update of thermal conductivity and electrical resistivity

74
Standard Reference Materials: Update of Thermal Conductivity and Electrical Resistivity of Electrolytic Iron, Tungsten, and Stainless Steel Jerome G. Hust Alan B. Lankford Center for Chemical Engineering National Engineering Laboratory National Bureau of Standards Boulder, CO 80303 Sponsored by: Office of Standard Reference Materials National Measurement Laboratory National Bureau of Standards Gaithersburg, MD 20899 U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS. Ernest Ambler, Director Issued September 1984

Upload: others

Post on 05-Nov-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Standard Reference Materials:

Update of Thermal Conductivity andElectrical Resistivity of Electrolytic Iron,Tungsten, and Stainless Steel

Jerome G. HustAlan B. Lankford

Center for Chemical EngineeringNational Engineering LaboratoryNational Bureau of StandardsBoulder, CO 80303

Sponsored by:Office of Standard Reference MaterialsNational Measurement LaboratoryNational Bureau of StandardsGaithersburg, MD 20899

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS. Ernest Ambler, Director

Issued September 1984

Library of Congress Catalog Card Number: 84-601107

National Bureau of Standards Special Publication 260-90Nat!. Bur. Stand. (U.S.), Spec. Pub!. 260-90, 71 pages (Sept. 1984)

CODEN:XNBSAV

2. Performing Organ. Report NoNBS.114A (REV 2·80)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATASHEET (See instructions)

1. PUBLICATION ORREPORT NO.

NBS/SP-260j90 188 5 1 1581 4

PB85-115814III 1111 II II III1!II1111111111111111111

3. Publication Date

September 19844. TITLE AND SUBTITLE Standard Reference Materials:Update of Thermal Conductivity and Electrical Resistivity ofTungsten, and Stainless Steel

Electrolytic Iron,

5. AUTHOR(S)

Jerome G. Hust and Alan B. Lankford6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions) 7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDSDEPARTMENT OF COMMERCEBOULDER, CO 80303

a. Type of Report 8< Period Covered

Final

NBS Category No.

NBS- Ira

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)

Office of Standard Reference MaterialsNational Measurement LaboratoryNational Bureau of StandardsGaithersburg, MD 20899

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 84-601107

Also Availahle from

GPO as SN003-D03. o~(po~-3

[] Document describes a computer program; SF-ISS, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significantbi bliography or literature survey, mention it here)

An update is given of the thermal conductivity and electrical resistivity of themetals: electrolytic iron, tungsten, and stainless steel. This document describes themeasurement effort that has occurred since the establishment of these SRM's. New dataare presented and, based on these, changes in the recommended values are described.The new recommended values are presented in the form of equations, graphs, and tables.The temperature ranges included are: 2 to 1000 K for electrolytic iron, 2 to 3000 Kfor tungsten, and 2 to 1200 Kfor stainless steel.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

electrical resistivity; electrolytic iron; Lorenz ratio; stainless steel; StandardReference Material; thermal conductivity; tungsten.

13. AVAILABILITY

IX] Unlimited

o For Official Distribution. Do Not Release to NTIS

Order From Superintendent of Documents, U.S. Government Printin& Office, Washln&ton, D.C.20'102.

14. NO. OFPRINTED PAGES

71

15. Price

o Order From National Technical Information Service (NTIS), Sprin&field, VA. 22161

PREFACE

Standard Reference Materials (SRM's) as defined by theNational Bureau of Standards are "well-characterized materials,produced in quantity, that calibrate a measurement system toassure compatibility of measurement in the Nation." SRM's arewidely used as primary standards in many diverse fields ofscience, industry, and technology, both within the UnitedStates and throughout the world. For many of the Nation'sscientists and technologists it is of more than passing interestto know the measurements obtained and methods used by the analyti­cal community when analyzing SRWs. An NBS series of papers, ofwhich this publication is a member, called the NBS Special Publi­cation - 260 Series is reserved for this purpose.

This 260 Series is dedicated to the dissemination ofelemental concentration data for NBS biological, geological, andenvironmental SRM's. More information will be found in this 260than is generally found in NBS Certificate of Analysis. This260 enables the user of these SRM's to assess the validity ofdata not available in the Certificate of Analysis. We hope thatthis 260 will provide sufficient additional information so thatnew applications of these SRM's may be sought and found.

Inquiries concerning the technical content of this compila­tion should be directed to the authors. Other questions concernedwith the availability, delivery, price of specific SRM's should beaddressed to:

Office of Standard Reference MaterialsNational Bureau of StandardsGaithersburg, MD 20899

Stanley D. Rasberry, ChiefOffice of Standard Reference Materials

iii

OTHER NBS PUBLICATIONS IN THIS SERIES

Catalog of NBS Standard Reference Materials(1981-83 edition), R. W. Seward, ed., NBSSpec. Publ. 260 (November 1981).

Michaelis, R. E., and Wyman, L. L. StandardReference Materials: Preparation of White CastIron Spectrochemical Standards. NBS Misc.Publ. 260-1 (June 1964). COM74-11061**

Michaelis, R. E., Wyman, L. L., and Flitsch, R.,Standard Reference Materials: Preparation ofNBS Copper-Base Spectrochemical Standards.NBS Misc. Publ. 260-2 (October 1964). COM74­1l063**

Michaelis, R. E., Yakowitz, H., and Moore, G. A.,Standard Reference Materials: MetallographicCharacterization of an NBS Spectrometric Low­Alloy Steel Standard. NBS Misc. Publ. 260-3(October 1964). COM74-11060**

Hague, J. L. Mears, T. W., and Michaelis; R. E.,Standard Reference Materials: Sources ofInformation, NBS Misc. Publ. 260-4 (February1965). COM74-11059

Alvarez, R., and Flitsch R., Standard ReferenceMaterials: Accuracy of Solution X-Ray Spectro­metric Analysis of Copper-Base Alloys. NBSMisc. Publ. 260-5 (March 1965). PB 168068**

Shultz, J. I., Standard Reference Materials:Methods for the Chemical Analysis of WhiteCast Iron Standards, NBS Misc. Publ. 260-6(July 1975). COM74-11068**

Bell, R. K., Standard Reference Materials:Methods for the Chemical Analysis of NBSCopper-Base Spectrochemical Standards. NBSMisc. Publ. 260-7 (October 1965). COM74­11067**

Richmond, M.S., Standard Refere~ce Materials:Analysis of Uranium Concentrates at theNational Bureau of Standards. NBS Misc. Pub!.260-8 (December 1965). COM74-11066**

Anspach, S. c., Cavallo, L. M. Garfinkel, s. B.Hutchinson, J. M. R., and Smith, C. N., Stand­ard Reference Materials: Half Lives of MaterialsUsed in the Preparation of Standard ReferenceMaterials of Nineteen Radioactive NuclidesIssued by the National Bureau of StandardsNBS Misc. Publ. 260-9 (November 1965).COM74-11065**

iv

Yakowitz, H., Vieth, D. L., Heinrich, K. F. J., andMichaelis, R. E., Standard Reference Materials:Homogeneity Characterization on NBS Spectro­metric Standards II: Cartridge Brass and Low­Alloy Steel, NBS Misc. Publ. 260-10 (December1965). COM74-11064·*

Napolitano, A., and Hawkins, E. G., StandardReference Materials: Viscosity of StandardLe~d-Silica Glass, NBS Misc. Pub!. 260-11(November 1966). NBS Misc. Publ. 260-11**

Yakowitz, H., Vieth, D. L., and Michaelis, R. E.,Standard Reference Materials: HomogeneityCharacterization of NBS Spectrometric Stand­ards III: White Cast Iron and Stainless SteelPowder Compact, NBS Misc. Pub!. 260-12(September 1966). NBS Misc. Publ. 260-12**

Spijkerman, J. L., Snediker, D. K., Ruegg, F. c.,and DeVoe, J. R., Standard Reference Mate­rials: Mossbauer Spectroscopy Standard for theChemical Shift of Iron Compounds, NBS Misc.Pub!. 260-13 (July 1967). NBS Misc. Publ.260-13**

Menis, 0., and Sterling, J. T., Standard ReferenceMaterials: Determination of Oxygen in FerrousMaterials - SRM 1090, 1091, and 1092, NBSMisc. Publ. 260-14 (September 1966). NBS Misc.Publ. 260-14**

Passaglia, E., and Shouse, P. J. Standard Refer­ence Materials: Recommended Method of Useof Standard Light-Sensitive Paper for Calibrat­ing Carbon Arcs Used in Testing Textiles forColorfastness to Light, NBS Misc. Publ. 260-15(June 1967). (Replaced by NBS Spec. Publ.260-41.)

Yakowitz, H., Michaelis, R. E., and Vieth, D. L.,Standard Reference Materials: HomogeneityCharacterization of NBS Spe"t:trometric Stand­ards IV: Preparation and Microprobe Charac­terization of W-20% MO Alloy Fabricated byPowder Metallurgical Methods, NBS Spec.Publ. 260-16 (January 1969). COM74-11062**

Catanzaro, E. J., Champion, C. E., Garner, E. L.,Marinenko, G., Sappenfield, K. M., and Shields,W. R. Standard Reference Materials: BoricAcid; Isotopic and Assay Standard ReferenceMaterials, NBS Spec. Pub!. 260-17 (February1970). Out of Print

Geller, S. R, Mantek, P.A., and Cleveland, N.G., Standard Reference Materials: Calibra­tion of NBS Secondary Standard Magnetic Tape(Computer Amplitude Reference) Using theReference Tape Amplitude Measurement"Process A, "NBS Spec. Publ. 260-18 (November1969). (See NBS Spec. PubI. 260-29.)

Paule, R. C., and Mandel, J., Standard ReferenceMaterials: Analysis of Interlaboratory Measure­ments on the Vapor Pressure of Gold (Certifica­tion of Standard Reference Material 745). NBSSpec. PubI. 260-19 (January 1970). PB190071 **

Paule, R. C., and Mandel, J., Standard ReferenceMaterials: Analysis of Interlaboratory Measure­ments on the Vapor Pressures of Cadmium andSilver, NBS Spec. PubI. 260-21 (January 1971).COM74-11359**

Yakowitz, H., Fiori, C. E., and Michaelis, R. E.,Standard Reference Materials: HomogeneityCharacterization of Fe-3 Si Alloy, NBS Spec.Publ. 260-22 (February 1971). COM74-11357**

Napolitano, A., and Hawkins, E. G., StandardReference Materials: Viscosity of a StandardBorosilicate Glass, NBS Spec. Publ. 260-23(December 1970). COM71-00157**

Sappenfield, K. M., Marineko, G., and Hague, J.L., Standard Reference Materials: Comparisonof Redox Standards, NBS Spec. Publ. 260-24(January 1972). COM72-50058**

Hicho, G. E., Yakowitz, H., Rasberry, S. D., andMichaelis, R. E., Standard Reference Materials:A Standard Reference Material ContainingNominally Four Percent Austenite, NBS Spec.PubI. 260-25 (February 1971). COM74-11356**

Martin, J. F., Standard Reference Materials:National Bureau of Standards-US Steel Corpor­tion Joint Program for Determining Oxygen andNitrogen in Steel, NBS Spec. Publ. 260-26(February 1971). 85 cents* PB 81176620

Garner, E. L., Machlan, L. A., and Shields, W. R.,Standard Reference Materials: UraniumIsotopic Standard Reference Materials, NBSSpec. Publ. 260-27 (April 1971). COM74­11358**

Heinrich, K. F. J., Myklebust, R. L., Rasberry, S.D., and Michaelis, R. E., Standard ReferenceMaterials: Preparation and Evaluation ofSRM's 481 and 482 Gold-Silver and Gold­Copper Alloys for Microanalysis, NBS Spec.'Publ. 260-28 (August 1971). COM71-50365**

v

Geller, S. R, Standard Reference Materials: Cali­bration of NBS Secondary Standard MagneticTape (Computer Amplitude Reference) Usingthe Reference Tape Amplitude Measurement"Process A-Model 2," NBS Spec. Publ. 260-29(June 1971). COM71-50282

Gorozhanina, R. S., Freedman, A. Y., andShaievitch, A. B. (translated by M. C. Selby),Standard Reference Materials: StandardSamples Issued in the USSR (A Translationfrom the Russian). NBS Spec. Publ. 260-30 (June1971). COM71-50283**

Hust, J. G., and Sparks, L. L., Standard ReferenceMaterials: Thermal Conductivity of ElectrolyticIron SRM 734 from 4 to 300 K, NBS Spec. Publ.260-31 (November 1971). COM71-50563**

Mavrodineanu, R., and Lazar, J. W., StandardReference Materials: Standard Quartz Cuvettes,for High Accuracy Spectrophotometry, NBSSpec. Publ. 260-32 (December 1973). 55 cents*SN003-003-01213-1

Wagner, H. L., Standard Reference Materials:Comparison of Original and SupplementalSRM 705, Narrow Molecular Weight Distri­bution Polystyrene, NBS Spec. Publ. 260-33(May 1972). COM72-50526**

Sparks, L. L., and Hust, J. G., Standard ReferenceMaterials: Thermoelectric Voltage, NBS Spec.PubI. 260-34, (April 1972). COM72-50371**

Sparks, L. L., and Hust, J. G., Standard Refer­ence Materials: Thermal Conductivity ofAustenitic Stainless Steel, SRM 735 from 5to 280 K, NBS Spec. Publ. 260-35 (April 1972.)35 cents* COM72-50368** .

Cali, J. P., Mandel, J., Moore, L. J., and Young, D.S., Standard Reference Materials: A RefereeMethod for the Determination of Calcium inSerum, NBS SRM 915, NBS Spec. Publ. 260-36(May 1972). COM72-50527**

Shultz, J. I. Bell., R. K. Rains, T. C., and Menis,0., Standard Reference Materials: Methods ofAnalysis of NBS Clay Standards, NBS Spec.Publ. 260-37 (June 1972). COM72-50692**

Richmond, J~ C., artd Hsia, J. J., Standard Refer­ence Materials: Preparation and Calibration ofStandards of Spectral Specular Reflectance,NBS Spec. Publ. 260-38 (May 1972). COM72-50528** '

Clark, A. F., Denson, V.A., Hust, J. G., andPowell, R. L., Standard Reference MaterialsThe Eddy Current Decay Method for ResistivityCharacterization of High-Purity Metals, NBSSpec~ Publ. 260-39 (May 1972). COM72-50529**

McAdie, H. G., Garn, P.D., and Menis, 0., Stand­ard Reference Materials: Selection of ThermalAnalysis Temperature Standards Through aCooperative Study (SRM 758, 759, 760), NBSSpec. Publ. 260-40 (August 1972.) COM72­50776**

Wood, L. A., and Shouse, P. J., StandardReference Materials:, Use of Standard Light­Sensitive Paper for Calibrating Carbon ArcsUsed in Testing Textiles for Colorfastness toLight, NBS Spec. Publ. 260-41 (August 1972)COM72-50775**

Wagner, H. L. and Verdier, P. 0., eds., Standard'Reference Materials: The Characterization ofLinear Polyethylerie, SRM 1475, NBS Spec.Publ. 260-42 (September 1972). COM72­50944**

Yakowitz, H., Ruff, A. W., and Michaelis, R. E.,Standard 'Reference Materials: Preparation andHomogeneity Characterization of an AusteniticIron-Chromium-Nickel Alloy, NBS Spec. Publ.260-43 (November 1972). COM73-50760**,

Schooley, J. F., Soulen, R. J., Jr., and Evans, G. A.,Jr., Standard Reference Materials: Preparationand Use of Superconductive Fixed PointDevices, SRM 767, NBS Spec. Publ. 260-44(December 1972). COM73-50037**

Greifer, B., Maienthal, E. J. Rains, T. C., andRasberry, S. D., Standard Reference Materials:Powdered Lead-Based Paint, SRM 1579, NBSSpec. Publ. 260-45 (March 1973). COM73­50226**

Hust, J.G., and Giarratano, P. J., Standard Refer.ence Materials: Thermal Conductivity andElectrical Resistivity Standard Reference Mate­rials: Austenitic Stainless Steel, SRM's 735 and798, from 4 to 1200 k, NBS Spec. Publ. 260-46(March 1975). SN003-003-01278-5

Hust, J. G., Standard Reference Materials: Elec­trical Resistivity of Electrolytic Iron, SRM 797,and Austenitic Stainless Steel, SRM 798,'from 5to 280 K, NBS Spec. Publ. 260-47 (February1,~J4). COM74-50176**

Mangum, B. W., and Wise, J. A., Standard Refer­ence Materials: Description and Use of PrecisionThermometers for the Clinical Laboratory,,SRM 933 and SRM 934, NBS Spec. Publ. 260-48(May 1974). 60 cents* ~N003-003-01278-5

Carpenter, B. S., and Reimer, G. M., StandardReference Materials Calibrated Glass Stand­ards for Fission Track Use, NBS Spec. Publ.,260-49 (November 1974). COM74-51185

vi

Hust, J. G., and Giarratano, P. J., Standard Refer­ence Materials: Thermal Conductivity ij,nd Elec­trical Resistivity Standard Reference Materials:Electrolytic Iron, SRM's 734 and 797 from 4 to1000 K,.NBS Spec. Publ. 260-50 (June 1975).$1.00* SNO()3=OO3-01425-7

Mavrodineanu, R., and Baldwin, J. R., StandardReference Materials: Glass Filters As a StandardReference Material for Spectrophotometry;Selection; Preparation; Certification; Use-SRM930, NBS Spec. Publ. 260-51 (November 1975).$1.90* SN003-003-01481-8

Hust, J. G., and Giarratano, P. J., Standard Refer­ence Materials: Thermal Conductivity and Elec­trical Resistivity Standard Reference Materials730 and 799, from 4 to 3000 K, NBS Spec. Publ.260-52 (September 1975). $1.05* SN003-003­01464-8 .

Durst, R. A., Standard Reference Materials:Standardization of pH Measurements, NBSSpec. Publ. 260-53 (December 1975, Revised)...$1.05 SN003-oo3-0l551-2

Burke, R. W., and Mavrodineanu, R. StandardReference Materials: Certification and Use ofAcidic Potassium Dichr,omate Solutions as anUltraNiolet, Absorbance Standard, NBS Spec.Publ. 260-54 (August 1977). $3.00* SN003-003-,01828-1'. ' '

Ditmars, D. A., Cezairliyan, A., Ishihara, S., andDouglas, T. B., Standard Reference Materials:Enthalpy and Heat Capacity; MolybdenumSRM 781, from 273 to 2800 K, NBS Spec. Publ.260-55 (September 1977). $2.20* SN003-003­01836-8

Powell, R. L., Sparks, L. L., and Hust, J. G.,Standard Reference Materials: StandardThermocouple Materials, Pt.67: SRM 1967, NBSSpec. Publ. 260-56 (February 1978). $2.20*SN003-003-018864 '

Cali, J. P.and Plebanski, T., Guide to UnitedStates Reference Materials, NBS,. Spec. Publ.260-57 (February 1978). $2.20* PB 277173

Barnes, J. D., and Martin, G': M., Standard Refer-. ,- {,(',' . - .

ence Materials: Polyester Film for Oxygen GasTransmis,sion Measurements SRM 1470, NBSSpec. Publ. 260-58 (June 1979) $2.00* SN003­003-02077

Chang, T., and Kahn, A. H. Standard ReferenceMaterials: Electron Paramagnetic ResonanceIntensity Standard; SRM 2601, NBS Spec.Publ. 260-59 (August 1978) $2.30* SN003­003-01975-5

Velapoldi, R. A., Paule, R. C., Schaffer, R.,Mandel, J., and Moody, J. R., Standard Refer­ence Materials: A Reference Method for theDetermination of Sodium in Serum, NBS Spec.PubI. 260-60 (August 1978). $3.00* SN003-00301978-0

Verdier, P. H., and Wagner. H. L., Standard Refer­ence Materials: The Characterization of LinearPolyethylene (SRM 1482, 1483, 1484), NBSSpec. Publ. 260-61 (December 1978). $1.70*SN003-003-02006-1

Soulen, R. J., and Dove, R. B., Standard ReferenceMaterials: Temperature Reference Standardfor Use Below 0.5 K (SRM 768). NBS Spec.Publ. 260-62 (April 1979). $2.30* SN003-003­02047-8

Velapoldi, R. A., Paule, R. C., Schaffer, R.Mandel, J., Machlan, L. A., and Gramlich, J. W.,Standard Reference Materials: A ReferenceMethod for the Determination of PO,tassium inSerum. NBS Spec. Publ. 260-63 (May 1979).$3.75* SN003-003-02068

Velapoldi, R. A., and Mielenz, K. D., StandardReference Materials: A Fluorescence StandardReference Material Quinine Sulfate Dihydrate(SRM 936), NBS Spec. Publ. 260-64 (January1980). $4.25* SN003-003-02148-2

Marinenko, R. B., Heinrich, K. F. J., and Ruegg,F. C., Standard Reference Materials: Micro­Homogeneity Studies of NBS Standard ReferenceMaterials, NBS Research Materials, and OtherRelated Samples. NBS Spec. Publ. 260-65(September 1979). $3.50* SN003-003-02114-1

Venable, W. H., Jr., and Eckerle, K. L., StandardReference Materials: Didymium Glass Filters forCalibrating the Wavelength Scale of Spectro­photometers (SRM 2009, 2010, 2013). NBS Spec.Publ. 260-66 (October 1979). $3.50* SN003-003­02127-0

Velapoldi, R. A., Paule, R C., Schaffer, R., Mandel,J., Murphy, T. J., and Gramlich, J. W., StandardReference Materials: A Reference Method for theDetermination of Chloride in Serum, NBS Spec.Publ. 260-67 (November 1979). $3.75* SN003­003-02136-9

Mavrodineanu, R. and Baldwin, J. R., StandardReference Materials: Metal-On-Quartz Filters as aStandard Reference Material for Spectrophoto­metry-SRM 2031, NBS Spe,c. Publ. 260-68(April 1980). $4.25* SN003-003-02167-9

vii

Velapoldi, R. A., Paule, R. C., Schaffer, R.,Mandel, J., Machlan, L. A., Garner, E. L., andRains, T. C., Standard Reference Materials: AReference Method for the Determination ofLithium in Serum, NBS Spec. Publ. 260-69 (July)1980). $4.25* SN003-003-02214-4

Marinenko, R. B., Biancaniello, F., Boyer, P. A.,Ruff, A. W., DeRobertis, L., Standard ReferenceMaterials: Preparation and Characterization ofan Iron-Chromium-Nickel Alloy for Micro­analysis, NBS Spec. Publ. 260-70 (May 1981).$2.50* SN003-003-02328-1 .

Seward, R. W., and Mavrodineanu, R., StandardReference Materials: Summary of the ClinicalLaboratory Standards Issued by the NationalBureau of Standards, NBS Spec. Publ. 260-71(November 1981). $6.50* SN003-003-02381-7

Reeder, D.J., Coxon, B., Enagonio, D., Christensen,R. G., Schaffer, R., Howell, B. F., Paule, R. C.,Mandel, J., Standard Reference Materials: SRM900, Antiepilepsy Drug Level Assay Standard,NBS Spec. Publ. 260-72 (June 1981). $4.25*SN003-003-02329-9

Interrante, C. G., and Hicho, G. E., Standard Refer­ence Materials: A Standard Reference MaterialContaining Nominally Fifteen Percent Austenite(SRM 486), NBS Spec. Publ. 260-73 (January'1982). $2.75* SN003-003-02386-8

Marinenko, R B., Standard Reference Materials:Preparation and Characterization of K-411 andK-414 Mineral Glasses for Microanalysis: SRM470. NBS Spec. Pub1. 260-74 (April 1982).$3.50 SN003-003-023-95-7

Weidner, V. R., Hsia, J. J., Standard Reference.Materials: Preparation and Calibration of FirstSurface Aluminum Mirror Specular ReflectanceStandards (SRM 2003a), NBS Spec. Publ. 260-75(May 1982). $3075 SN003-003-023-99-0

Hicho, G. E. and Eaton, Eo Eo, Standard ReferenceMaterials: A Standard Reference MaterialContaining Nominally Five Percent Austenite(SRM 485a), NBS Spec. Publ. 260-76 (August1982). $3.50 SN003-003-024-33-3

Furukawa, GoT., Riddle, J. L., Bigge, Wo G., andPfieffer, E. R, Standard Reference Materials:Application of Some Metal SRM's as Thermo­metric Fixed Points, NBS Spec. Publ. 260-77(August 1982). $6.00 SN003-003-024-34-1

Hicho, G. E. and Eaton, E. E., Standard ReferenceMaterials: Standard Reference Material Contain­ing Nominally Thirty Percent Austenite (SRM)487), NBS Spec. Publ. 260-78 (September 1982).$3.75 SNOO3-OO3-o24-35-o

Richmond, J. C., Hsia, J. J. Weidner, V. R., andWilmering, D. B., Standard Reference Materials:Second Surface Mirror Standards of SpecularSpectral Reflectance (SRM's 2023, 2024, 2025),NBS Spec.Publ. 260-79 (October 1982). $4.50SN003-OO3-o24-47-3

Schaffer, R., Mandel, J., Sun, T., Cohen, A., andHertz, H. S., Standard Reference Materials:Evaluation by an ID/MS Method of the AACCReference Method for Serum Glucose, NBSSpec. Publ. 260-80 (October 1982). $4.75 SN003­003-024-43-1

Burke, R. W., Mavrodineanu, R. (NBS retired),Standard Reference Materials: Accuracy inAnalytical Spectrophotometry, NBS Spec. Publ.260-81 (April 1983). $6.00 SN003-OO3-o24-84-8

Weidner, V. R., Standard Reference Materials:White Opal Glass Diffuse Spectral ReflectanceStandard for the Visible Spectrum (SRM 2015and 2016), NBS Spec. Publ. 260-82 (April 1983).$3.75 SN-003-OO3-o24-89-9

Bowers, G. N., Jr., Alvarez, R., Cali, J. P. (NBSretired), Eberhardt, K. R., Reeder, D. J.,Schaffer, R., Uriano, G. A., Standard ReferenceMaterials: The Measurement of the Catalytic(Activity) Concentration of Seven Enzymes inNBS Human Serum SRM 909, NBS Spec.publ. 260-83 (June 1983). $4.50 SN003-OO3-o24­99-6

Gills, T. E., Seward, R. W., Collins, R. J., andWebster, W. C., Standard Reference Materials:Sampling, Materials Handling, Processing, andPackaging of NBS Sulfur in Coal StandardReference Materials, 2682, 2683, 2684, and 2685,NBS Spec. Publ. 260-84 (August 1983). $4.50SN003-OO3-o25-20-8

Swyt, D. A., Standard Reference Materials: A Lookat Techniques for the Dimensional Calibration ofStandard Microscopic Particles, NBS Spec. Publ.260-85 (September 1983). $5.50 SN003-o03­025-21-6,

Hicho, G. E. and Eaton, E. E., Standard ReferenceMaterials: A Standard Reference MaterialContaining Two and One-Half Percent Austenite,SRM 488, NBS Spec. Publ. 260-86 (December1983). $1.75· SN003-OO3-o25-41-1

Mangum, B. W., Standard Reference Materials:SRM 1969: Rubidium Triple-Point - A Tempera­ture Reference Standard Near 39.30 °C, NBSSpec. Publ. 260-87 (December 1983). $2.25.SN003-OO3-o2S-44-5

viii

Gladney, E. S., Burns, C. E., Perrin, D. R.,Roelandts, I., and Gills, T. E., 1982 Compilationof Elemental Concentration Data for NBSBiological, Geological, and EnvironmentalStandard Reference Materials. NBS Spec. Publ.260-88 (March 1984). SNOO3-OO3-o2565-8

Hust, J. G., A Fine-Grained, Isotropic Graphite forUse as NBS Thermophysical Property RM's from5 to 2500 K, NBS Spec. Publ. 260-89 (In Press).

Hust, J. G., and Lankford, A. B., Update ofThermalConductivity and Electrical Resistivity ofElectrolytic Iron, Tungsten, and Stainless Steel,NBS Spec. Publ. 260-90 (In Press).

• Send order with remittance to Superintendentof Documents, U.S. Government Printing OfficeWashington, DC 20402. Remittance fromforeign countries should include an additionalone-fourth of the purchase price for postage.

•• May be ordered from: National TechnicalInformation Services (NTIS). SpringfieldVirginia 22151.

TABLE OF CONTENTS

Preface •

Abstract

Recommended Values

Summary •

Acknowledgments.

References

Introduction

New Measurements

2.1 Low Temperatures

2.2 High Temperatures

Data Analysis.

1

1

2

2

2

3

5

7

14

16

31

33

44

45

58

58

59

Page

iii

List of Figures for Electrolytic Iron

List of Figures for Stainless Steel

Electrolytic Iron

List of Figures and Tables

3.1.1

3.3.1

3.1

3.2 Tungsten

3.2.1 List of Figures for Tungsten.

3.3 Stainless Steel

4.1

2.

3.

5.

6.

7.

4.

ix

Update of Thermal Conductivity and Electrical Resistivity of Electrolytic Iron,Tungsten, and Stainless Steel

J. G. Hust and A. B. Lankford

Chemical Engineering Science DivisionCenter for Chemical EngineeringNational Bureau of Standards

Boulder, Colorado 80303

An update is given of the thermal conductivity and electrical resis­tivity of the metals: electrolytic iron, tungsten, and stainless steel.This document describes the measurement effort that has occurred since theestablishment of these SRM's. New data are presented and, based on these,changes in the recommended values are described. The new recommended valuesare presented in the form of equations, graphs, and tables. The temperatureranges included are: 2 to 1000 K for electrolytic iron, 2 to 3000 K fortungsten, and 2 to 1200 Kfor stainless steel.

Key words: electrical resistivity; electrolytic iron; Lorenz ratio;stainless steel; Standard Reference Material; thermalconciuctivity; tungsten.

1. Introduction

The first Standard Reference Materials (SRM's) for transport properties is­sued by the Office of Standard Reference Materials (OSRM) of the National Bureauof Standards (NBS) were described by Hust and Sparks [1-3]. Later, the certifi­cati on data for these SRM's were extended to hi gher temperatures as described byHust and Giarratano [4-6]. Additional data and information on this original workcan be found in refs. 7 through 11. These SRM's, in addition to serving as thebasis for apparatus calibration in the technical community, drew the attention ofthe Task Group on Thermophysical Properties of Solids, Committee on Data forScience and Technology (CODATA). This Task Group, originally chaired by Y. S.Touloukian of the Thermophysical Properties Research Center, Purdue (TPRC) andnow chaired by M. L. Minges of the Air Force Materials Laboratory, Dayton (AFML),undertook a program to intercompare the thermophysical property measurement capa­bilities of numerous laboratories on a world-wide basis. A secondary purpose wasto improve existing SRM's and establish new SRM's where needed. As a conse­quence, the three NBS SRM's (electrolytic iron, tungsten, and stainless steel)*were chosen for measurement by the participating laboratories. In addition, AXM­5Ql graphite was included in the program.

As a consequence of this program, along with related activities, a consider­able number of new measurements were made available. The purpose of this docu­ment is to describe the new measurements and use them to improve the recommendedvalues and uncertainty in the values for these materials. The graphite data gen­erated by this program are described in another NBS Special Publication of thisseries (in press). A description of the CODATA program has been given byMinges [12].

*These materialS are currently available from the Office of Standard ReferenceMaterials as SRM 1460-1462 (stainless steel), RM 8420 and 8421 (electrolyticiron) and RM 8422 and 8423 (sintered tungsten).

1

2. New Measurements

For convenience, the new measurements are divided into two categories,a) Low temperatures and b) High temperatures. The dividing line between thesetwo categories is taken to be approximately 300 K. For the most part, these newdata have been published in the open literature; however, in a few instances thedata are referenced by private communication only.

The low temperature measurements were coordinated by Dr. R. Berman, OxfordUniversity, the high temperature measurements by Dr. M. L. Minges, Air ForceMaterials Laboratory under the auspices of the CODATA Task Group on Thermo­physical Properties of Solids. J. G. Hust was responsible for specimen charac­terization and distribution as well as specimen collection, post characteriza­tion, and final data analysis.

2.1 Low Temperature Measurements

The most significant low temperature measurements conducted on these mate­rials are described by Berman, et al. [13]. The measurements include only valuesof thermal conductivity and electrical resistivity. Measurements were conductedby other laboratories but they were unpublished and judged to be unreliable bythe coordinator. The data described by Berman, et al. [13] will be identified inthis document according to the measurement facility, e.g., Leeds (Physics Depart­ment, University of Leeds, U.K.), NML (CSiRO, Division of Applied Physics,Nati onal Measurement Laboratory, Sydney, Austral i a), and NBS. The uncertai ntyfrom these sources is estimated to be about one percent for electrical resis-tivity, and two to four percent for thermal conductivity. In general, these dataagree quite well with each other and the original NBS data. The largest devia­tions occur at the lowest temperatures, i.e., in the vicinity of the peak in theA curve and below.

2.2 High Temperature Measurements

The new hi gh temperature measurements sunmari zed in Table 1 on these mate­rials include: thermal conductivity, electrical resistivity, thermal diffusiv­ity, thermal expansion, specific heat, and Seebeck coefficient. Although itwould be desirable to analyze each of these measured properties at this time,funding limitations restrict this document to the analysis of thermal conductiv­ity and electrical resistivity only. It is anticipated that the measurements ofthe other properties will be analyzed in the future. The results of these futureanalyses will be the basis for recommended values for the additional properties.The data that have been obtained since 1979 are sUlT111arized below. The experi­mental data have been corrected for thermal expansion by the participants. Nofurther corrections were performed.

The high temperature electrical resistivity data are believed accurate toabout one to two percent. The thermal conductivity data accuracy varies fromabout one to five percent. Exceptions are noted in the section on data analysis(Section 3). .

2

Table 1-

TeElp':lratureMateri al s Properties Range Reference

( K)

Arc-Cast Tungsten D 500-2400 14

II >.,p 349-1266 19

II >. 293-773 20

Sintered Tungsten >.,p,Cp,D 1300-2600 22

Tungsten Cp,p 2000-3600 18

Electrolytic Iron o 296-1373 15

Stainless Steel D 286-1450 15

II >.,p,S 4-1100 16

II D 500-1200 17II >.,p 322-1173 21

II Cp 323-773 23

II Cp 320-800 24

II 0 450-1000 25

>. = Thermal Conductivityp = Electrical ResistivityD = Thermal DiffusivityS = Seebeck CoefficientCp = Speci fi cHeat

3. Data Analysis

The data analysis for each of the materials was performed using both the oldand new data. An equation was developed to describe the temperature dependenceof each property for each materi al • In the case of the purer metal SRM IS, ironand tungsten, these equations include the dependence on impurity variations.These equat ions were used to exami ne the detailed differences between the datasets. Finally, the equations were used to establish smoothed recommended valuesfor each property and SRM.

3

The general form of the thermal conductivity equation for the pure metals,iron, and tungsten is given by

A= (W + W. + w. )-1o 1 10

where

PoWo = siT, where 8 =--L

o

where Lo = the Sommerfeld value of the Lorenz ratio = 2.443 x 10-8

and

The general fonn of the electrical resistivity equation is given by

where Po = residual electrical resistivity

and

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

Wc and Pc are empirical functions chosen to represent the undulatorysystematic residuals in the fit of the data. These equations are chosen so theycan be programmed easily on small calculators requiring a minimum of precision inthe parameters. They also maintain a theoretical basis at low temperatures.

4

3.1 Electrolytic Iron

The experimental thermal conductivity data reported for this RM are illus­t rated in fi gure 3.1.1. The hi gh temperature data of Ful kerson, et al. [26] areincluded because their data is the basis of the previous SRM certification inthis temperature range. Unfortunately, no new data in this range were estab­lished.

The identification of each data source is difficult in figure 3.1.1, how­ever, it is more clear in the later deviation plots. Equation 3.1 was fitted tothese data by nonlinear least squares techniques, and the resulting parametersare

PI = 274.6 x 10-8

P2 = 1.757

P3 = 1.5167 x 105

P4 = -1.22

where A is in W'm-1'K-1 and T in K.

The residuals were represented by

P5 = 245.4

P6 = 1.375

Wc = -0.004 tn(T/440) exp(-(tn(T/650)/0.8)2)

-0.002 tn(T/90) exp(-(tn(T/90)/0.45)2)

h W d . -1 d . 1were c an Tare 1n m.K·W an K, respectlve y.

(3.8)

To obtain a good fit at low temperatures, it was found that the experimentalvalue of a had to be multiplied by 0.98. This is equivalent to a Lorenz ratio 2%higher than the Sommerfeld value. The resulting deviations of the experimentaldata from this equation are illustrated in figure 3.1.2.

The deviations of the previously recommended thermal conductivity values forthis RM are illustrated in figure 3.1.3. It is noted that the most significantchange is below 30 K. Otherwise the differences are within the combined uncer­tainties of the recommended values.

The previous certification indicated that if a prescribed heat treatment wasfollowed, the resulting specimen would have a specified residual electrical re­sistivity, Po' The recent work has shown that this is not the case and theform of equation (3.1) contains the proper correction for variations in Po'

5

The experimental electrical resistivities for this RM are illustrated infigure 3.1.4. Again 5 no new high temperature data are available. Equation (3.5)was fitted by nonlinear least squares to these data. The resulting parametersare

PI = 42.17 x 10-16 Ps = 178.5

p = 3.243 P = 1.982 6

P3 = 7.638 x 1011 P = 0.059447

P4 = 1.95

where p is in n·m and T is in K.

The residuals were represented by

P = - 3 x 10-8 tn(T/370) exp(-(tn(T/600)/0.6)2)c

- 3 x 10-9 tn{T/105) exp(-(tn(T/120)/O.45)2)

where Pc and T are in n·m and K5 respectively.

(3.9)

The resulting deviations of the experimental data from this equation areillustrated in figure 3.1.5. The deviations of the previously recommended valuesare shown in figure 3.1.6.

6

3.1.1 List of Figures and Tables for Electrolytic Iron

Figure 3.1.1 Experimental thennal conductivity data for theelectrolytic iron Rr.., from the following sources:(8, 13, 26) .

Figure 3.1.2 Thermal conductivity deviations of the electrolyticiron RM data of the following references fromequation (3.1): (8, 13, 26) ••••••••••

. . . 8

9

Fi gure 3.1.3

Figure 3.1.4

Deviations of the previously recommended thermalconductivity values (6) from equation (3.1)

Experimental electrical resistivity data for theelectrolytic iron RM from the following sources:(8, 13, 26) •.•.....••..••...• . . .

10

11

Figure 3.1.5 Electrical resistivity deviations of the electrolyticiron RM data of the following references fromequation (3.5): (8, 13, 26) •••••••••••• . . . 12

Figure 3.1.6 Deviations of the previously recoffinended electricalresistivity values (6) from equation (3.5) •••••

7

13

A~ef!!iA~

l!.IAO

A~

100 ~O0

~A8 AA

8 AA• AE 0

.........

A80

~...0>-t 60 A~f-l

00 0t-l

> A O 0t-l

AOf-l0(.) 0

:J 40 V0 AO 0z i0 0(.)

-J ~a::~0:: iw 0:cf-l 20

10 20 40 100

TEMPERATURE,K200 400

rlgu~e 3.1.1 Expe~lmentaL the~maL conductlvlty data fo~ theeLect~oLytlc l~on RM f~om the foLLowlng 8ou~ce8:

(8,13,26)

0- (26), A- (8),0- (13), +- (13)

0- (13), '\1- (13),

8

7.5 I I I I I I I I I ,

5 f-

• -2.5 ­>wo

20 40 100

TEMPERATURE,K

•c.J...Ja:c.JI•

Cf)a::lo

•~c.JQ..

o

-5 -

-7.5 I-

-104

I I I I I

10I I I I I I

200

-

-

AOn,..OOO

-

-

-I I I I I I I

400

fLgure 3.1.2 Thermal conductLvLty devLatLons of the eLectroLytLc LronRM data of the foLLowLng references from eq.(3.1):

(8,13,26)

0- (26), b.- (8),¢- (13)

9

0- (13), V- (13),

3 I I I I I I I I I I I I I I I

0

2 - 0 00 -

........• 0 0

C,.) 0 0--l 0 0CC 1 - 00 -(.)I 0 0 0 0• 0 0 0 0 0

(J')00CO 0 0 00

0 0 v....., 0• 0

> 0 0WCJ 0 0-1 - 0 -

• 0E-t(.)a..

-2 - -

40 100

TEMPERATURE,K

-34

I I

10I

20I I I I

200I I I I

400 1000

fLgure 3.1.3 DevLatLons of the prevLousl~ recommended thermalconductLvLt~ values (6) from eq.(3.1).

10

0

400 0

0

E200 0

•c:c 0...

>-t 0E-t-. 100 A>-.AE-t

en A-. Aen AW0:::: 40...J Aa:(.)-. A0:::: 20E-t(.) AW ,....JW ,

10

I4 I!I Iil ~ Iillillil IilIillillill!ll!l~ U ~~

A AAA A AA

4 10 20 40 100 200 400

TEMPERATURE,K

rLgure 3.1.4 ExperLmentaL eLectrLcaL re8LetLvLt~ data for theeLectroLytLc Lron RH from the foLLowLng 8ource.:(8,13,26)

0- (26), A- (8), 0- (13), V- (13)

11

1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 I 1 I 1 1 1 1 1 1

A

o.pllAA

0.5 fo-0 -

""'"'AA VVV qp

• V Aio 0 A

c.J Vv V 0 V....l VV 0CI: 0 Vt7 [] A_Vt7 n Ac.J A U A 0I IiiI 000 A 0 AX 0• filo fiten A A VCO 0 00 -0.5 fo- -......, ItI A

• 0 0 00> a Aw ACl A A 0-1 fo- -

• AAE-tc.JQ..

-1.5 fo- -

-2 ~.w.,",,-I..I."...I.II~_...._ ...., .........' .....' ...'....,,1_......11...11'-....1_....._ .....1 .......1................1-1'.1.101'

4 10 20 40 100 200 400

TEMPERATURE,K

PLgure 3.1.5 ELectrLcaL resLstLvLt~ devLatLons of the eLectroL~tLc Lron,RM data of the foLLowLng references from eq.(3.5):

(8,13,26)

0- (26), Ii. - (8),

12

0- (13), V- (13)

1 , , , , I , , , , I , , I I

0

0.5 I-o 00 .

...... 0000

0•

c..:>-l 0a: 0 -c..:> -I 0 0

00 00 0•

(f) 0CO 0 0 000 -0.5 I- -...... 0

• 0 0> 0 0w 0Cl -1 0

I- 0 -• 0 0 00E-t 0c..:>

Q..-1.5 I- -

-24

I I I i I I

10I

20I I I I I I I I

40 100

TEMPERATURE,K

.200

.400

I I

1000

flgure 3.1.6 DevlatLons of the prevLousL9 recommended eLectrlcaLreelstlvLt9 vaLues (6) from eq.(3.5).

13

3.2 Tungsten

The experimental thermal conductivity data reported for tungsten are illus­trated in figures 3.2.1 through 3.2.3. Figure 3.2.3 is a composite of 3.2.1 and3.2.2 but without a legend. Equation (3.1) was fitted to the experimental databy nonlinear least squares. The resulting parameters are

P - 16.4 x 10-81 -

P2 = 2.449

P3 = 541.3

P4 = -0.22

Ps = 69.21

P6 = 3.986

P7 = 0.1

where A and T are in W·m-1·K-1 and K, respectively.

The systematic residuals were represented by

Wc = - 0.00085 tn(T/130) exp(-(tn(T/230)/0.7)2)

+ 0.00015 exp(-(tn(T/3500)/0.8)2)

+ 0.0006 tn(T/90) exp(-(tn(T/80)/0.4)2)

+ 0.0003 tn(T/24) exp(-(tn(T/33)/O.5)2)

where Wc and T are in m·K·W and K, respectively.

(3.10)

The resulting deviations of the experimental data from this equation are il­lustrated in figures 3.2.4 through 3.2.6. The deviations of the previouslyrecommended thermal conductivity values for this RM are illustrated infigure 3.2.7. Here we observe significant differences at both ends of the tem­perature range. As with iron, the variations at low temperatures due to impurityvariations are accounted for by the presence of the a/T term.

The experimental electrical resistivity data reported for tungsten are il­lustrated in figures 3.2.8 through 3.2.10. Equation (3.1) was fitted to the ex­perimental data by nonlinear least squares. The resulting parameters are:

PI = 4.801 x 10-16

P2 = 3.839

10P3 = 1.88 x 10

14

Ps = 55.63

P6 = 2.391

where P and T are in n·m and T, respectively.

The systematic residual s were represented by

P = 7 x 10-9 1n(T/560) exp(-(1n(T/1000)/0.6)2)c

where Pc and T are in n·m and K, respectively.

The resulting deviations of the experimental data from this equation are il­lustrated in figures 3.2.11 through 3.2.13. The deviations of the previouslyrecommended electrical resistivity values for this RM are shown in figure 3.2.14.The differences are not significant compared to the uncertainties in the recom­mended va1ues.

15

3.2.1 List of Figures and Tables for Tungsten

Figure 3.2.1 Experimental thermal conductivity data for the tungstenRM from the following sources: (11,13,19,27) • • • •• 17

Figure 3.2.2 Experimental thermal conductivity data for the tungstenRM from the fo11 owi ng sources: (13, 22, 28) • • • • • •• 18

Figure 3.2.3

Figure 3.2.4

Composite of the data in figures 3.2.1 and 3.2.2 •

Thermal conductivity deviations of the tungsten ~~

data of the following references from eq. (3.1):(11, 13, 19, 27) •••••••••••••••••

• • • •

· . . .

19

20

Figure 3.2.5 Thermal conductivity deviations of the tungsten RMdata of the following references from eq. (3.1):(13, 22, 28) • • • • • • • • • • • • • • • • • • • • • •• 21

. . . . .Figure 3.2.6

Figure 3.2.7

Composite of the data in figures 3.2.4 and 3.2.5 •

Deviations of the previously recommended thermalconductivity values (5) from eq. (3.1) •••••

· . . . 22

23

Figure 3.2.8 Experimental electrical resistivity data for thetungsten RM from the following sources: (11, 18,19, 27, 28) . . . . . . 24

Figure 3.2.9 Experimental electrical resistivity data for thetungsten RM from the fo11 owi ng sources: (13, 22) •

Figure 3.2.10 Composite of data in figures 3.2.8 and 3.2.9 •••

· . . .· . . .

25

26

Fi gure 3.2.11 Electrical resistivity deviations of the tungstenRM data of the following references from eq. (3.5):(11, 18, 19, 27, 28) •••••••••••••••• · . . 27

Figure 3.2.12 Electrical resistivity deviations of the tungstenRM data of the following references from eq. (3.5):(13, 22) •.....................

Figure 3.2.13 Composite of the data in figures 3.2.11 and 3.2.12 •

Figure 3.2.14 Deviations of the previously recommended electricalresistivity values (5) from equation (3.5) •••••

16

· . .· . .· . .

28

29

30

1000 .......,.......~.....~~I"'I"'P'-.....~......"'PP'.................~.....~....."""".....~...........~...

600 <Y<<><> X9<

<1<-

<>< ~~

• 9< <>E........ 400 ++

+>b~ <> +'" <> + +<>>-t <>Xf-t + +

....... +%> <>X +....... +~f-t +c.J

~~:::::>0 200 +Z '-,0 +c.J V

X + 'VO-la:: + 0L: 00:::: V 0W x + v 0:c 0f-t V [J

100 'Iv

X

60

1

X

3 10 30 100

TEMPERATURE,K300 1000

fLgure 3.2.1 ExperLmental thermal conductLvLt~ data for thetungsten RM from the followLng sources:(11,13,19,27 )

0- (27), A- (27).. 0- (27).. V- (9) ..

<>- (11).. +- (11) X- (3)

17

1000

0

0

600[J ~

/1 /1

0/1 /10

~ A• A

E400....... 0

~ A &J...)-4 0 A~

/0......>

0......~~~ /1

I:)::::>Cl 200 0zC) /1C,,)

A 0

-.J OO'va:1: 00:::W:::c A~ v.100

/1

60

1 3 10 30 100

TEMPERATURE,K300 1000

flgure 3.2.2 ExperlmentaL thermaL conductLvlty data for thetungsten RM from the foLLowlng sources:(13,22,28)

0- (28J, A- (13), 0- (13), V- (22),

18

60

1000

0

0

600c

I""'~c a< \0

~• ~ 4

E

" 400 C ++ \J~ to + +... <>>-t C + +~E-t <>X + +~I-t

> oX +I-t c +\E-t At.') +:::J0 200 +Z Cla A + '-,t.')

;\: + 01,~a: +x:~

ClW

AX +:cE-t

100A

X

1

X

3 30 100

TEMPERATURE ,K300 1000

rlgure 3.2.3 Compoelt.e of t.he dat.a l.n fLge. 3.2.1 and 3.2.2

10

<><>X +++~~~X X V 000 ~

,.... a x <>• x <> x ~ 0

(.) x.~ x x 0-l vV 0cc(.)I -10

0• v

enCD va.....,

•> -20 v vwc::J v

•E-t(.)a... -30

-401 3 10 30 100

TEMPERATURE,K300 1000

fLgure 3.2.4 Thermal conductLvLt~ devLatLons of the tungstenRM data of the foLlowLng references from eq.(3.1):

(11,13,19,27 )

0- (27), A- (27), D- (27), v- (19),0- (11) +- (11), X- (13)

20

10

c c c

0c 0,.....

• ~~~;~~ ~c..:> ~--l ~a:c..:>I -10•

enCD0....-

•> -20wC)

•E-tc..:>a.. -30

-401 3 10 30 100

TEMPERATURE,K300 1000

fLgure 3.2.5 ThermaL conductLvLty devLatLons of the tungstenRM data of the foLLowLng references from eq.(3.1):

(13,22,28)

0- (283, A- (13), 0- (13), 'V- (22)

21

,...." 0•

(.) 0...l vV 0a:(.)

0I• -10 v

en vCD0~

•> -20 V VWCl V

•E-t(.)a... -30

-401 3 10 30 100

TEMPERATURE,K300 1000

rLgure 3.2.6 ComposLte of the data Ln fLgs. 3.2.4 and 3.2.5

22

7.5 ~ .,.,.-.,... .....-I~ ....,.. - ~ ...

5,......,.

• IIC,,)

2.5 6 e~R •..-la::

~ 8 i ...C,,)0 20I .It,___• 0(f)

(D

°AO0 0....., 0

• -2.5 ~ A> o AW

00

0 0 A

• -5 0f-iC,,)(L

-7.5

1000 200040 100 200 400

TEMPERATURE,K2010

-10 r.....l~ _ ~ .-...I~ .&.&."""-_ __w- .a.....I....

4

rLgure 3.2.7 DevLatLons of the prevLousL~ recommended thermaLconductLvLt~ vaLues (5) from eq.(3.1).

23

E•c:

c...>-4f-t->-f-t(f)-(f)W0::::

--la:c..:>-0::::f-tc..:>W--lW

1000

300

100

30

10

3

1

10 20 40 100 200 400

TEMPERATURE,K

/o

o

1000 2000

rLgure 3.2.8 ExperLmentaL eLeotrLcaL re.L.tLvLt~ data for thetungsten RM from the foLLowLng eource.:(11 , 18,19,27,28)

0- (27),Q- (11),

A- (27),+- (11),

0- (19),X· (28)

24

v- (8)

3

o

oo

oo

oo

oo

oo 0 000000 0

10

30

1

1000

300

E•

'E 100....

>-tE-t.....-4

>.....-4

E-t(J).....-4

(J)W0:::

-la:(.).....-4

0:::E-t(.)W-lW

1000 200040 100 200 400

TEMPERATURE,K2010

0.3 ~ _ ........- _ w-_ ~..4

rLgure 3.2.9 ExperLmentaL eLectrLcaL re8LstLvlt~ data for thetungsten RM from the foLLowlng sources:(13,22)

0- (13), A- (22)

25

1000

300

e•

'E 100...)-4~fo-oo4

>fo-oo4

~ 30(J')fo-oo4(J')Wa::::-l 10a:C,,)fo-oo4

a::::~C,,)

w 3-lW

1

10 20 40 100 200 400

TEMPERATURE,K

/

1000 2000

rLgure 3.2.10 CompoeLte of data Ln fLgs. 3.2.8 and 3.2.9

26

4

03 0

'""" 0• 2c.:> 0 0 0--1 o 0+++a: ++ 0

0 BcPoc.:> 0++ ++I 1 0 0 ++ +++H:r 0• 0

(f) + 0+ +++ + 0CD + 0 +0 0 T-....J 0 0

• +00 + + 000 xX 0> ~

~w -1 + +Cl II •+

• +E-t -2c.:> •0-

-3

-44 10 20 40 100 200 400 1000 2000

TEMPERATURE,K

r~gure 3.2.11 Electr~cal reslst~v~t~ devlat~on8 of the tungstenRM data of the folLowLng referencee from eq.(3.S)1

(11,18,19,27,28)

0- (271,<>- (11',

~- (27),+- (11),

[J - (19),X - (28)

v- t18)

27

.. I I I I I I I 1 I I I I I I I I I I I I I

3 - -

-• 2C,,) I- --l

0a::C,,)

1 0I I- 0 -• 0 0

AAA#(f)

0000CD 00 0 - o OV 0 ~~ 0•> 0W -1 - 0 -Cl

• 0~ -2C,,) - -(L

-3 - -

-4 I I •• I . I I I I I • I I • I I I

4 10 20 40 100 200 400 1000 2000

TEMPERATURE,K

fLgure 3.2.12 ElectrLcal resLstLvLt~ devLatLone of the tungstenRM data of the foLlowLng reference. from eq.(3.S):

(13,22)

0- (13), A- (22)

28

4 -.-- ,.... ~,......- ~

1000 2000

c

coOBdb°

c

°

40 100 200 400

TEMPERATURE,K

° ++

+

2010-4 _ _ ..

4

-3

3

•>w -1Cl

•~ -2c..:>a..

fLgure 3.2.13 Compo.Lte of the data Ln fLge. 3.2.11 and 3.2.12

29

1

Iii g- a o• 0(.)A~OO

0 .....J i1a:II 00 D(.) •I r:. .....• 0

(f') &a:l0 -1 0

A...-• 0

>W0

•E-t -2(.)0-

1000 200040 100 200 400

TEMPERATURE,K2010

-3 ~1o.I.I."""'''' ''''''''''''''''''''''IooI..oIl...w...............__........-................._ ..............4

fLgure 3.2.14 DevLatLone of the prevLouely recommended eLectrLcaLreeLetLvLty vaLuee(S) from eq.(3.S).

30

3.3 Stainless Steel

The experimental thermal conductivity data reported for this SRM are illus­trated in figure 3.3.1. Because this is a highly alloyed metal, the relative im­portance of the conduction/scattering mechanisms are considerably different thanfor a pure metal. Nevertheless, the base equation chosen for representation ofthese data is of the same form as equation (3.1). The only change is that theefT term was replaced by B/Tn, where B = 15.2 and n = 1.211.

The resulting parameters of aare

PI = 2.477 x 10-4

P2 = 1.303

P3 = 1.918

P4 = 0.592

nonlinear least squares fit of this equation

P5 = 60

P6 = -0.1436

P7 = 0.0

where A and T are in W·m-1·K-1 and K, respectively. No systematic residuals wereobserved from this fit.

The resulting deviations of the experimental data from this equation areillustrated in figure 3.3.2. The deviations of the previously recommended valuesfrom this equation are illustrated in figure 3.3.3.

The experimental electrical resistivity data for this stainless steel areillustrated in figure 3.3.4. These data were represented by equation (3.5) withthe following parameters

PI = 1.217 x 10-10 P5 = 450

P2 = 1.315 P6 = 3.031

P3 = 6.836 x 106 P7 = 0.0

P4 = 0.3

where P and Tare g·m and K, respectively.

The systematic residuals were represented ~

Pc = 2.5 x 10-8 ~n(T/135) ~n(T/270) ~n(T/530) exp(-(~n(T/350)/1.4)2)

-5.5 x 10-8 exp(-(~n(T/1300)/0.4)2)

31

The resulting deviations of the experimental data from this equation areshown in figures 3.3.8 and 3.3.9. The deviations of the previously recommendedvalues are shown in figure 3.2.10.

32

3.3.1 List of Figures and Tables for Stainless Steel

Figure 3.3.1 Experimental thermal conductivity data for the stainlesssteel SRM from the following sources: (9, 10, 16,21, 27) •.......•••••••..•..••.•• 34

Figure 3.3.2 Experimental thermal conductivity data for the stainlesssteel SRM from the following source: (13) • • • •• 35

• • • • •

Figure 3.3.3

Figure 3.3.4

Composite of the data in figures 3.3.1 and 3.3.2 •

Thermal conductivity deviations of the stainlesssteel SRM data of the following references fromeq. (3.1): (9, 10, 16, 21, 27) •••••••••

. . . . 36

37

Composite of the data in figures 3.3.4 and 3.3.5 ••

Figure 3.3.5

Figure 3.3.6

Figure 3.3.7

Thermal conductivity deviations of the stainlesssteel SRM data of the following references fromeq. (3.1): (13) ••••••••••••••••

Deviations of the previously recommended thermalconductivity values (6) from eq. (3.1) •••••

• • • • •

• • •

· . . . .

38

39

40

Figure 3.3.8 Experimental electrical resistivity data for thestainless steel SRM from the following sources:(9, 10, 16, 21, 27) •••••••••••••• 41

Figure 3.3.9 Electrical resistivity deviations of the stainlesssteel SRM of the following references from eq. (3.5):(9, 10, 16, 21, 27) ••••••••••••••••• • • 42

Figure 3.3.10 Deviations of the previously recommended electricalresistivity values (6) from eq. (3.5) •••••••

33

• • • 43

100030010 30 100

TEMPERATURE,K3

0.2

20

10 ../....~ I

• Ie.......~ 4 •... i>-e •f-4.....> i.....

2 •f-4 •0::::::) •C •Z0

1 ME0ME

--1 ,.a: •~a::: *w:J: Xf-4 0.4

fLgure 3.3.1 ExperLmental thermal oonduotLvLt~ data for the8taLnle88 8teel SRM from the followLng 8ouroes:(9" 10" 16,,21 ,,27)

0- (27),<>- (9),

/1- (27)"+- (9),

0- (211,x- (10)

v- (16),

34

20

10Dr!'

~II)

• IIE

aB.........~ 4... .,>-t •E-t~

>

"~

2E-t I(.)::J IICl 8z0

1 I(.)

....J •cc lIP:E: liPa::::w ~:::cE-t 0.4

~0

00.2

00

00 •0.1

1 3 10 30 100 300 1000

TEMPERATURE,K

fLgure 3.3.2 ExperLmental thermal conductLvLt~ data for thestaLnless steel SRM from the followLng sources:(131

0- (13), A- (13), 0- (13), V- (13)

35

20

4i10 ../.,.,

~• .1e

"-3: 4... ..)-t •~......> I......

2~ •C,) •:::>Cl Iz0

1C,)

..Ja::I:a:::W

~:c~ 0.4

~0

00.2

0

0

00

0.11 3 10 30 100 300 1000

TEMPERATURE,K

rLgure 3.3.3 ComposLte of the data LnfLgs. 3.3.1 and 3.3.2

36

10

5

(.)--lcr: 0 +(.)

¢++~.~ ••••_¥~¥I x ¢¢en xCD xx0 -5'-'

>W0 -10

E-t(.)(L

-15

-201 3 10 30 100

TEMPERATURE,K300 1000

fLgure 3.3.4 Thermal conductLvLt~ devLatLons of the staLnless steelSRM data of the followLng references from eq.(3.1):(9 .. 10 .. 16 ..21 .. 27 )

0- (27), A- (27), 0- (21), 'J- (16).. ¢- (9),+- (9), X- (10)

37

10 I I W I I I I I J I I I I I I I I I I I I I I I I I I

V

29 gV

VVVv5 '-

0 "OOMU,....., o u• oo~llKxx *C-')

..J Cb 0 ~e~ ~ fJuaia: 0 ~

C-') - 00 00I o· 0• 0 0en 0 o 0CD 00 -5 - 0 --...

•> 0

00W0 -10 - -0

•E-t 0C-')(L

-15 - -

-201

I I I

3

I I

10

I

30

I I

100 300

I I I

1000

TEMPERATURE,K

fLgure 3.3.5 ThermaL conduclLvLl~ devLalLons of lhe slaLnLess sleeLSRM dolo of lhe foLLowLng references from eq.(3.1):(13)

0- (13), l::t.- (13), 0- (13), "1- (13)

38

10 .....................'!!I!!!'I"................-.-..................~......~...........................~""""'~~..

5 0........•

c.J.-Ja: 0c.JI•

(f) 0CD 00 -5 0.....,

•> 0 0 0W0 -10 0

•E-4 0c.Ja....

-15

100030010 30 100

TEMPERATURE,K3

-20 .....................w..&.I.I....&..I......._ ..............................w...I~..........................IooW.......................

1

fLgure 3.3.6 ComposLte of the data Ln fLgs. 3.3.4 and 3.3.5

39

2 ........, ....,,"",.,.-.-.,..-.........,.......,..........,.........." ...- ....~..,-,..,I""""'..,....,....",...,..,, ...........

- 1 - 0 0°•c.J 0 °0...la:

0 00c.JI 0 0• 0 0en 0 0CD

0 0 0000- 0• 0 0 0> -1 I- 0 00 -W 00 0

0 0•E-4

0 0 000c.J0- -2 I- -

0

0

-3 • • • il • • , ., , I , • •••• I

4 10 20 40 100 200 400 1000

TEMPERATURE,K

rlgure 3.3.7 Devlatlons of the prevLousl9 recommended thermalconductlvLt9 values (6) from eq.(3.1).

e

40

2000 ....,....II"""l'II..,Ir-r"'Ir"'888I-..-..,I,...~II"'""'P'..I~II"""'lI-.,..,.II...I..I-......- ..I ......~I....."'PI......I...."'PI..,.,...."I""'P...

.

-

E•c:

c...>-tr-t......>......r-t(f)......(f)UJ0::

--1a:(.)......0::r-t(.)UJ--1UJ

1000 ...

BOO

600 +. ,." .....

f1~

•aIill

tP

li~•••••••..,...",.,

.

40 100 200 400 1000

TEMPERATURE,K2010

400 ................II......I __I_.........__.............Ir..wI__...I ..I ...._-"_...I .....~I__...I ...........I_I........' ......

4

flgure 3.3.8 Experlmental electrlcal re8lstlvl8t~ data for thestatnless steel SRM from the followLng sources:(9,10,16,21,27)

0- (271, 1:1- (211, [J- (161, V- (91+- (101

<>- (91,

41

1 -. • I I I I I -. --.- • I I I I I r • -. I I I • I

0 0o aAA

<> <> <><> A0.5 I- <> VVVV~ <> <><>

A 0 -- <><> V <> <>VVV<> 0• ~ <> <><><> <> <> <> VV V<> o A<:.:) V<> <> V ++V..J VVVV V VV Aa: 0 V<><> <> V + + A

<:.:) yv v + <>I ++++ V A 0• +

en + + +CD + + + 00 -0.5 ~

+ +++++ 0 0 -

"-oJ

• + ++++ + ++ 00>W 0 0c -1 I- CI -

• 0E-t(.)a..

-1.5 ~ -

100040020040 100

TEMPERATURE,K20

-2 ......... .a....I.I..I.......I_...._ .......&.......&•...a..l~._.u.I..II~II..._....-'-...........'-'-.....·ul_&.'...·UI4 10

rtgure 3.3.9 Electrtcal reststtvtt~ devtattons of the statnless steelSRM data of the followLng references from eq.(3.S):(9,10,16,21,27 )

0- (27), A- (21), 0- (1S), V- (9)+- (10)

¢ - (9),

42

1 I I " I I , I I I • 6'6' , 'I

o

0.5 ~

•(.)-la:(.)I•

Cf)CDa -0.5 ~

•>WCl

•E-t(.)CL

-1.5 -

0-o 00000 00

00

o 00

o o

o

-

o

o-o

-

-

-24

I I I I I I

10I

20• I I I , I I

40 100

TEMPERATURE,K

I

200I I I I , I I I •

400 1000

rLgure 3.3.10 DevLatLons of the prevLousLy recommended eLectrlcaLresLstLvLty vaLues (6) from eq.(3.S).

43

4. Recommended Values

The equations given in this report were used to calculate smoothed values of~ and p at selected temp~ratures and, when appropriate, selected values of RRR,corresponding to appropriate values of po. These smoothed values are presentedin tables 4.1, 4.2, and 4.3. The values are illustrated in figures 4.1 through4.6. For completeness, values of the Lorenz ratio were also obtained from p~/T

and plotted in figures 4.7 through 4.9.

The conversion from residual resistivity to RRR was made using the followingequation and adopted intrinsic resistivity at the ice point.

RRR = 1 + Pi273Po

Iron: Pi273 =87.0 no·m

Tungsten: Pi273 = 48.4 no·m

44

Figure 4.1

Figure 4.2

Figure 4.3

4.1 List of Figures and Tables

Thermal conductivity values for the electrolytic ironRM calculated from eq. (3.1) at RRR = 20.0, 22.5, and25.0 (the corresponding values of residual resistivityare: 4.579, 4.046, and 3.625 nQ.m) ••••••••••

Electrical resistivity values for the electrolytic ironRM calculated from eq. (3.5) at RRR = 20.0, 22.5, and25.0 (the corresponding values of residual resistivityare: 4.579, 4.046, and 3.625 nQ.m) ••••••••••

Thermal conductivity values for the tungsten RMcalculated from eq. (3.1) at RRR = 50, 75, and 100(the corresponding values of residual resistivity are:0.9878, 0.6540, and 0.4889 nQ.m) •••••••••••

· . .

· . .

• • •

46

47

48

Figure 4.4 Electrical resistivity values for the tungsten RMcalculated from eq. (3.5) at RRR = 50, 75, and 100(the corresponding values of residual resistivity are:0.9878, 0.6540, and 0.4889 nQ.m) •••••••••••• • • • 49

Figure 4.5 Thermal conductivity values for the stainless steel SRMcalculated from eq. (3.1) •••••••••••••••••• 50

Figure 4.6 Electrical resistivity values for the stainless steel SRMcalculated from eq. (3.5) • • • • • • • • • • • • • • • • •• 51

Figure 4.7 Lorenz ratio for the electrolytic iron RM as calculatedfrom eq. (3.1) and (3.5) at the same residual resistivitiesas in figs. 4.1 and 4.2 • • • • • • • • • • • • • • • • • •• 52

Fi gure 4.8 Lorenz rati a for the tungsten RM as cal cul ated fromeqs. (3.1) and (3.5) at the same residual resistivitiesas in figs. 4.3 and 4.4 •••••••••••••••

Figure 4.9 Lorenz ratio for the stainless steel SRM as calculatedfrom eqs. (3.1) and (3.5) ••• • ••••••••

• • • •

• • • •

53

54

Table 4.1 Recomnended thermal conductivity and electrical resistivityvalues for the electrolytic iron RM for RRR values of 20.0,22.5, and 25.0; and corresponding residual resistivities of4.579, 4.047, and 3.625 nQ.m • • • • • • • • • • • • • • • •• 55

Table 4.2 Recommended thermal conductivity and electrical resistivityvalues for tungsten RM for RRR values of 50, 75, and 100;and corresponding residual resistivities of 0.9878, 0.6540,and 0.4889 no·m .•••••••••••••••••••••• 56

Table 4.3 Recommended thermal conductivity values for the stainlessstee1 SRM • • • • • • • • • • • • • • • • • • • • • • • • • • 57

200 ...-t~ '""'"'- .,..,."I""P'- ~ """'...,lIIII""'Ir-I

100040020020 40 100

TEMPERATURE,K10

10 ~ ~ _ ----_ ....2

100~

•e"3:...>-tE-t 60.....>.....E-t(.):::JCl 40Z0(.)

.....Ja::~a::::w:cE-t

20

rLgure 4.1 Thermal conductLvLt~ values for the electrol~tLc LronRM calculated from eq.(3.1) at RRR-20.0, 22.5, and 25.0

(the correspondLng values of resLduoL resLstLvLt~ are:4.579, 4.046, and 3.625 nO.m)

46

100040020020 40 100

TEMPERATURE,K10

2

12

400

1000 ,....P""T.....,....,....,..,..,.,.,..--......,.......,-.-,...,r"t'"r".,.,.......- ..........................."'P"f"I...........

E 200•c:

c...100)-I

~->-~(f) 40-(f)wa::::-l 20a:U-a:::: 10E--tUW...lW

4

fLgure 4.2 ElectrLcal resLstLvLt~ values for the electrol~tLc LronRM calculated from eq.(3.5) at RRR-20.0, 22.5, and 25.0

(the correspondLng values of resLduaL resLstLvLt~ are:4.579, 4.046, and 3.625 nO.m)

47

1000 ,.....,...,.,..,..,.,.,~r"n'- .....,..-.t~..,...,.,.,.,..""- .....,.....,.....,.""""'.,.,.'r"'P'I-............

600

~•e 'loa

........~..>-e~.....>.....~(.) 200:;)0z0(.)

...Ja:~a:::w 100::I:~

60

3 10 30 100 300

TEMPERATURE,K1000 3000

rlgure 4.3 Thermal conductlvlt~ values for the tungstenRM calculated from eq.(3.1) at RRR-50, 75, and 100

(the correspondlng values of resldual reslstlvLt~ are:0.9878, 0.6540, and 0.4889 nO.m)

48

100030 100 300

TEMPERATURE,K103

1 .....--------

300

E•

c: 100c...>-tE-t~

>~

30E-tU')~

U')wa::...l 10CI:C,)~

a::E-tC,)

3w...lW

fLgure 4.4 ElectrLcal resLstLvLt~ values for the tungstenRM calculated from eq.(3.5) at RRR-50, 75, and 100

(the correspondLng values of resLdual resLstLvLt~ are:0.9878, 0.6540, and 0.4889 nO.m)

49

100040020020 40 100

TEMPERATURE,K10

20

0.2

0.1 _ _ oI.W loaaI

2

10

~•e

"""~ 4.,.)-tE-t....>....

2E-t0~CZ0

10

...JCC2:a::::WJ:E-t 0.4

rLgure 4.5 ThermaL conductLvLty vaLues for the staLnLess steelSRM calcuLated from eq.(3.1l

50

2000 ~,...,.....,....,...,..""""'.,.,..- ......................~"""'.....,~-.........,.....~..,.....................

e•

c:c....

>-t~......>......

1000~(/')......(/')W0:::

-l BOOa:Q......0:::~QW'-l 600W

400 I.W _ ..w ......, .....2 20 40 100

TEMPERATURE,K

fLgure 4.6 Electrtcal reststtvtt9 values for the statnless steelSRM calculated from eq.(3.S1

51

3.50

3.25

3

N 2.75~

"N>CD 2.50I0.......0..... 2.25E-ta:Q::

N 2zUJQ::0...l 1.75

1.50

1.25

12 10 20 40 100

TEMPERATURE,K200 400 1000

rLgure 4.7 Lorenz ratLo for the electrol~tLc Lron RM ascalculated from eqs. (3.1) and (3.5) at the sameresLdual resLstLvLtLes as Ln fLgs. 4.1 and 4.2

52

3.25

3

N 2.75~........

N>

Q)2.50I

0.......0..... a.25.f-4a:0::

N 2zW0::0-J 1.75

1.50

1.25

13 10 30 100 300

TEMPERATURE,K1000 3000

fLgure 4.8 Lorenz ratLo for the tungsten RM ascaLculated from eqs. (3.1) and (3.5) at the sameresLduaL resLstLvLtLes as Ln fLgs. 4.3 and 4.4

53

8

7

N 6~

"N>

CDI0 5..."0~

f-4a:0:::: 4NZW0::::0-J

3

2

l _ ~..Io.I. -- -- ...

2 20 40 100

TEMPERATURE,K

flgure 4.9 Lorenz rallo for lhe slalnless sleel SRM ascalculaled from eqs. (3.1) and (3.5)

54

Table 4.1. Recommended thermal conductivity and electrical resistivity values forthe electrolytic iron RM for RRR values of 20.0, 22.5, and 25.0; andcorresponding residual resistivities of 4.579,4.047, and 3.625 nn·m.(Corrected for thermal expansion).

Thermal Conductivity (W.m-1.K-1) Electrical Resistivity (nn.m)

T(K) RRR = 20.0 = 22.5 = 25.0 RRR = 20.0 = 22.5 = 25.0

2 10.89 12.32 13.75 4.579 4.047 3.6253 16.33 18.48 20.62 4.579 4.047 3.6254 21. 76 24.62 27.48 4.579 4.047 3.6255 27.19 30.76 34.33 4.580 4.047 3.626

6 32.60 36.88 41.15 4.580 4.048 3.6267 37.99 42.97 47.94 4.581 4.049 3.6278 43.4 49.0 54.7 4.583 4.050 3.6299 48.7 55.0 61.4 4.585 4.052 3.631

10 54.0 61.0 68.0 4.587 4.054 3.633

12 64.4 72.8 81.1 4.593 4.061 3.63914 74.6 84.2 93.7 4.602 4.070 3.64816 84.5 95.2 105.9 4.615 4.082 3.66118 93.9 105.7 117.4 4.632 4.099 3.67820 102.9 115.7 128.2 4.653 4.120 3.699

25 123.0 137.4 151.5 4.731 4.199 3.77730 138.7 153.9 168.5 4.854 4.322 3.90035 149.5 164.5 178.7 5.03 4.50 4.0840 155.1 169.1 182.1 5.28 4.75 4.3345 155.9 168.3 179.7 5.62 5.08 4.66

50 152.9 163.6 173.2 6.06 5.52 5.1060 141.6 149.1 155.6 7.30 6.76 6.3470 129.6 134.9 139.5 9.06 8.52 8.0980 119.9 123.8 127.1 11.32 10.78 10.3590 112.3 115.4 117.9 14.04 13.50 13.06

100 106.4 108.9 110.9 17 .17 16.62 16.18150 91.5 92.7 93.7 35.93 35.37 34.93200 85.9 86.7 87.3 56.5 56.0 55.5250 81.0 81.5 82.0 79.5 79.0 78.5300 76.0 76.4 76.7 105.6 105.0 104.6400 67.2 67.5 67.7 166.6 166.1 165.6

500 60.0 60.2 60.3 241.8 241.2 240.7600 53.5 53.6 53.7 335.1 334.6 334.1700 47.42 47.49 47.55 449.1 448.5 448.1800 41.92 41.96 42.00 583.0 583.0 582.0900 37.09 37.12 37.14 737.0 737.0 736.0

1000 32.95 32.98 33.00 909.0 909.0 908.0

55

Table 4.2. Recommended thermal conductivity and electrical resistivity values forthe tungsten RM for RRR values of 50. 75. and 100i and correspondingresidual resistivities of 0.9878. 0.6540. and 0.4889 ng.m.

Thenmal Conductiv~ty (W.m-1.K-1, Electrical Resistivity (nn·m)

T(K) RRR • 50 • 75 "' 100 RRR • 50 "' 75 "' 100

2 49.5 74.7 99.9 .988 .654 .4893 74.2 112.0 149.9 .988 .654 .4894 98.9 149.3 199.7 .988 .654 .4895 123.5 186.4 249.3 .988 .654 .489

6 148.1 223.4 298.5 .988 .655 .4897 172.5 260.0 347.2 .989 .655 .4908 196.7 296.2 395.1 .989 .655 .4909 220.7 331.8 442.0 .990 .656 .491

10 244.3 366.7 487.6 .991 .657 .492

12 290.0 434.0 574.0 .994 .661 .49614 334.0 496.0 651.0 1.000 .666 .50116 374.0 551.0 718.0 1.008 .674 .50918 410.0 596.0 768.0 1.019 .686 .52120 440.0 629.0 799.0 1.035 .701 .536

25 477.0 647.0 786.0 1.099 .766 .60130 468.0 597.0 692.0 1.212 .879 .71435 433.0 525.0 586.0 1.392 1.059 .89340 391.3 454.5 494.4 1.656 1.322 1.15745 348.3 391.9 418.0 2.017 1.683 1.518

50 308.7 339.0 356.5 2.482 2.148 1.98360 254.8 271.8 281.0 3.720 3.387 3.22170 232.1 244.0 250.4 5.31 4.98 4.82

" 80 221.1 230.5 235.5 7.17 6.83 6.6790 213.2 220.9 225.0 9.18 8.85 8.68

100 206.9 213.4 216.9 11.29 10.95 10.79150 191.2 194.9 196.8 22.20 21.87 21.70200 184.7 187.3 188.6 33.22 32.89 32.73250 179.0 180.9 181.9 44.42 44.08 43.92300 171.9 173.4 174.2 55.9 55.5 55.4

400 156.6 157.5 157.9 79.6 79.3 79.1500 144.3 144.9 145.3 104.7 104.4 104.2600 135.7 136.2 136.4 131.3 130.9 130.8700 129.5 129.9 130.1 159.2 158.8 158.7800 124.9 125.2 125.4 188.1 187.8 187.6900 121.2 121.5 121.6 217.8 217.5 217.3

1000 118.2 118.4 118.5 248.0 247.7 247.51100 115.6 115.7 115.8 278.6 278.3 278.11200 113.2 113.4 113.5 309.4 309.1 308.91300 111.2 111.3 111.4 340.6 340.3 340.11400 109.3 109.4 109.5 372.1 371.8 371.61500 107.5 107.6 107.7 404.0 403.7 403.5

1600 105.9 106.0 106.1 436.3 436.0 435.81800 103.1 103.1 103.2 502.0 502.0 502.02000 100.6 100.6 100.7 570.0 569.0 569.02200 98.4 98.4 98.5 639.0 639.0 638.02400 96.4 96.5 96.5 710.0 709.0 709.02600 94.7 94.7 94.7 782.0 781.0 781.02800 93.1 93.1 93.2 855.0 855.0 855.03000 91.7 91.7 91.7 930.0 930.0 930.0

56

Table 4.3. Recommended thermal conductivity values for the stainless steel SRM.

Thermal ElectricalT Conductivity Resistivity

(K) (W.m-1.K-1) (no.m)

2 •152 593•3 •249 593•4 •352 593•5 •462 594•

6 •575 594•7 •693 594•8 •814 594•9 •938 594•

10 1.064 594.

12 1.323 594.14 1.588 594.16 1.858 593.18 2.132 593.20 2.407 593.

25 3.092 592.30 3.763 592.35 4.404 593.40 5.01 595.45 5.57 597.

50 6.08 599.60 6.98 606.70 7.72 613.80 8.34 622.90 8.85 630.

100 9.30 639.150 10.94 683.200 12.20 724.250 13.31 767.300 14.32 810.

400 16.16 885.500 17.78 944.600 19.23 997.700 20.54 1045.800 21.75 1088.

900 22.86 1127.1000 23.90 1162.1100 24.86 1197.1200 25.77 1234.

57

5. Sunmary

New data have been obtained from several laboratories throughout the worldon previously established NBS SRM's. These data were used to update and extendthe recommended values for these materials. Generally the new values are notoutside the original uncertainty limits of the previous recommendations. How­ever, this update decreases the uncertainty of the data and in some areas pro­duces significant changes. Although other data are available, this analysis con­siders only thermal conductivity and electrical resistivity. The study of otherproperties is part of our future plans. The data presented are uncorrected forthermal expansion below 300 Kand corrected for thermal expansion above 300 K.

6. Acknowledgments

The authors wish to thank the numerous experimental contributors to this ef­fort for their cooperation and patience. Most of the work was a direct conse­quence of the CODAtA Task Group on Thermophysical Properties. The leadership andorganization of Dr. M. L. Minges is recognized and appreciated. In addition, thecoordination and guidance provided by Dr. R. Berman and Dr. G. K. White was ofutmost importance to the completion of this effort. Finally, we express ourgratitude for the contributions of Dr. Y. S. Touloukian (deceased) as the formerchairman of this task group.

58

7. References

[lJ Hust, J. G.; Sparks, L. L. Thermal conductivity of electrolytic iron,SRM-734, from 4 to 300 K. Nat. Bur. Stand. (U.S.) Spec. Publ. 260-31;1971.

[2J Hust, J. G.; Sparks, L. L. Standard reference materials: thermalconductivity of austenitic stainless steel, SRM-735, from 5 to 280 K. Nat.Bur. Stand. (U.S.) Spec. Publ. 260-35; 1972.

[3J Hust, J. G. Electrical resistivity of electrolytic iron, SRM-797, andaustenitic stainless steels, SRM-798, from 5 to 280 K. Nat. Bur. Stand.(U.S.) Spec. Publ. 260-47; 1974.

[4J Hust, J. G.; Giarratano, P. J. Thermal conductivity and electricalresistivity standard reference materials: austenitic stainless steel,SRM's 735 and 798, from 4 to 1200 K. Nat. Bur. Stand. (U.S.) Spec.Publ. 260-46; 1974.

[5J Hust, J. G.; Giarratano, P. J. Thermal conductivity and electricalresistivity standard reference materials: arc cast and sintered tungsten,SRM's 730 and 799, from 4 to 3000 K. Nat. Bur. Stand. (U.S.) Spec.Publ. 260-52; 1975.

[6J Hust, J. G.; Giarratano, P. J. Thermal conductivity and electricalresistivity standard reference materials: electrolytic iron, SRM's 734 and797, from 4 to 1000 K. Nat. Bur. Stand. (U.S.) Spec. Publ. 260-50; 1975.

[7J Hust, J. G. Thermal conductivity standard reference materials from 4 to300 K. I. Armco Iron. Nat. Bur. Stand. (U.S.) NBS Report 9740; 1969.

[8J Hust, J. G.; Sparks, L. L. Thermal conductivity standard referencematerials from 4 to 300 K. II. OSRM iron 1265. Nat. Bur. Stand. (U.S.) NBSReport 9771; 1970.

[9J Hust, J. G.; Sparks, L. L. Thermal conductivity standard referencematerials from 4 to 300 K. III. AGARD stainless steel. Nat. Bur. Stand.(U.S.) NBS Report 9786; 1971.

[10J Hust, J. G.; Sparks, L. L. Thermal conductivity standard referencematerials from 4 to 300 K. V. AGARD stainless steel. Nat. Bur. Stand.(U.S.) NBS Report 10710; 1971.

[llJ Hust, J. G. Thermal conductivity standard reference materials from 6 to280 K. VI. NBS sintered tungsten. Nat. Bur. Stand. (U.S.) NBSIR 73-351;1974.

[12J Minges, M. L. The standard reference materials and data programs of theCODATA task group on thermophysical properties. Hust, J. G., ed.Proceedings of the 17th international thermal conductivity conference;Plenum Press, New York; 1983. 73 p.

59

[13J Berman, R.; Hardy, N. D.; Sahota, M.; Hust, J.G.; Tainsh, R. J. Standardreference materials for thermal conductivity below 100 K. Hust, J. G., ed.Proceedings of the 17th international thermal conductivity conference;Plenum Press, New York; 1983. 105 p.

[14J Brandt, R.; Neuer, G. Thermal diffusivity measurements on reference mate­rials. Nat. Bur. Stand. (U.S.) NBS Report 9740; 1969.

[15J Maglic, K.; Perovic, N.; Zivotic, Z. Thermal diffusivity of candidatestandard reference materials. Nat. Bur. Stand. (U.S.) NBS Report 9740;1969. 163 p.

[16J Graves, R. S'; Williams, R. K.; Moore, J. P. The thermal conductivity,electrical resistivity, and Seebeck coefficient of SRM-735. Larsen, D. C.,ed. Proceedings of the 16th international thermal conductivity conference;Plenum Press, New York; 1983. 343 p.

[17J Taylor, Roy. Thermal diffusivity of POCO graphite and stainless steel, SRM­735 S. Nat. Bur. Stand. (U.S.) NBS Report 9740; 1969. 753 p.

[18J Cezairliyan, A.; McClure, J. L. High-speed (subsecond) measurement of heatcapacity, electrical resistivity, and thermal radiation properties of tung­sten in the range 2000 to 3600 K. J. Res. Nat. Bur. Stand. (U.S.). 75A(4):283-290; 1971.

[19J Binkele, L; Zur frage der hochtemperatur-Lorenzzahl bei wolfram - eine an­alyse neuer messwerte der thermischen und elektrischen leitfahigkeit imtemperatur bereich 300 bis 1300 K. Submitted for publication in HighTemperature-High Pressure; 1982.

[20J Bode, K. H. Results of thermal conductivity measurements on tungsten be­tween 20 and 500 °C. To be submitted to Int. J. Heat and Mass Transfer;1982. Data not available at this time.

[21J Binkele, L. Private communication on measurements of A and p for stainlesssteel; 1982.

[22J Taylor, R. E. Thermal properties of tungsten SRM's 730 and 799. J. of HeatTransfer, Vol. 100, No.2, 330-333; 1978.

[23J Graves, G. A. (UDRI) private communication; 1983.

[24J Callanan, J. E. (NBS) private communication; 1983.

[25J Atalla, S. R. Thermal properties of stainless steel and graphite specimensin the temperature range 400-1000 K. Proceedings of the eighth europeanthermophysical conference; Baden-Baden, Germany. Paper No. 004, SessionNo. 10; 1982.

[26J Fulkerson, W.; Moore, J. P.; McElroy, D. L. Comparison of the thermal con­ductivity, electrical resistivity, and Seebeck coefficient of a high-purityiron and an Armco iron to 1000 °C. J. Appl. Phys., Vol. 37, No.7, 2639­2653; 1966.

60

[27J Fitzer, E., Thermophysical properties of solid materials. Project Sec­tion II. Cooperative measurements on heat transport phenomena of solidmaterials at high temperature, AGARD Report No. 606, 1973.

[28J Moore, J. P., Graves, R. S., Fulkerson, W., and McElroy, D. L., The thermalproperties of tungsten, Proceedings of the fifth thermal conductivity con­ference, Univ. of Denver, Vol. 2, V-G-1 - V-G-35 (1965).

*U,S, GOVERNMENT PRINTING OFFICE: 19 84 420 997 10 04 3

61

2. Performing Organ. Report No.3. Publication DateNBS.114A (REV 2-80)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATASHEET (See instructions)

1. PUBLICATION ORREPORT NO.

NBS/SP-260j90 l B8 5 1 158 1 4September 1984

4. TITLE AND SUBTITLE Standard Reference Materials:Update of Thermal Conductivity and Electrical ResistivityTungsten, and Stainless Steel

of Electrolytic Iron,

5. AUTHOR(S)

Jerome G. Hust and Alan B. Lankford6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions) 7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDSDEPARTMENT OF COMMERCEBOULDER, CO 80303

8. Type of Report & Period Covered

Fi nal

NBS Category No.

NBS- /10

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)

Office of Standard Reference MaterialsNational Measurement LaboratoryNational Bureau of StandardsGaithersburg, MD 20899

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 84-601107[J Document describes a computer program; SF-ISS, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significantbibliography or literature survey, mention it here)

An update is given of the thermal conductivity and electrical resistivity of themetals: electrolytic iron, tungsten, and stainless steel. This document describes themeasurement effort that has occurred since the establishment of these SRM's. New dataare presented and, based on these, changes in the recommended values are described.The new recommended values are presented in the form of equations, graphs, and tables.The temperature ranges included are: 2 to 1000 K for electrolytic iron, 2 to 3000 Kfor tungsten, and 2 to 1200 K for stainless steel.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

electrical resistivity; electrolytic iron; Lorenz ratio; stainless steel; StandardReference Material; thermal conductivity; tungsten.

13. AVAILABILITY

IX] Unlimited

o For Official Distribution. Do Not Release to NTIS

Order From Superintendent of Documents, U.S. Government Printing Office Washington 0 C20402. ' , ••

14. NO. OFPRINTED PAGES

71

15. Price

[J Order From National Technical Information Service (NTIS), Springfield, VA. 22161

USCOMM-DC a043-P80