viviana niro - taup conference · 2015. 8. 4. · bottino et al., hep-ph/0212379, hep-ph/0401186...

19
Light neutralinos and neutrino signal Viviana Niro Max Planck Institut fuer Kernphysik, Heidelberg Roma, 1-5 July, 2009 in collaboration with A. Bottino and N. Fornengo (work in progress) Viviana Niro (MPIK, Heidelberg) Light neutralinos and neutrino signal TAUP 2009 1 / 17

Upload: others

Post on 02-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Light neutralinos and neutrino signal

    Viviana Niro

    Max Planck Institut fuer Kernphysik, Heidelberg

    Roma, 1-5 July, 2009

    in collaboration with A. Bottino and N. Fornengo(work in progress)

    Viviana Niro (MPIK, Heidelberg) Light neutralinos and neutrino signal TAUP 2009 1 / 17

  • Outline

    1 Direct detection and light neutralinosThe effective MSSMChanneling effect and WIMP DFHadronic uncertaintiesDAMA/LIBRA and light neutralinos

    2 Indirect detection in neutrinosThe Super-Kamiokande detectorAnnihilation inside the Earth

    3 Conclusions

    Viviana Niro (MPIK, Heidelberg) Light neutralinos and neutrino signal TAUP 2009 2 / 17

  • Direct detection and light neutralinos The effective MSSM

    The effective MSSM

    Effective MSSM at the electroweak scale is defined by five independent parameters givenby

    M1 = U(1) gaugino massM2 = SU(2) gaugino massµ = Higgs mixing mass parametertanβ = ratio of the two Higgs vevsmA = mass of the CP-odd neutral Higgs bosonmq̃ = squark soft mass common to all quarksml̃ = sleptons soft mass common to all sleptonsA = trilinear parameter for the third family (Ab̃ = At̃ ≡ A mq̃ , Aτ̃ ≡ A ml̃)

    ⇒ No gaugino-mass unification at the GUT scale is assumed

    Bottino et al., hep-ph/0212379, hep-ph/0401186

    ⇒ lower limit on neutralino mass from upper bound on (ΩCDM h2):

    (ΩCDM h2)max = 0.122 → mχ ≥ 7 GeV

    Bottino et al., hep-ph/0304080

    Viviana Niro (MPIK, Heidelberg) Light neutralinos and neutrino signal TAUP 2009 3 / 17

  • Direct detection and light neutralinos Channeling effect and WIMP DF

    Channeling effect and WIMP DF

    Channeling effect: ions can have an anomalous penetration into the lattice of the crystal(ions moving quasi-parallel to the crystallographic axes)⇒ energy losses mainly due to electronic contributions ( 6= quenching factor)⇒ different annual modulation allowed region in the (mχ, ξ σ) plane

    Bernabei et al., 0710.0288 [astro-ph]

    Viviana Niro (MPIK, Heidelberg) Light neutralinos and neutrino signal TAUP 2009 4 / 17

  • Direct detection and light neutralinos Channeling effect and WIMP DF

    Channeling effect and WIMP DF

    Channeling effect: ions can have an anomalous penetration into the lattice of the crystal(ions moving quasi-parallel to the crystallographic axes)⇒ energy losses mainly due to electronic contributions ( 6= quenching factor)⇒ different annual modulation allowed region in the (mχ, ξ σ) plane

    Bernabei et al., 0710.0288 [astro-ph]

    Wimp DF: different form of the WIMP density profile Belli et al., hep-ph/0203242

    From the galactic rotational curve: 170 km sec−1 ≤ v0 ≤ 270 km sec−1

    ⇒ range of ρ0, from maximal amount of non-halo component in the Galaxy⇒ different annual modulation allowed region in the (mχ, ξ σ) plane

    Examples:the cored-isothermal sphere

    ρ(r) =v20

    4πG

    3R2c + r2

    (R2c + r2)2, Rc = 5 kpc

    the NFW profile

    ρ(r) = ρ0

    R0

    r

    «γ »1 + (R0/a)

    α

    1 + (r/a)α

    –(β−γ)/α

    , (α, β, γ, a) = (1, 3, 1, 20 kpc)

    Viviana Niro (MPIK, Heidelberg) Light neutralinos and neutrino signal TAUP 2009 4 / 17

  • Direct detection and light neutralinos Hadronic uncertainties

    Hadronic uncertainties

    Hadronic uncertainties: coupling between the Higgs boson and the nucleon

    Ih,H =X

    q

    kh,Hq mq〈N|q̄q|N〉 = k

    h,Hu−type gu + k

    h,Hd−type gd ,

    introducing

    σπN =1

    2(mu + md)〈N|ūu + d̄d |N〉 , σ0 ≡

    1

    2(mu + md)〈N|ūu + d̄d − 2s̄s|N〉 ,

    r = 2ms/(mu + md)

    ⇒ gu ≃427

    (mN +198σπN −

    12r(σπN − σ0)) , gd ≃

    227

    (mN +234

    σπN +254r(σπN − σ0))

    Viviana Niro (MPIK, Heidelberg) Light neutralinos and neutrino signal TAUP 2009 5 / 17

  • Direct detection and light neutralinos Hadronic uncertainties

    Hadronic uncertainties

    Hadronic uncertainties: coupling between the Higgs boson and the nucleon

    Ih,H =X

    q

    kh,Hq mq〈N|q̄q|N〉 = k

    h,Hu−type gu + k

    h,Hd−type gd ,

    introducing

    σπN =1

    2(mu + md)〈N|ūu + d̄d |N〉 , σ0 ≡

    1

    2(mu + md)〈N|ūu + d̄d − 2s̄s|N〉 ,

    r = 2ms/(mu + md)

    ⇒ gu ≃427

    (mN +198σπN −

    12r(σπN − σ0)) , gd ≃

    227

    (mN +234

    σπN +254r(σπN − σ0))

    Experimental values:

    41 MeV ≤ σπN ≤ 57 MeV R. Koch (1982) , 55 MeV ≤ σπN ≤ 73 MeV Pavan et al. (2001)

    30 MeV ≤ σ0 ≤ 40 MeV Gasser and Leutwyler (1982)

    Nuclear sets considered:

    (r , σπN , σ0) = ((29, 45, 30); (25, 41, 40); (25, 57, 30); (25, 55, 40); (25, 73, 30))

    Viviana Niro (MPIK, Heidelberg) Light neutralinos and neutrino signal TAUP 2009 5 / 17

  • Direct detection and light neutralinos DAMA/LIBRA and light neutralinos

    DAMA/LIBRA and light neutralinos

    DAMA/LIBRA results ⇒ annual modulation effect at a 8.2 σ C .L.(total exposure of 0.82 ton year) Bernabei et al., 0804.2738 [astro-ph], 0804.2741 [astro-ph]

    The DAMA/LIBRA annual modulation region is compatible with neutralinos withmasses mχ ≤ 100 GeV (red: 0.098 ≤ Ωχh2 ≤ 0.122; blue: Ωχh2 ≤ 0.098) Bottino et al., 0806.4099 [hep-ph]

    Viviana Niro (MPIK, Heidelberg) Light neutralinos and neutrino signal TAUP 2009 6 / 17

  • Indirect detection in neutrinos

    Indirect detection in neutrinos

    Particles of Dark Matter gravitationally trapped inside celestial bodies ⇒ accumulate inthe central part of the body ⇒ annihilate producing neutrinosThe differential neutrino flux is:

    dNν

    dEν=

    Γann4πd2

    X

    f

    BRfdNf

    dEν,

    d = distance from the source; Γann = annihilation rate inside the celestial body

    Γann =C

    2tanh2(t0/τA) , τA ∝ (〈σann v〉)

    −1/2

    Production: Different annihilation channels

    χχ → qq̄, τ τ̄ , ZZ , W +W−, gg , higgs channels

    Propagation:inside the Sun → oscillation, neutral and charged current interactionsinside the Earth → mainly vacuum oscillation (we considered θ13 = 0)

    Cirelli et al., hep-ph/0506298; Blennow et al., 0709.3898 [hep-ph]

    Viviana Niro (MPIK, Heidelberg) Light neutralinos and neutrino signal TAUP 2009 7 / 17

  • Indirect detection in neutrinos

    Indirect detection in neutrinos

    Detection: Neutrino-Muon conversion in the rock below the detector

    The flux of neutrino induced muons with energy Eµ and zenith angle θz is given by:

    dNµ

    dEµd cos θz= NA

    Z mχ

    dEν

    Z ∞

    0

    dX

    Z Eν

    dE′µ g(Eµ, E

    ′µ;X ) S(Eν , E

    ′µ)

    g(Eµ, E′µ;X ) =

    δ(X − X0)

    a + bEµ, X0 =

    1

    bln

    a + bE ′µa + bEµ

    a, b = parameters for energy loss (from Bethe-Block formula)

    S(Eν , E′µ) =

    dNν

    dEνd cos θz

    dσν(Eν , E′µ)

    dE ′µ

    Gaisser and Stanev, Phys.Rev.D30: 985, 1984

    with dNνdEνd cos θ

    = ν flux at detector (after oscillation, NC and CC interactions)

    Viviana Niro (MPIK, Heidelberg) Light neutralinos and neutrino signal TAUP 2009 8 / 17

  • Indirect detection in neutrinos The Super-Kamiokande detector

    The Super-Kamiokande detector

    Φµ(θz)S,T =1

    A(Lmin, θz )

    Z mχ

    Eµ(Lmin)

    dEµdNµ

    dEµd cos θzAS,T (Eµ, θz )

    Lipari and Lusignoli, hep-ph/9803440

    AS,T (Eµ, θz ) = effective areas for stopping and through-going muons trajectoriesFor the Super-Kamiokande detector: Lmin = 7 m (Eµ,min = 1.6 GeV)

    -1.0 -0.8 -0.6 -0.4 -0.2 0.0800

    900

    1000

    1100

    1200

    1300

    1400

    cos ΘZ

    Eff

    ecti

    veA

    rea@m

    2D

    SK limit on muons flux:

    Φµ(90% C .L.) =N90

    A × T

    N90= the upper Poissonian limit(90% C .L.) given the number of measuredevents and expected background

    Desai et al., hep-ex/0404025 ; Ashie et al., hep-ex/0501064

    Viviana Niro (MPIK, Heidelberg) Light neutralinos and neutrino signal TAUP 2009 9 / 17

  • Indirect detection in neutrinos The Super-Kamiokande detector

    Atmospheric neutrinos

    Zenith angle distribution for stopping and through-going muons.red lines: νµ ↔ ντ oscillation with sin

    2 θ = 0.50 and ∆m2 = 2.40 10−3 eV2best-fit values from Schwetz et al., 0808.2016 [hep-ph]

    STOPPING MUONS THROUGH-GOING MUONS

    -1.0 -0.8 -0.6 -0.4 -0.2 0.00.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    cos ΘZ

    FΜ@1

    0-13

    cm-

    2s-

    1sr-

    1D

    Super-K 2001 HStat. err. only - 90% CLL

    -1.0 -0.8 -0.6 -0.4 -0.2 0.00.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    cos ΘZ

    FΜ@1

    0-13

    cm-

    2s-

    1sr-

    1D

    Super-K 2001 HStat. err. only - 90% CLL

    Viviana Niro (MPIK, Heidelberg) Light neutralinos and neutrino signal TAUP 2009 10 / 17

  • Indirect detection in neutrinos Annihilation inside the Earth

    Annihilation inside the Earth

    Upward stopping and through-going muons due to neutralino annihilation inside theEarth, for different nuclear sets

    work in progress (preliminary plot)

    Viviana Niro (MPIK, Heidelberg) Light neutralinos and neutrino signal TAUP 2009 11 / 17

  • Indirect detection in neutrinos Annihilation inside the Earth

    work in progress (preliminary plot)

    Viviana Niro (MPIK, Heidelberg) Light neutralinos and neutrino signal TAUP 2009 12 / 17

  • Indirect detection in neutrinos Annihilation inside the Earth

    work in progress (preliminary plot)

    Viviana Niro (MPIK, Heidelberg) Light neutralinos and neutrino signal TAUP 2009 13 / 17

  • Conclusions

    Conclusions

    We have calculated the neutrino signal in through-going and stoppingmuons for the case of neutralino annihilation inside the Earth, for aSK-like detector

    We have included the hadronic uncertainties and the neutralinoconfiguration compatible with the DAMA/LIBRA experimet,considering the channeling effect and the different WIMP distributionfunctions

    We have shown how the stopping muons represent a powerful sourceto test the neutralino light mass region

    Outlook: the study of the induced muon flux from the Sun

    Viviana Niro (MPIK, Heidelberg) Light neutralinos and neutrino signal TAUP 2009 14 / 17

  • BACK-UP SLIDES

  • Range of the MSSM parameters:

    1 ≤ tanβ ≤ 50100 GeV ≤ |µ| ≤ 1000 GeV5 GeV ≤ M1 ≤ 500 GeV100 GeV ≤ M2 ≤ 1000 GeV100 GeV ≤ mq̃ , ml̃ ≤ 3000 GeV90 GeV ≤ mA ≤ 1000 GeV-3 ≤ A ≤ 3

    Experimental constraints imposed:

    1) accelerator data on supersymmetric and Higgs boson searches2) measurements of the b → s + γ:2.89 ≤ BR(b → s + γ) 10−4 ≤ 4.213) upper bound on the branching ratio BR(B0s → µ

    − + µ+):BR(B0s → µ

    − + µ+) < 1.2 10−7

    4) measurements of the muon anomalous magnetic moment aµ ≡ (gµ − 2)/2:

    -98 ≤ ∆aµ 1011 ≤ 565

  • work in progress (preliminary plot)

    Direct detection and light neutralinosThe effective MSSMChanneling effect and WIMP DFHadronic uncertaintiesDAMA/LIBRA and light neutralinos

    Indirect detection in neutrinosThe Super-Kamiokande detectorAnnihilation inside the Earth

    Conclusions