variation of parameters

Upload: andrewkyler92

Post on 14-Apr-2018

241 views

Category:

Documents


2 download

TRANSCRIPT

  • 7/27/2019 Variation of Parameters

    1/40

    MATH C241:MATHEMATICSIII

    BITS-PILANI HYDERABAD CAMPUS

    7

    3-Sep-12 1

    Presented by

    Dr. Akhlad Iqbal

  • 7/27/2019 Variation of Parameters

    2/40

    3-Sep-12 2

    Variation of parameters

    Ch. 3

    George F. Simmons,Differential Equations with

    Applications and Historical notes,Tata McGraw-Hill, 2nd Ed, 2003(Twelfth reprint, 2008)

    Lecture 7

  • 7/27/2019 Variation of Parameters

    3/40

    3-Sep-12 3

    The method of

    Variation of Parameters

  • 7/27/2019 Variation of Parameters

    4/40

    3-Sep-12 4

    In this lecture we discuss a generalmethod of finding a particular solution of

    a non-homogeneous l.d.e. (whether it isconstant coefficient equation or not).

  • 7/27/2019 Variation of Parameters

    5/40

    3-Sep-12 5

    Consider the second order l.d.e.

    0 1 2( ) ( ) ( ) ( )..(*)a x y a x y a x y h x + + =

    We assume that we have already found the

    C.F. as

    1 1 2 2( ) ( )y c y x c y x= +

    The Method of Variation ofparameters

  • 7/27/2019 Variation of Parameters

    6/40

    3-Sep-12 6

    The Method of Variation of parameters says:Take a particular solution of (*) as

    1 1 2 2( ) ( )y v y x v y x= + ($)

    where v1(x), v2(x) are functions ofx to be

    chosen such that ($) is a solution of (*).

  • 7/27/2019 Variation of Parameters

    7/40

    3-Sep-12 7

    1 1 2 2( ) ( )y v y x v y x= + ($)Differentiating ($) w.r.t.x, we get

    1 1 2 2 1 1 2 2( ) ( ) ( ) ( )y v y x v y x v y x v y x = + + +

    We now choose v1, v2 such that

    1 1 2 2( ) ( ) 0 .....(1)v y x v y x + =

    Thus1 1 2 2( ) ( )y v y x v y x = +

  • 7/27/2019 Variation of Parameters

    8/40

    3-Sep-12 8

    Differentiatingy w.r.t.x, we get

    1 1 2 2 1 1 2 2( ) ( ) ( ) ( )y v y x v y x v y x v y x = + + +

    Substituting fory,y,y in (*), we get

    [ ][ ]

    [ ]

    0 1 1 2 2 1 1 2 2

    1 1 11 2 22

    2 1 1 2 2

    ( )( )

    ( ) ( )

    a x v y v y v y v ya x v y v y

    a x v y v y h x

    + + + +

    + +

    + =

    The coefficients ofv

    1,v

    2 are zero as

    1 1 2 2

    ( ) ( )y v y x v y x = +

  • 7/27/2019 Variation of Parameters

    9/40

    3-Sep-12 9

    y1,y2 are solutions of the associatedhomogeneous l.d.e.

    0 1 2( ) ( ) ( ) 0a x y a x y a x y + + =

    Thus we get

    1 1 2 2

    0

    ( )( ) ( ) ....(2)( )

    h xv y x v y xa x

    + =

    Solving (1), (2) we get 1 2,v v

    Integrating, we get 1 2,v v

  • 7/27/2019 Variation of Parameters

    10/40

    3-Sep-12 10

    The two equations satisfied by 1 2,v v

    are1 1 2 2( ) ( ) 0 ...........(1)v y x v y x + =

    1 1 2 2

    0

    ( )( ) ( ) ....(2)

    ( )

    h xv y x v y x

    a x + =

    We note that the determinant of the coefficient

    matrix is

    1 2

    1 2

    ( ) ( )

    ( ) ( )

    y x y x

    y x y x=

    1 2[ , ]( )W y y x 0

  • 7/27/2019 Variation of Parameters

    11/40

    3-Sep-12 11

    asy1,y2 are LI solutions of the associated

    homogeneous l.d.e. Using Cramers rule, we get

    2

    0 2

    1

    1 2

    0 ( )

    ( ) / ( ) ( )

    [ , ]( )

    y x

    h x a x y xv

    W y y x

    =

    2

    0

    1 2

    ( )( )( )

    [ , ]( )

    h xy xa x

    W y y x

    =

    1

    1 0

    2

    1 2

    ( ) 0

    ( ) ( ) / ( )[ , ]( )

    y x

    y x h x a xvW y y x

    =

    1

    0

    1 2

    ( )( )

    ( )[ , ]( )

    h xy x

    a xW y y x

    =

  • 7/27/2019 Variation of Parameters

    12/40

    3-Sep-12 12

    Integrating, we get

    2

    01

    1 2

    ( )( )

    ( )[ , ]( )

    h xy x

    a xv dxW y y x

    =

    1

    02

    1 2

    ( )( )

    ( )

    [ , ]( )

    h xy x

    a xv dxW y y x=

  • 7/27/2019 Variation of Parameters

    13/40

    3-Sep-12 13

    And hence a particular solution is

    1 1 2 2( ) ( )py y v y x v y x= = +

    ( ) ( )( )

    ( ) ( )( )

    2 10 0

    1 2

    ( ) ( )

    ( ) ( )

    h x h x

    y x y xa x a xy x dx y x dx

    W x W x

    = +

  • 7/27/2019 Variation of Parameters

    14/40

    3-Sep-12 14

    ( ) ( )

    ( )

    ( ) ( )

    ( )

    2 1

    0 0

    1 2

    ( ) ( )

    ( ) ( )x x

    a a

    h t h t y t y ta t a t

    y x dt y x dtW t W t

    = +

    [ ]1 2 2 1

    0

    ( ) ( ) ( ) ( )( )( ) ( )

    x

    a

    y t y x y t y xh t dta t W t

    = ( , ) ( )x

    aK x t h t dt=

    where [ ]1 2 2 10

    ( ) ( ) ( ) ( )( , )( ) ( )

    y t y x y t y xK x ta t W t

    =

  • 7/27/2019 Variation of Parameters

    15/40

    3-Sep-12 15

    Example 1 Find the general solution of thed.e. 4 sec2y y x + =

    Auxiliary Equation 2 4 0m + =

    Roots: m = 2iHence the complementary function is

    1 2cos 2 sin 2hy y c x c x= = +c1, c2 arbitrary constants

  • 7/27/2019 Variation of Parameters

    16/40

    3-Sep-12 16

    Hence we take a particular solution as

    1 2cos 2 sin 2y v x v x= +

    where v1(x), v2(x) are functions ofx to bechosen such that the above is a solution of

    the given d.e.Differentiating w.r.t.x, we get

    1 2( 2sin 2 ) (2cos 2 )y v x v x = +

    1 2cos 2 sin 2v x v x + +

  • 7/27/2019 Variation of Parameters

    17/40

    3-Sep-12 17

    We now choose v1, v

    2such that

    1 2cos 2 sin 2 0 .....(1)v x v x + =

    Differentiatingy

    w.r.t.x, we get

    1 2( 2sin 2 ) (2cos 2 )y v x v x = +

    1 2( 4cos2 ) ( 4sin 2 )y v x v x = +

    1 2( 2 sin 2 ) (2 cos 2 )v x v x + +

  • 7/27/2019 Variation of Parameters

    18/40

    3-Sep-12 18

    Substituting fory,y,y

    in the given d.e.,

    we get4 sec2y y x + =

    1 2( 4cos 2 ) ( 4sin 2 )v x v x +

    1 2( 2sin2 ) (2cos2 )v x v x + +

    1 2

    4( cos2 sin 2 ) sec2v x v x x+ + =

    1 2( 2sin 2 ) (2cos2 ) sec2v x v x x + =i.e.

  • 7/27/2019 Variation of Parameters

    19/40

    3-Sep-12 19

    The two equations satisfied by 1 2,v v

    are

    1 2cos 2 sin 2 0 ..... (1)v x v x + =

    1 2( 2sin 2 ) (2cos 2 ) sec2 ...(2)v x v x x + =

    Using Cramers rule, we get

    We note that the determinant of the coefficient

    matrix is

    cos 2 sin 2

    2sin 2 2cos 2

    x x

    x x = 2 0

  • 7/27/2019 Variation of Parameters

    20/40

    3-Sep-12 20

    1

    0 sin 2sec 2 2cos 2

    2

    x

    x xv =

    1tan2

    2x=

    2

    cos 2 0

    2sin 2 sec 2

    2

    x

    x x

    v

    =

    1

    2=

  • 7/27/2019 Variation of Parameters

    21/40

    3-Sep-12 21

    Integrating, we get

    1ln(sec2 )

    4x

    2v =

    1ln(cos 2 ),

    4x=

    1v =

    1

    2x

    Hence a particular solution is

    1 2cos 2 sin 2y v x v x= +

    1 1[ln(cos 2 )]cos 2 sin 2

    4 2x x x x= +

  • 7/27/2019 Variation of Parameters

    22/40

    3-Sep-12 22

    Hence the general solution is

    1 2. . cos 2 sin 2i e y c x c x= + +

    c1, c2 arbitrary constants

    h py y y= +

    1 1[ln(cos2 )]cos2 sin2

    4 2

    x x x x+ +

  • 7/27/2019 Variation of Parameters

    23/40

    3-Sep-12 23

    Alternatively, here we can directly find v1 andv2 by

    20

    1

    1 2

    ( )

    ( )( )

    [ , ]( )

    h x

    y xa xv dx

    W y y x

    =

    10

    2

    1 2

    ( )( )

    ( )

    [ , ]( )

    h xy x

    a xv dx

    W y y x=

  • 7/27/2019 Variation of Parameters

    24/40

    3-Sep-12 24

    Example 2 Find the general solution of thed.e. 2 2( 1) (2 ) (2 ) ( 1)x x y x y x y x + + + = +

    We first find the complementary function .

    1

    xy y e= =

    We assume a second LI solution as

    As the sum of the coefficients (of the LHS)

    2( 1) (2 ) (2 ) 0x x x x= + + + =

    is one solution of the C.F.

    2 1y y vy= = where

  • 7/27/2019 Variation of Parameters

    25/40

    3-Sep-12 25

    2

    1

    1 P dxv e dxy

    = =2(2 )

    ( 1)

    21

    xdxx x

    xe dx

    e

    +

    Now2 2

    ( 1)

    x

    x x

    =

    +

    21

    ( 1)

    x

    x x

    + =

    +

    2 11

    1x +

    +

    Hence 2(2 )( 1)

    xdx

    x xe

    +=

    2 1(1 )1

    dxx xe

    ++ 2

    1 xx ex

    +=

  • 7/27/2019 Variation of Parameters

    26/40

    3-Sep-12 26

    2(2 )

    ( 1)21

    xdx

    x xxv e dx

    e

    +

    = Thus

    2 21 1x

    xx e dx

    e x+= 21 1( )

    xe dxx x

    = + 1xe

    x=

    Hence 2 1y vy= = 1x

    And hence 21

    y x= is a second LI solution

    of the associated homogeneous d.e.

  • 7/27/2019 Variation of Parameters

    27/40

    3-Sep-12 27

    Hence the C.F. is1 2

    1xy c e c

    x= +

    (c1, c2 arbitrary constants)

    So let a particular solution be 1 21x

    y v e v x= +

    Differentiating w.r.t.x, we get

    1 2 1 221 1( )x xy v e v v e vx x

    = + + +

    We now choose v1, v2 such that

    1 2

    10 ....(1)xv e v

    x + = Hence 1 2 2

    1( )xy v e v

    x = +

  • 7/27/2019 Variation of Parameters

    28/40

    3-Sep-12 28

    Differentiatingy w.r.t. x, we get

    1 2 1 23 2

    2 1( ) ( )x xy v e v v e vx x

    = + + +

    Substituting fory,y,y in the given d.e.,

    1 2 1 23 2

    2 1( 1)[ ( ) ( )]x xx x v e v v e vx x + + + +

    2

    1 2

    1(2 )[ ] ( 1)xx v e v x

    x + + = +

    2

    1 2 2

    1(2 )[ ( )]xx v e v

    x+ +

    1 2 2

    1( )xy v e v

    x = +

    we get

  • 7/27/2019 Variation of Parameters

    29/40

    3-Sep-12 29

    1 2 2

    1 ( 1)

    ( ) ....(2)

    x x

    v e v x x

    + + =

    The two equations satisfied by 1 2,v v are

    1 21 0 ....(1)xv e vx

    + =

    1 2 21 ( 1)( ) ....(2)x xv e v

    x x+ + =

    We note that the determinant of the coefficient

    matrix is2

    1 1xex x

    +

    2

    1x xex

    + =

  • 7/27/2019 Variation of Parameters

    30/40

    3-Sep-12 30

    Using Cramers rule, we get

    2

    1

    2

    10

    ( 1) 1

    1( )x

    x

    x

    x xv

    xex

    +

    =+

    x

    e

    =

    2

    2

    0

    1

    1( )

    x

    x

    x

    e

    xex

    vx

    e x

    +

    =+

    x=

    Integrating, we get 1v = ,x

    e

    2v =2

    2

    x

  • 7/27/2019 Variation of Parameters

    31/40

    3-Sep-12 31

    Hence a particular solution is

    1 21xy v e vx

    = + 12x=

    2

    1 2, 2

    x x

    v e v

    = =

    Hence the general solution is h py y y= +

    i.e.1 2

    1xy c e c

    x= + 1

    2

    x

    c1, c2 arbitrary constants

  • 7/27/2019 Variation of Parameters

    32/40

    3-Sep-12 32

    Example 3 Find the general solution of thed.e.

    2 ln .xy y y e x + + =

    Auxiliary Equation 2 2 1 0m m+ + =

    Roots: m = 1, 1

    Hence the complementary function is

    1 2( )x xhy y c e c xe = = +c1, c2 arbitrary constants

  • 7/27/2019 Variation of Parameters

    33/40

    3-Sep-12 33

    Hence we take a particular solution as

    1 2

    x xy v e v xe

    = +

    where v1(x), v2(x) are functions ofx to bechosen such that the above is a solution of the

    given d.e.

    Thus here 1 2,x xy e y xe = =

    Wronskian = W =x x

    x x xe xee e xe

    =

    2xe

  • 7/27/2019 Variation of Parameters

    34/40

    3-Sep-12 34

    Noting that 0( ) 1, ( ) lnx

    a x h x e x

    = = we get

    2

    01

    1 2

    ( )( )

    ( )[ , ]( )

    h xy x

    a xv dxW y y x

    =

    1

    02

    1 2

    ( )( )

    ( )[ , ]( )

    h xy x

    a xv dxW y y x

    =

    2ln

    x x

    xe x xe dxe

    =

    lnx x dx=

    2 2ln

    2 4

    x xx= +

    2lnx x

    x

    e x e dxe

    =

    ln x dx= lnx x x=

  • 7/27/2019 Variation of Parameters

    35/40

    3-Sep-12 35

    Hence a particular solution is

    1 2

    x x

    py y v e v xe

    = = +

    2 2

    ( ln )2 4

    xx xx e

    = + + ( ln )xx x x xe

    223( ln )

    2 4xx x x e=

    And the general solution ish p

    y y y= +

    i.e. 1 2x x

    y c e c xe

    = + +2

    23( ln )2 4

    xxx x e

  • 7/27/2019 Variation of Parameters

    36/40

    3-Sep-12 36

    Example 4 Find the general solution of thed.e. 2 2 2 .xx y x y y xe + =

    Solution Consider the associatedhomogeneous equation

    zx e=

    Note that2

    2,

    dy d y dyxy xy

    dz dz dz = =

    2

    2 2 0x y x y y + =

    We put

    (**)

  • 7/27/2019 Variation of Parameters

    37/40

    3-Sep-12 37

    Auxiliary equation2

    3 2 0m m + =Roots m = 1, 2

    Solution of Eqn (**) is

    2

    1 2

    z z

    y c e c e= +

    21 2y c x c x= +c1, c2 arbitrary constants

    i.e. The complementary function of the

    given d.e. is

    Hence the equation (**) becomes2( 3 2) 0y + = ( )d

    dz =

  • 7/27/2019 Variation of Parameters

    38/40

    3-Sep-12 38

    So we take a particular solution as21 2y v x v x= +

    Thus here 21 2,y x y x= =

    Wronskian = W =2

    1 2

    x x

    x=

    2x

  • 7/27/2019 Variation of Parameters

    39/40

    3-Sep-12 39

    Noting that2

    0( ) , ( )x

    a x x h x xe

    = =

    We get

    20

    1

    1 2

    ( )

    ( )( )

    [ , ]( )

    h x

    y xa xv dx

    W y y x

    = 1

    02

    1 2

    ( )( )

    ( )[ , ]( )

    h xy x

    a xv dxW y y x

    =

    xe

    dx

    x

    = 2xe

    dxx

    =

    x xe e

    dxx x

    =

  • 7/27/2019 Variation of Parameters

    40/40

    3-Sep-12 40

    Hence a particular solution is

    21 2py y v x v x= = +

    2x x

    xe e

    x dx xe x dxx x

    =

    And the general solution is h py y y= +

    i.e.2

    1 2y c x c x= +

    2

    ( )

    xx e

    xe x x dxx

    = +

    2( )x

    x exe x x dx

    x

    +

    * * *