Realized Skewness

Can SIX or SKEW forecast the physical skewness?

RSkew30 Coefficient Std. Error t-Statistic Prob. Adj. R2

SIX -1.0539 0.3088 -3.4135 0.0006 0.0214Intercept 1.2536 0.3762 3.3327 0.0009SKEW -0.0136 0.0394 -0.3457 0.7296 -0.0001Intercept 0.0156 0.0716 0.2176 0.8278

RSkewt,t+30 = α0 + α1SIXt + εtRSkewt,t+30 = γ0 + γ1SKEWt + εt

(4)

65 / 71

Page 66: Volatility and Skewness Indices Using State-Preference Pricing

SIXD in DJIA

66 / 71

Page 67: Volatility and Skewness Indices Using State-Preference Pricing

SIXN in NDX

67 / 71

Page 68: Volatility and Skewness Indices Using State-Preference Pricing

something interesting (perhaps)

68 / 71

Page 69: Volatility and Skewness Indices Using State-Preference Pricing

Future Research

Way too many ...

69 / 71

Page 70: Volatility and Skewness Indices Using State-Preference Pricing

Future Research

• Examine the intra-day data on S&P 500 Index options tosee if these results still hold.

• Extend this study to other markets: ASX 200, etc.

• Other Applications

• Investigation on the impact of investor fear levels (measuredby VIX) on the earnings management behaviour of US com-panies (Gassen and Markarian, 2009).

• Relationship between changes in expected market volatility(measured by VIX) and net equity fund flows to US equitymutual funds (Ederington and Golubeva, 2009).

70 / 71

Page 71: Volatility and Skewness Indices Using State-Preference Pricing

Thank you for your time and questions!

71 / 71