université rené descartes – paris 5 ufr biomédicale des saints-pères ecole doctorale du...

47
Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament Ecole Doctorale du Médicament Strategic investigations for the Strategic investigations for the design of a library of design of a library of liposidomycins analogs, natural liposidomycins analogs, natural antibiotics dedicated to the MraY antibiotics dedicated to the MraY translocase translocase Maryon GINISTY Direction : Pr. Yves Le Merrer aboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Direction : Dr. Daniel Mansuy - UMR 8601 – CNRS 45, rue des Saints-Pères - 75270 Paris Cedex 06- France

Upload: patsy

Post on 01-Feb-2016

24 views

Category:

Documents


0 download

DESCRIPTION

Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament. Strategic investigations for the design of a library of liposidomycins analogs, natural antibiotics dedicated to the MraY translocase. Maryon GINISTY Direction : Pr. Yves Le Merrer - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

Université René Descartes – Paris 5 UFR Biomédicale des Saints-PèresUFR Biomédicale des Saints-Pères

Ecole Doctorale du MédicamentEcole Doctorale du Médicament

Strategic investigations for the Strategic investigations for the design of a library of design of a library of

liposidomycins analogs, natural liposidomycins analogs, natural antibiotics dedicated to the MraY antibiotics dedicated to the MraY

translocasetranslocase

Maryon GINISTY

Direction : Pr. Yves Le Merrer

Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesDirection : Dr. Daniel Mansuy - UMR 8601 – CNRS45, rue des Saints-Pères - 75270 Paris Cedex 06- France

Page 2: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

2

ANTIBACTERIAL RESISTANCE : ANTIBACTERIAL RESISTANCE : A MAJOR OBSTACLE FOR A MAJOR OBSTACLE FOR

ANTIBIOTHERAPYANTIBIOTHERAPY 1940’s : development of penicillin and appearance of the concept of antibiotics

« Agents with specific antibacterial action and with toxicity selectively directed against bacteria in low concentrations »

► Bacteriostatic effect (decrease or stop of bacterial growth)

► Bactericid effect (destruction of bacteria)

● Complexity and adaptability of bacterial world

► Therapeutic failure► Development of a large number of antibiotics classified according to various

criteria : site of action, origin, administation route, structure

⇒ Eight major families : -lactams, aminosides, macrolides, sulfamides, poly- et glyco-peptides, cyclins, (fluoro)quinolons…

Page 3: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

3

● Two types of resistance :

► Natural resistance (intrinsic property related to the bacterial genetic program)

► Acquired resistance (property resulting from genetic modifications of the bacterial cells)

● Five major mechanisms of resistance :

- Overproduction of antibiotic target- Metabolic bypass of inhibited reaction - Inactivation of antibiotic by enzymatic modification - Modification of target eliminating or reducing antibiotic

binding to target

RESISTANT STRAINS AND MECHANISMSRESISTANT STRAINS AND MECHANISMS

⇒ Resistant strain : strain able to develop in the presence of an antibiotic concentration notably higher than that which inhibits development of other strains of same species

antibiotic « modifying »enzyme

modified antibiotic

antibiotic

X

modifiedreceptor

antibiotic

receptor resistancegene

pump

- Decrease of cellular permeability to antibiotic

Page 4: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

4

⇒ Four sites of action specific to procaryote bacterial cells

- ribosomes responsible for protein synthesis

- metabolism of nucleic acids⇒ inhibition of DNA synthesis⇒ inhibition of DNA transcription into messenger RNA

- oxydoreduction (5-nitro-imidazoles) via formation of superoxides and nitro radicals responsible of irreversible damage on bacterial DNA- cell wall biosynthesis

SITES OF ACTION OF ANTIBIOTICS AND SITES OF ACTION OF ANTIBIOTICS AND POTENTIAL TARGETSPOTENTIAL TARGETS

Gram (-) cell

Gram (+) cell lipopolysaccharide

periplasm

cytoplasmic membranecytoplasmic membrane

external membrane

peptidoglycancytoplasmcytoplasm

mRNA

ribosomeDNA

DNA-gyrase

RNA-polymerasemRNA

Bacterial wall

N

N

R

CH3O2N

5-nitro-imidazoles

BACTERIA

aminoacid

Page 5: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

5

OHN

O

NH2

D-Cycloserin

PERIPLASM

ANTIBIOTICS AND BACTERIAL

PEPTIDOGLYCAN BIOSYNTHESIS

UDP-GlcNAc

UDP-GlcNAc-enolpyruvate

UDP-MurNAc

UDP-MurNAc-L-Ala

UDP-MurNAc-dipeptide

UDP-MurNAc-tripeptide

PEP

NADPH

L-Ala D-Ala

D-Glu L-Glu

meso-A2pm

D-Ala-D-Ala D-Ala

MurA

MurB

MurC

MurD

MurE

MurF

Alr

MurI

Ddl

-O2C OPO32-

PEP

PO32-

O

Fosfomycin

UDP-MurNAc-pentapeptide

bacitracin

vancomycinmoenomycinpenicillin

cephalosporin

D-cycloserin

D-cycloserin

fosfomycin

tunicamycinmuraymycinmureidomycinliposidomycin

MraY

O

O-

NH3+

D-Alanine

CYTOPLASM

UMP

PiUDP-GlcNAc

UDP

BacA MurG

PBPs

PBPs

Lipid I

Lipid II

AcceptorPolymer

Peptidoglycan

Undecaprenyl-PP

Undecaprenyl-P

MEMBRANE

N-acetylmuramic acid

N-acetylglucosamine

tétrapeptide

pentapeptide

O

O

NHCOCH3

OO

O

NHCOCH3

CHH3C

C

NH

O

tetrapeptide

N-acetylmuramic acid N-acetylglucosamine

Page 6: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

6

INHIBITORS AND NATURAL SUBSTRATE INHIBITORS AND NATURAL SUBSTRATE OF MraY TRANSLOCASEOF MraY TRANSLOCASE

OO

OH

HO

NH

CH2

OOH

NHN

O

OO

OHOHO

HOAcHN

HO OH

Tunicamycins

n

A : n=9

B : n=10

C : n=8

D : n=11

OOH2N

HO OCH3

O

HO OH

NH

N

O

O

CO2HHN

HN

NH

HNHO2C

O

OOR

HN

NH

HN

O

Muraymycins

A1: R=COC11H22N(OH)C(NH2)=NH

A3: R=COC11H22NHC(NH2)=NH

C1: R=H

NHN

O

O

O

OH

O

HN

CH3

N

NH

R1

O

HO

HN

ONH

R2

HN

O

R3

OH

O

H3C

R1=H, glycinylR2= CH3S(CH2)2-R3= m-hydroxyphenyl

Mureidomycins

O

NHN

O

ON

N

CH3

HO2C

O

O

CH3R

O

O

HO2C

O

O

O

NH2

A: R=

B: R=

C: R=

Liposidomycins

OH OH

OHHO3SOO

OH

HOO

AcHN

O

pentapeptide-HNO

PO

PO

-O O

O

HO OH

N

NH

O

O

O O-

Me

UDP-Mur-NAc-pentapeptide

Page 7: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

7

N

N

CH3

HO2C O

CH3

12

345

67

N

N

CH3

HO2C O

CH3

12

345

67

O O

OHH O3S O

NH2

O O

OHH O3S O

NH2

NHN

O

O

O

HO OH

H1'

2'3'4'

STRUCTURE OF LIPOSIDOMYCINSSTRUCTURE OF LIPOSIDOMYCINS

A: R=

B: R=

C: R=

O

R

O

O

HO2C

O

5'NHN

O

O

O

HO OH

H1'

2'3'4'

S

S

S S

Page 8: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

8

N

NCH3

CH3O

PhCOO

O

EtON Boc

CH3

PhCOO

O

EtON H

CH3

PhCOO

O

EtON

N CH3

H3C O

PhCOO

O

EtO

Z

N

N CH3

H3C O

PhCOO

O

EtO

O

Z

SYNTHETIC APPROACHES DESCRIBED IN SYNTHETIC APPROACHES DESCRIBED IN LITTERATURELITTERATURE

OHCacrolein

N

HO

O

CH3Z

N-Z-sarcosine

EtO2C NBoc

CH3

N-Boc-sarcosine ethyl ester

⇖⇖

1,4-diazepan-2-one moiety

N

NCH3

CH3O

PhCOO

O

EtO 1 23

456

7

Knapp et coll. Tetrahedron Lett. 1992, 33, 5485.Knapp et coll. J. Org. Chem. 2001, 66, 5822.

Page 9: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

9

BnO

NH

OMPM

OTBDMSO

OBn

R

N3BnO

NH

OH

OTBDMSO

OBn

R

N3BnO

NH

O

OTBDMSO

OBn

R

N3

Ribosyl-diazepanone Isono et coll. Heterocycles 1992, 34, 1147.

OMPM

OTBDMSN3

BnO

(S1)

HO2C

N3 OBn

(S2)

O OCH3

O O

OH

OH

OMPM

OH

RHO

OtBuOOH, Ti(OiPr)4

L-DET

78%

OMPM

OH

OD-DET

tBuOOH, Ti(OiPr)4

88%

OMPM

OHN3

HO

50%

NaN3

RHO

N3 OH

RHO

NaN3

O OCH3

O O

R :

NH

N

O

BnO OBn

TBDMSO O OCH3

O O

O OCH3

O O

OHC

DCC / HOBt

NH

N

O

BnO OBn

TBDMSO O OCH3

O O

Pd/C, H2

36%

SYNTHETIC APPROACHES DESCRIBED SYNTHETIC APPROACHES DESCRIBED IN LITTERATUREIN LITTERATURE

Page 10: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

10

O O

OTBDMSO

HO2C

OH

N3

H O O

OTBDMSO

HO2C

OH

N3

H

NHCH3

PhCOO

CO2Et

O O

OTBDMSO

OH

NH2

O

O NCH3PhCOO

CO2EtEEDQH

NHCH3

PhCOO

CO2Et

O O

OTBDMSO

OH

N3

O

NCH3PhCOO

CO2EtEEDQH

NHCH3

PhCOO

CO2Et

O O

OTBDMSO

OH

N3

O

O NCH3PhCOO

CO2EtEEDQH

Nucleosidyl-diazepanone Knapp et coll. Org. Lett. 2002, 4, 603.

O O

OHO

O H

OH

O O

OTBDMSO

HO

O

O

OTBDMSO

N

N

OH3C

CH3

EtO2C

OHH

O

O

OHHO

NH

N

O

ON

N

OH3C

CH3

EtO2C

OHdeprotection, acylation

thenglycosylation

1/ Oxidation

2/ NaN3

1/ Ozonolysis

2/ Azidereduction

3/ Reductive amination

SYNTHETIC APPROACHES DESCRIBED SYNTHETIC APPROACHES DESCRIBED IN LITTERATUREIN LITTERATURE

Page 11: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

11

O

NH

N

O

O

OO

O O

NH

N

O

O

OO

MeO2C

O

BocHN

O

O

O

NH

N

O

O

OO

CbzHN

H

O

TBSO

TBDPSO

O

O

HN

O

BocHN

O

O

O

NH

N

O

O

OO

CbzHN

H

O

TBSO

TBDPSO

H2C

O

HN

O

BocHN

O

O

O

NH

N

O

O

OO

CbzHN

H

O

HO2C

O

NH

N

O

O

OO

CbzHN

H

OH

MeO2C

N

NHO

HO2C

Me

Me

O

O

NH

N

O

O

OHHO

H

O

O

H2NHO

HO

1 Wittig

Nucleosidyl-ribosyl-diazepanone Angew. Chem. Int. Ed. 2005, 44, 1854.

N

NHO

HO2C

Me

Me

O

O

NH

N

O

O

OHHO

H

O

O

H2NHO

HO

N

NHO

HO2C

Me

Me

O

O

NH

N

O

O

OHHO

H

O

O

H2NHO

HO

2 glycosylation

O

N3

O O

F

N

NHO

HO2C

Me

Me

O

O

NH

N

O

O

OHHO

H

O

O

H2NHO

HO

3 peptide couplingTBSO

NHMe

OTBDPS

H2C

N

NHO

HO2C

Me

Me

O

O

NH

N

O

O

OHHO

H

O

O

H2NHO

HO

reductiveamination

4

SYNTHETIC APPROACHES DESCRIBED SYNTHETIC APPROACHES DESCRIBED IN LITTERATUREIN LITTERATURE

Page 12: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

12O

HO

OH

AcHNO

pentapeptide-HN

OO-O

PO O

O-O

PO

Lipid I

8

N

N

OHO2C

O

O

R

O

HO2C

O

O

HO OH

NH

N

O

O

OO(SO3)H

OH

H2NLiposidomycins

OHO

OH

AcHNO

pentapeptide-HN

OO-O

PO O

O-O

PO

O

HO OH

NH

N

O

O

UDP-N-acetyl-muramoylpentapeptide

STRUCTURE-ACTIVITY RELATIONSHIP : STRUCTURE-ACTIVITY RELATIONSHIP : DEVELOPMENT OF A NEW DEVELOPMENT OF A NEW

PHARMACOPHOREPHARMACOPHORE

O

OP

O-O- 8

Undecaprenylphosphate

OHO

OH

AcHNHO

O OHN

R

O

HOOH OH

O

HO OH

NH

N

O

O

Tunicamycins

MraY

Page 13: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

13

N

N

O

CH3

HO2C

OO

OHHO

O

NH2

H3C

O

HO OH

NHN

O

ON

N

O

CH3

HO2C

OO

OHHO

O

NH2

H3C

O

HO OH

NHN

O

ON

N

O

CH3

HO2C

OO

OHHO

O

NH2

H3C

O

HO OH

NHN

O

ON

N

O

CH3

HO2C

OO

OHHO

O

NH2

H3C

O

HO OH

NHN

O

O

O

O

HO

HO

NH2

O

HO OH

NHN

O

O

O

O

HO

HO

NH2

O

HO OH

NHN

O

O

O

OHHO

O

NH2

**

NH

N

O

R2

R3O

R4O**

NH

*

N

R1

O

R2

R3O

R4O

O

OHHO

O

NH2

**

NH

N

O

R2

R3O

R4O

O

OHHO

O

NH2

NH

N

O

R2

O

O

O

O

HO

HO

NH2

O

HO OH

NHN

O

O

STRUCTURE-ACTIVITY RELATIONSHIP: STRUCTURE-ACTIVITY RELATIONSHIP: DEVELOPMENT OF A NEW DEVELOPMENT OF A NEW

PHARMACOPHOREPHARMACOPHORE

Target scaffold

R2= NHN

O

O

Pharmacophore structure

Structure of natural molecules

Page 14: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

14

SCAFFOLD RETROSYNTHESISSCAFFOLD RETROSYNTHESIS

O

PO OP

HN

NH

O

PO

O

PO

H2N

1

2

3

45

67

1'2'3'

4'5'

1''

H2N OH

PO

amino-dihydroxy-butane

Y

NH2HO2C

OHL-Serine

O

PO OP

H2N1

23

45

X

5-amino-ribose

O

HO OH

OHO

HO

L-ascorbic acid

O

HO OH

HO1

23

45

OH

D-ribose

P: protecting groupsX: halogen

N-ALKYLATION

O-GLYCOSYLATION

PEPTIDECOUPLING

Page 15: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

15

O

PO OP

HN

NH

O

PO

O

PO

H2N

1

2

3

45

67

1'

2'3'

4'5'

1''

C B

A

NH2

PO

H2N

O OH

HO

L-serine

HO

amino-dihydroxy-

butane

Y

O

PO OP

HN

NH

O

PO

O

PO

H2N

1

2

3

45

67

1'

2'3'

4'5'

1''

C B

A

O

PO OP

HN

NH

O

PO

O

PO

H2N

1

2

3

45

67

1'

2'3'

4'5'

1''

C B

AO

PO OP

HN

NH

O

PO

O

PO

H2N

1

2

3

45

67

1'

2'3'

4'5'

1''

C B

A

O

PO OP

HN

NH

O

PO

O

PO

H2N

1

2

3

45

67

1'

2'3'

4'5'

1''

C B

A

O

PO OP

HN

NH

O

PO

O

PO

H2N

1

2

3

45

67

1'

2'3'

4'5'

1''

C B

A

STRATEGIES TOWARDS SCAFFOLD STRATEGIES TOWARDS SCAFFOLD SYNTHESISSYNTHESIS

O

PO OP

H2N

O O

H2N 1'

2'3'

4'5' A

HOB

HN

NH

O

PO

OH

PO

1

2

3

4

5

67

C B

NH2

POamino-dihydroxy-butane

HO Y

O

PO OP

H2N1

23

45

X

5-amino-ribose

A

O

PO OP

H2N

1

23

45

X

5-amino-ribose

H2N

O OH

HO L-serine

GLYCOSYLATION

N-ALKYLATION

PEPTIDE COUPLING

N-ALKYLATION

PEPTIDE COUPLING

GLYCOSYLATION

Maryon Ginisty
Page 16: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

16

O O

P2O OP2

R1HN

NHR3

R2O2C

O O

P2O OP2

R1HN

NHR3

R2O2Caminedeprotection

FunctionalizedL-serinyl-O-ribofuranoside

O O

P2O OP2

R1HN

NHR3

R2O2Caminedeprotection

FunctionalizedL-serinyl-O-ribofuranoside

O O

P1O OP1

P1O

NHR3

R2O2C

aminedeprotection

O O

P1O OP1

P1O

NHR3

R2O2C

O

P1O OP1

R1HN

O

NHN3

HO2C

HO

TBDPSO

O

P1O OP1

R1HN

O

NHN3

HO2C

HO

TBDPSO

ACCESS TO THE SCAFFOLD BY « CHAIN ACCESS TO THE SCAFFOLD BY « CHAIN EXTENSION »EXTENSION »

STEPS AND PRECURSORS

O

P2O OP2

R1HN

O

NH

HN

HO

O

TBDPSO

O

HO OH

H2N

O

NR2

HN

R1O

O

HO

scaffold

O O

P2O OP2

R1HN

NH2

R2O2C

N3

PO

Oazido-epoxideO O

P1O OP1

P1O

NHR3

R2O2C

functionalizationof ribosyl moiety

N-alkylation

OO

P1O OP1

P1O

functionalization of ribosyl moiety

NHN3

R2O2C

POPO

O O

P1O OP1

P1O

NH2

R2O2C

N3

PO Oazido-époxyde

N-alkylation

O X

P2O OP2

R1HN

NHR3

R2O2Cglycosylation

OH

prefunctionalizedribofuranose

O X

P1O OP1

P1O

NHR3

R2O2CglycosylationOH

O X

P1O OP1

P1O

NHR3

R2O2CglycosylationOH

STRATEGY 1

STRATEGY 1

STRATEGY 2

Page 17: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

17

OOH

"donor" sugarO

OR

OX

H+

R-OH

acceptor

X= Br, Cl, F, SR

= OCOR, O3SR, OP(OR)2, OPO2-OR'.

R-OH (acceptor)

Substitution via activation of anomeric position

Direct acid-catalyzed substitution

GLYCOSYLATION STEPX= Br, Cl, F

ACCESS TO THE SCAFFOLD BY « CHAIN ACCESS TO THE SCAFFOLD BY « CHAIN EXTENSION »EXTENSION »

Maryon Ginisty
afficher lapremière diapo du plan
Page 18: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

18

⇒ Tricky step :

- for the formation of O-glycosidic derivatives, less known than that of N-glycosidic analogs

- in the particular case of threonyl and serinyl acceptors

"H"

O O

PO OP

NHR2

YOR1

O

H

HO

NHR2

OR1

O

O

PO OP

Y

"H"

O O

PO OP

NHR2

YOR1

O

H

HO

NHR2

OR1

O

O

PO OP

Y

ELABORATION OF ELABORATION OF OO-GLYCOSYLATION STEP (1) -GLYCOSYLATION STEP (1)

O X

P1O OP1

Y

O O

P1O OP1

Y

CO2P2

NHP3HOCO2P2

NHP3+

R

R = H : L-serineR = CH3 : L-threonine

R

O O

PO OP

R2HN H

YOR1

O

B

O O

PO OP

NHR2

YOR1

OO O

PO OP

Y

NHR2

OR1

O

H2OO OH

PO OP

Y

Basic lability

Acid lability

O X

P1O OP1

Y

O OR

P1O OP1

Y+ R-OH

Page 19: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

19

O

OPO

R

O

PO

H

O X

P1O OP1

Y

O O

P1O OP1

Y

CO2tBu

NHP3HOCO2tBu

NHP3+

P3 = Boc, Cbz, Fmoc

O X

P1O OP1

Y

O O

P1O OP1

Y

CO2tBu

NHP3HOCO2tBu

NHP3+

O X

P1O OP1

Y

O O

P1O OP1

Y

CO2tBu

NHP3HOCO2tBu

NHP3+

⇒ Success of the reaction and control of stereochemistry depending on three principal factors :

- nature of glycosylation activator

- nature of activation in anomeric position

-nature of the C-2 substituent of the ribose controling - or -selective introduction of serine (anchimeric assistance)

activator

O

OPO

R

O

PO

X O

O

O

H

PO

PO

RX

R'-OH

H

O

ROCO

OR'

PO

PO

anomer

ELABORATION OF ELABORATION OF OO-GLYCOSYLATION STEP (2) -GLYCOSYLATION STEP (2)

Page 20: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

20

O OP1

P2O OP2

Y

O

P2O OP2

Y

Xglycosylation

reagent

HO CO2tBu

NHP3

OO

P2O OP2

Y

CO2tBu

NHP3

R1= HR2 = Bn

Koenigs-Knorr method

R1= AcR2 = Ac, Bz, Bn

O R

O O

Y

R = OH, FY = N3, PhtN, NHZ

R1, R2 = H

O X

RO OR

RO

R = Ac X = Br, ClR = Bz X = BrR = Bn X = Br

ACTIVATION IN ANOMERIC POSITIONACTIVATION IN ANOMERIC POSITION

O OR1

R2O OR2

R2O

X = Cl

SOCl2, DCM,

0°C to RT

X = Br

TMS-Br, DCM, -40°C to RT.

STRATEGY 1 O F

BnO OBn

BnO

DAST, THF, -30°C to RT, 1h.95%

(= 99/1)

STRATEGY 2

O OAc

AcO OAc

N3

Maryon Ginisty
insertion 2ème page de plan
Page 21: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

21

O OMe

O O

N3

HN3* (2,8M), PPh3,DIAD, THF, 0°C.

98%

O OMe

O O

HO

Me2CO, MeOH, HCl(g),RT.

75%

O OMe

O O

PhtN

PhtNK, HMPT,120°C, 24h.

74%

O OMe

O O

TsO

TsCl, Et3N,DMAP, CH2Cl2,

0°C to RT.

84%

O OMe

O O

HO

1/ DOWEX 50W-H+, MeOH, 65°C, 17h.2/ Ac2O, pyridine, RT, 2h.

O OMe

AcO OAc

N3

O OH

O O

ZHN

a 10%

O OMe

O O

ZHN

ZCl, DIEA,CH2Cl2, RT,

2h.100 %

Pd/C, H2, EtOH, CHCl3, TA, 1h30.

98%

O OMe

O O

ClH3N

Pd/C, H2, EtOH, CHCl3, RT, 1h30.

98%

FORMATION OF PREFUNCTIONALIZED FORMATION OF PREFUNCTIONALIZED RIBOFURANOSIDESRIBOFURANOSIDESO OH

HO OH

HO D-Ribose

* 2 NaN3 + H2SO4 2 HN3 + Na2SO4H2O

0°C

50%(= 3,4)

O OAc

AcO OAc

N3

AcOH, Ac2O,H2SO4,RT, 2h.

35%

O OH

O O

N3

40%a

O OH

O O

PhtN

a 25%

a : 1/ H2SO4 (0,1N), 65°C, 4h; 2/ Me2C(OMe)2, CSA, Me2CO, 50°C, 30 min.

Page 22: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

22

R= Boc, Cbz, FmocR= BocR= CbzR= Fmoc, Cbz

SYNTHESIS OF SYNTHESIS OF LL-SERINYL ACCEPTORS-SERINYL ACCEPTORS

BnOCO2H

NHBoc

BnOCO2tBu

NHBoc

Cl3C OtBu

NH

BF3.OEt2,cyclohexane, CH2Cl2,

TA, 17 h.

96%

HOCO2tBu

NHBoc

H2, Pd(OH)2/ C,

EtOH abs., AcOH,TA, 72 h.

99%

HOCO2H

NH2

L-serine

HOCO2tBu

NHR

N-carbamoyl-L-serine tert-butyl ester

HOCO2H

NHR

tBu-Br, BnEt3NCl,

K2CO3, CH3CN,

50°C, 24h.

88%

HOCO2tBu

NHZR= Cbz

Cl3C OtBu

NH

AcOEt,cyclohexane,

20°C, 24h.

84%

HOCO2tBu

NHFmoc

R= Fmoc

Page 23: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

23

O OP2

OP1P1O

Y

O X

OP1P1O

Y

O O

OP1P1O

Y

CO2tBu

NHP3

HOCO2tBu

NHP3

activation glycosylation STRATEGY 1 (riboses not functionalized )

STRATEGIE 2 (prefunctionalized riboses)

PP11 PP22 YY ActivationActivation XXX = Br, Cl, FX = Br, Cl, F

ZZ

AgOTf, DCM, -15°C, 15 h.AgOTf, DCM, -15°C, 15 h.

: 100%: 100% 3232

ZZ : 100%: 100% 9292

BocBoc 0,30,3 6969BocBoc 0,30,3 6969

AcAc AcAc OAcOAc

TMSBr, DCM, -40°C à TATMSBr, DCM, -40°C à TA

BrBr

BzBz AcAc OBzOBz BrBr

BnBn AcAc OBnOBn BrBr

CMeCMe22 HH NN33

DAST, THF, -30°C à TA, DAST, THF, -30°C à TA,

2h.2h.

FF

CMeCMe22 HH NN33 FF

BnBn HH OBnOBn FF

O OH

OO

Y

O F

OO

Y

O O

OO

Y

CO2tBu

NHP

DAST, THF, -30°C à TA, 1h.

HO CO2tBu

NHP

activateur

SnCl2/ AgClO4

BocBoc

SnClSnCl22, AgClO, AgClO44, -15°C à TA, , -15°C à TA,

48 à 72 h.48 à 72 h.

2,152,15 6464

FmocFmoc 1,71,7 100100

BocBoc 1,21,2 4444

HOCO2tBu

NHP

O OAc

RO OR

RO

O

RO OR

ROX O O

RO OR

RO

CO2tBu

NHP

activator

SELECTION OF ACTIVATORS AND OPTIMIZATION SELECTION OF ACTIVATORS AND OPTIMIZATION OF GLYCOSYLATION CONDITIONSOF GLYCOSYLATION CONDITIONS

Ginisty M., Gravier-Pelletier C., Le Merrer Y., Tetrahedron: Asymmetry 2004, 15, 189-193.Ginisty M., Gravier-Pelletier C., Le Merrer Y., Tetrahedron: Asymmetry 2006, 17, 142-150 .

Hg(CN)2

AgClO4

TMS-OTf BF3.OEt2

AgOTf SnCl2/ AgClO4

PP33 GlycosylationGlycosylationRatio Ratio

))Yield Yield (%)(%)

Page 24: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

24

O O

P1O OP1

P1O

NHR3

R2O2C

O O

P2O OP2

R1HN

NH2

R2O2C

N3

PO O

azido-epoxide

O X

P2O OP2

R1HN

NHR3

R2O2C

glycosylation OH

prefunctionalizedribofuranose

O X

P1O OP1

P1O

NHR3

R2O2C

glycosylationOH

O O

P2O OP2

R1HN

NHR3

R2O2C

functionalizedL-serinyl-O-ribofuranoside

O O

P1O OP1

P1O

NHR3

R2O2C

O

P1O OP1

R1HN

O

NHN3

HO2C

HO

TBDPSO

O O

P1O OP1

P1O

NH2

R2O2C

N3

PO Oazido-epoxide

O X

P1O OP1

P1O

NHR3

R2O2Cglycosylation OH

STRATEGY 1

STRATEGY 1

STRATEGY 2

aminedeprotection

aminedeprotection

functionalization of ribosyl moiety

ACCESS TO THE SCAFFOLD BY « CHAIN ACCESS TO THE SCAFFOLD BY « CHAIN EXTENSION »EXTENSION »

Page 25: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

25

PhtNK, DMF,

160°C, 12h.O O

O O

PhtN

tBuO2C

NHZ

1'

2'3'

4'5'

1 2 3

O OHO

HO OH

1'

2'3'

4'5'

12

3tBuO2C

NHR

CH3C(OMe)2, MeOH, APTS, (CH3)2CO. O O

HO

O O

1'

2'3'

4'5'

12

3tBuO2C

NHR

O O

AcO OAc

AcO

tBuO2C

NHZ

O O

HO OH

HO

tBuO2C

NHZK2CO3, MeOH/ H2O,

TA, 1h.

70%

1'

2'3'

4'5'

12 3 1

2 3

1'

2'3'

4'5'

O O

O O

HO

tBuO2C

NHZ

1'

2'3'

4'5'

1 2 3

O O

BzO OBz

BzO

tBuO2C

NHZ

O O

HO OH

HO

tBuO2C

NHZK2CO3, MeOH/ H2O,

TA, 1h.

1'

2'3'

4'5'

12 3 1

2 3

1'

2'3'

4'5'

O O

BzO OBz

ZHN H

BzOOtBu

O

O O

BzO OBz

BzO

NHZ

OtBu

O

+O OBnO

BnO OBn

1'

2'3'

4'5'

12

3tBuO2C

NHBoc

O OHO

HO OH

1'

2'3'

4'5'

12

3tBuO2C

BocHN

Pd(OH)2/C, H2, EtOH abs., CH3CO2H,

TA, 24h.

100%

TsCl, DMAP, Et3N, CH2Cl2,

0°C to TA, 6h.

81%

O O

O O

TsO

tBuO2C

NHZ

1'

2'3'

4'5'

1 2 3

O O

HO OH

HO

NHR3

R2O2C

1'

2'3'

4'

5'

12 3

FUNCTIONALIZATION OF RIBOSYL MOIETYFUNCTIONALIZATION OF RIBOSYL MOIETY

O O

P2O OP2

R1HN

NHR3

R2O2C

1'

2'3'

4'5'

1 32

O O

P2O OP2

HO

NHR3

R2O2C

1'

2'3'

4'

5'

12 3

O O

P1O OP1

P1O

NHR3

R2O2C

1'

2'3'

4'5'

12 3

functionalizationat C-2’ and C-3’

positions

substitutionof the

5’-OH function deprotection

C-2’ and C-3’protection

substitutionof the5’-OH

function

P1 = Ac, Bz, BnP2 = C(CH3)2

OMe

X

MeO

MeOH

O OH

BzO OBz

BzO

MeOCO2tBu

NHZ

major product

+R = Z 82%

Boc -

Maryon Ginisty
diapo plan 3
Page 26: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

26

O O

P2O OP2

R1HN

NH2

R2O2C

O

P1O OP1

R1HN

O

NHN3

HO2C

HO

TBDPSO

O O

P1O OP1

P1O

NHR3

R2O2C

O X

P2O OP2

R1HN

NHR3

R2O2C

glycosylation OH

prefunctionalizedribofuranose

O X

P1O OP1

P1O

NHR3

R2O2C

glycosylationOH

O O

P2O OP2

R1HN

NHR3

R2O2C

functionalizedL-serinyl-O-ribofuranoside

O O

P1O OP1

P1O

NHR3

R2O2C

O O

P1O OP1

P1O

NH2

R2O2C

O X

P1O OP1

P1O

NHR3

R2O2Cglycosylation OH

STRATEGY 1

STRATEGY 1

STRATEGY 2

aminedeprotection

aminedeprotection

functionalizationof the ribosyl moiety

N3

PO O

azido-epoxide

N3

PO Oazido-epoxide

ACCESS TO THE SCAFFOLD BY « CHAIN ACCESS TO THE SCAFFOLD BY « CHAIN EXTENSION »EXTENSION »

Page 27: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

27

O O

O O

H2N

tBuO2C

NHFmoc

1'2'3'

4'5'

21

3

O O

O O

H2N

tBuO2C

NH2

1'2'3'

4'5'

21

3

HCO2NH4

Pd/C 10%

MeOH, TA.

O O

O O

N3

NH2

tBuO2C

N3

PO

O

O O

O O

N3

N3

HO

PO

tBuO2C

NH

azidoreduction

O O

O O

H2N

tBuO2C

NHFmoc

1'2'3'

4'5'

21

3

O O

O O

Y

tBuO2C

NHFmocprotection

of C5'-amino group

1'2'3'

4'5'

21

3

O O

RO OR

RO

tBuO2C

NHZ

O O

RO OR

RO

tBuO2C

NH2

1'2'3'

4'5'

21

3

1'2'3'

4'5'

21

3

AMINE DEPROTECTIONAMINE DEPROTECTION

STRATEGY 1

H2, Pd(OH)2/ C, CH3CO2H, EtOH abs., RT, 24h.

H2, Pd(OH)2/ C, CH3CO2H, EtOH abs., RT, 48h.

H2, Pd black, CH3CO2H, RT, 48h.

R = Ac, Bz

X

STRATEGY 2

O O

O O

N3

tBuO2C

NHFmoc

1'2'3'

4'5'

21

3

Y= PhtN-, ZHN-

O O

O O

Y

tBuO2C

H2N

1'2'3'

4'5'

21

3deprotection

of C2-amino group

X

Maryon Ginisty
diapo 3
Page 28: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

28

O OY

O O

tBuO2C

NH2

1'2'

4'5'

1 2 3

A

B

3'

Powerful glycosylation conditions for the diastereoselective formation of Powerful glycosylation conditions for the diastereoselective formation of serinyl-5’-amino-serinyl-5’-amino--D-ribofuranoside derivatives-D-ribofuranoside derivatives

⇒ ⇒ unfinished strategy because of difficult functionalization of the unfinished strategy because of difficult functionalization of the ribosyl moiety and amine deprotection. ribosyl moiety and amine deprotection.

PerspectivePerspective : : ⇒ ⇒ strategy 2 : glycosylation of 2,3-strategy 2 : glycosylation of 2,3-OO-isopropyliden--isopropyliden-DD-ribofuranoside -ribofuranoside derivatives differently derivatives differently NN-protected, -protected, whose synthesis was already carried out. whose synthesis was already carried out.

. .

O OMeN3

O O

123

45O OH

HO

HO OH

123

45

functionalizationof the

ribosyl moiety O XY

O O

123

45

ACCES TO THE SCAFFOLD BY « CHAIN ACCES TO THE SCAFFOLD BY « CHAIN EXTENSION » : CONCLUSION AND EXTENSION » : CONCLUSION AND

PERSPECTIVESPERSPECTIVES

1) glycosylation

2) aminedeprotection

HOCO2tBu

NHFmoc

123

Y = PhtN-, ZHN-X = activated group

Page 29: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

29

ACCESS TO THE SCAFFOLD BY DIRECT COUPLINGACCESS TO THE SCAFFOLD BY DIRECT COUPLING

O

PO OP

HN

NH

O

PO

O

PO

H2N

1

2

3

45

67

1'

2'3'

4'5'

1''

C B

A

O

PO OP

H2N

O O

H2N 1'

2'3'

4'5' A

HO

HN

NH

O

PO

OH

PO

1

2

3

4

5

67

C B

O

PO OP

H2N1'

2'3'

4'5'

X

5'-amino-ribose

NH2

PO

H2N

O OH

HO

L-sérine

HO

amino-dihydroxy-

butane

Y

O

PO OP

H2N

1'

2'3'

4'5'

X

5'-amino-ribose

NH2

O OH

HO L-serine

GLYCOSYLATION

N-ALKYLATION

PEPTIDECOUPLING

GLYCOSYLATION

NH2

POamino-dihydroxy-butane

HO Y

Page 30: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

30

1,4-diazépan-2-one

NH

NH

O

PO

POC B

OH1 2

3

45

6

7

1,4-diazépan-2-one

NH

NH

O

PO

POC B

OH1 2

3

45

6

7

1,4-diazepan-2-one

NH

NH

O

PO

POC B

OH1 2

3

45

6

7

NH2

PO

amino-butanol

PO

Y

O OHO

HO

HO OHL-ascorbic acid

NH

H2N

O

PO

OH

1

2

34

5

6 7

Y

PO

N-alkylation

peptidecoupling

N-alkylationNH2

CO2H

NHPO

PO

OH

12

34

5

6

7

peptidecoupling

H2N

O

OH

HO

L-serine

CAG STRATEGY

ACGSTRATEGY

ACCESS TO THE SCAFFOLD BY DIRECT COUPLINGACCESS TO THE SCAFFOLD BY DIRECT COUPLING

Maryon Ginisty
diapo plan 5
Page 31: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

31

CO2Et

OHO

O OTBDPS

N3O

O

azido-acetonide

FORMATION OF NFORMATION OF N11-C-C22 LINKAGE BY PEPTIDE LINKAGE BY PEPTIDE COUPLINGCOUPLING

- FIRST STEP OF THE CAG STRATEGY -- FIRST STEP OF THE CAG STRATEGY -

SYNTHESIS OF AMINO-BUTANOL PRECURSORS

O

OTBDPS

NH2

OTBDPS

NH2O

O

NH2TBDPSO

EtO2C

amino-epoxide

amino-acetonide

amino-ester

OTBDPS CO2Et

OTBDPSN3

TBDPSO

azido-ester

O

OTBDPS

N3

azido-epoxide

CO2Et

OTBDPSO

O

O

OHHO

OHO

HO

L-ascorbic acid3,4-O-methylethyliden-L-threonine ethyl ester

Page 32: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

32

N3 OP

YPO 123

4

+ -1) H2O2, H2O, K2CO3,

0°C, 2h.2) EtI, CH3CN,

85°C, 12h.

78% O OH

CO2EtO

O OH

CO2EtO

23

14O

HO OH

OHO

HO

O

HO OH

OO

O

Me2C(OMe)2, Me2CO, HCl(g), RT, 12h.

94%

L-ascorbic acid

CO2Et

OTBDPSN3

TBDPSO

OTBDPS

N3O

O

PO OP

OPPO 123

4

PO X

OPPO 1234

SN en C2

X OP

OPPO 1234

SN en C3

180° rotation

introduction in C3 position

of the azido group

introduction of the azido

group in C2 position

O N3

OP123

4

N3 OP

OPO

R

1

23

4

P : protecting groupR = OEt, H

introduction of an electrophilic group

in C4 position

Introduction of an electrophilic group

in C1 position

180° rotation

FORMATION OF NFORMATION OF N11-C-C22 LINKAGE BY PEPTIDE LINKAGE BY PEPTIDE COUPLINGCOUPLING

- FIRST STEP OF THE CAG STRATEGY -- FIRST STEP OF THE CAG STRATEGY - SYNTHESIS OF AMINO-BUTANOL PRECURSORS

Page 33: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

33NH2O

O OTBDPSPPh3, H2O, THF,

RT, 72h.

78%

O N3

O OTBDPS

TBDPSCl, ImH,DMF,

0°C to RT, 12h.

100 %

O OTBDPS

CO2EtO

O OH

CO2EtO CO2Et

OTBDPSN3

TBDPSO1

234

TFA, H2O, THF, 0°C, 3h.

74%

HO OTBDPS

CO2EtHO TBDPSCl, ImH, DMF, 0°C to RT.

74%

HO OTBDPS

CO2EtTBDPSO 1

234

N3 OTBDPS

CO2EtTBDPSO

1)Tf2O, 2,6-lutidine,CH2Cl2, -78°C.

2) NaN3, DMF,0°C to RT, 12h.

88%

1

234

HCO2NH4, Pd/ C 10%, MeOH, RT, 2h.

98%H2N OTBDPS

CO2EtTBDPSO1

234

O OH

CO2EtO

O N3

O OTBDPS1

23

4LiAlH4, THF,

0°C

98%

O OH

O OH TBDPSCl, ImH, DMF, 0°C to RT.

80%

O OH

O OTBDPS1)Tf2O, 2,6-lutidine,

CH2Cl2, -78°C.

2) NaN3, DMF,0°C to RT, 12h.

90%

O N3

O OTBDPS

H2N OTBDPS

CO2EtTBDPSO1

234

NH2O

O OTBDPSPPh3, H2O, THF,

RT, 72h.

78%

N3HO

HO OTBDPSTFA, THF, H2O,

0°C, 2h.

55%N3O

OTBDPS

PPh3, DIAD,130°C,

0,1 mmHg

78%

Mitsunobu reaction

1) MeC(OMe)3, PPTS, CH2Cl22) AcBr, Et3N, CH2Cl2

3) K2CO3, MeOH.

87%

Sharpless epoxidation

PPh3, H2O, THF,RT, 72h.

87% NH2O

OTBDPS

SYNTHESIS OF AMINO-BUTANOL PRECURSORS

FORMATION OF NFORMATION OF N11-C-C22 LINKAGE BY PEPTIDE LINKAGE BY PEPTIDE COUPLINGCOUPLING

- FIRST STEP OF THE CAG STRATEGY -- FIRST STEP OF THE CAG STRATEGY -

Page 34: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

34

P1 P2

Couplingreagent

Fmoc Bn

PyBOP78 %

HBTU49 %

Z tBu PyBOP80 %

Boc Bn PyBOP99 %

PEPTIDE COUPLING : SUBSTRATES AND PRODUCTSPEPTIDE COUPLING : SUBSTRATES AND PRODUCTS

"AMINO" PRECURSORS

NH2

CO2EtTBDPSO

TBDPSO

NH2

O

TBDPSO

O

NH2

O

TBDPSO

amino-ester

amino-acetonide

amino-epoxide

OP2HO2C

P1HN

L-SERINE

NH

NHFmocCO2Et

OOBn

TBDPSO

TBDPSO

PEPTIDECOUPLING

100 %

NH

NHFmoc

OOBn

O

TBDPSO

O

100 %

NH

NHP1

OOP2

O

TBDPSO

23

12'

1'

3'

4'

a : PyBOP, DIEA, CH2Cl2

b : HBTU, DIEA, DMF

a

a

a or b

* 25 % of epimerization in C2 position

*

COUPLINGPRODUCTS

YIELD

Page 35: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

35

1,4-diazepan-2-one

NH

NH

O

PO

POC B

OH1 2

3

45

6

7

NH2

PO

amino-butanol

PO

Y

NH

H2N

O

PO

OH

1

2

34

5

6 7

Y

PO

N-alkylation

peptidecoupling

N-alkylationNH2

CO2H

NHPO

PO

OH

12

34

5

6

7

peptidecoupling

H2N

O

OH

HO

L-serine

CAG STRATEGY

ACG STRATEGY

ACCESS TO THE SCAFFOLD BY DIRECT COUPLINGACCESS TO THE SCAFFOLD BY DIRECT COUPLING

Page 36: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

36

1,4-diazepan-2-one

NH

NH

O

PO

POC B

OH1 2

3

45

6

7

NH2

PO

amino-butanol

PO

Y

NH

H2N

O

PO

OH

1

2

34

5

6 7

Y

PO

N-alkylation

peptidecoupling

N-alkylationNH2

CO2H

NHPO

PO

OH

12

34

5

6

7

peptidecoupling

H2N

O

OH

HO

L-sérine

CAG STRATEGY

ACG STRATEGY

INTRAMOLECULAR PATHWAY

INTERMOLECULAR PATHWAY

ACCESS TO THE SCAFFOLD BY DIRECT COUPLINGACCESS TO THE SCAFFOLD BY DIRECT COUPLING

Page 37: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

37

NH

H2N

OPOPO

R

R= O, O-(SO2)-O

NHPPO

RH2N

OPO

PO

NH

H2N

OPOPO

O

NHPPO

OH2N

OPO

PO

FORMATION OF NFORMATION OF N44-C-C55 LINKAGE BY LINKAGE BY NN-ALKYLATION-ALKYLATION

H2N

OPO

PONHP

PO

PO

Y

NH

H2N

OPO

PO

PO

Y

Y= Br, OTs

NH

NH2CHO

OPO

PO

PO

NHP

CHOPO

PO

NH2

OPO

PO

Reductive amination

INTRAMOLECULAR PATHWAY (CAG Strategy)

INTERMOLECULAR PATHWAY (ACG Strategy)

Page 38: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

38

Cl3C-C(NH)-OtBu,cyclohexane, CH2Cl2,

50°C, 3h.

100 %

DBU, THF, RT, 2h.

100 %

BnOCO2H

NHFmoc

BnOCO2tBu

NHFmoc

BnOCO2tBu

NH2

PP11 PP22 Opening conditionsOpening conditions YieldYield

HH H.HClH.HCl

ttBuOH, NaH, 100°CBuOH, NaH, 100°C

CsCs22COCO33, DMF, 65°C, DMF, 65°C

CsCs22COCO33, DMF, 110°C, DMF, 110°C--

BnBn TBDMSTBDMS

ttBuOH, NaH, 100°CBuOH, NaH, 100°C

CsCs22COCO33, DMF, 110°C, DMF, 110°C

MeOH, EtMeOH, Et33N, 60°CN, 60°C

Yb(OTf)Yb(OTf)33, (Et, (Et33N), DCM, TAN), DCM, TA

--

ttBuBu BnBn Yb(OTf)Yb(OTf)33, DCM, RT, 7 days, DCM, RT, 7 days 65 %65 %

N3CO2P1

NHHO

OP2

TBDPSO

N3CO2tBu

NHHO

OBn

TBDPSON3

TBDPSO

O

tBuO2C

H2N

OBn

NH

H2N

OPOPO

O

NHPPO

OH2N

OPO

PON3

TBDPSO

OH2N

OP2

OP1O

FORMATION OF NFORMATION OF N44-C-C55 LINKAGE BY LINKAGE BY NN-ALKYLATION :-ALKYLATION : NUCLEOPHILIC ATTACK OF AN ACTIVATED PRIMARY NUCLEOPHILIC ATTACK OF AN ACTIVATED PRIMARY

CARBONCARBON INTERMOLECULAR PATHWAY

BnOCO2H

NHBoc

BnOCO2H

NH3Cl

HCl 3M/AcOEt, RT, 1h.

100 %

HOCO2Bn

NH3Cl

TBDMSOCO2Bn

NH2

TBDMS-Cl, ImH, DMF,0°C to RT, 15h.

70%

TBDMSOCO2Bn

NHCHO

25%

+

PP11 PP22

HH H.HClH.HCl

BnBn TBDMSTBDMS

ttBuBu BnBn

Page 39: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

39

NH

NHFmoc

OBnOTBDPSO

O piperidine,DMF, RT

65% NH

NH

OBn

OTBDPSO

HO

INTRAMOLECULAR PATHWAY

deprotection

XNH

H2N

OBnOTBDPSO

O

Acid conditions :Yb(OTf)3, (Et3N), CH2Cl2, RT, 6 days.LiNTf2, CH2Cl2, RT, 48h.

Basic conditions :Cs2CO3, DMF, RT to 110°C, 20h.tBuOH, NaH, 100°C.

« Neutral » conditions :MeOH, RT, 15 days.iPrOH, RT, 18h.iPrOH, 50°C, 4 days.

X

epoxide opening

FORMATION OF NFORMATION OF N44-C-C55 LINKAGE BY LINKAGE BY NN-ALKYLATION :-ALKYLATION : NUCLEOPHILIC ATTACK OF AN ACTIVATED PRIMARY NUCLEOPHILIC ATTACK OF AN ACTIVATED PRIMARY

CARBONCARBON

Page 40: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

40

« -stacking »interactions

O

Si

O

HN

OO

NH2H

Primary carbon atomof epoxide ring

Amine functioninvolved in

epoxide ring opening

MOLECULAR MODELING OF AMINO-EPOXIDEMOLECULAR MODELING OF AMINO-EPOXIDE

« -stacking » interactions

Page 41: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

41

O CO2P

NHPO

O

OP

N3

CHOPO

PO

CO2P

H2N

OP

L-serineazido-aldehyde

1

3

2

4

1

23

4N3

CHOPO

POazido-aldehyde

1

23

4

OTBDPSO

OLiBH4, MeOH,Et2O, 0°C, 4h.

83%

HO

NH

NH2CHO

OPO

PO

PO

NHP

CHOPO

PO

NH2

OPO

PO

Reductive amination

NH2CO2P

NHPO

PO

OP21

34

NN-ALKYLATION BY REDUCTIVE AMINATION-ALKYLATION BY REDUCTIVE AMINATION

NH

NHPO

PO

OP

O

target diazepanone

O

CHOPO

O4

3

21

acetonide-aldehyde

CO2P

H2N

OP

L-serine

reductive amination

reductive amination

functionalizationof the diol moiety

functionalization of the diol moiety

peptidecouplingCO2Et

OTBDPSO

O(ClCO)2, DMSO, Et3N,

CH2Cl2, -78°C, 2h.

93%

CO2Et

OTBDPSN3

OTBDPS DIBAL-H (1M in toluene),CH2Cl2, -78°C, 2h.

96%

SYNTHESIS OF PRECURSORS INVOLVED IN REDUCTIVE AMINATION

1/ Aldehyde derivatives

P= TBDPS

O

CHOPO

O4

3

21

acetonide-aldehyde

Page 42: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

42

YYARAR

8484

5858

2727

4747

YYARAR

8484

5858

2727

4747

YYZClZCl

8484

9595

YYTFATFA

7676

8383

O CO2R1

NRTBDPSO

OBn

O

O

NRTBDPSO

OBn

O

CO2R1

FUNCTIONALIZATION OF THE DIOL FUNCTIONALIZATION OF THE DIOL MOIETYMOIETY

Cl3C-C(NH)-OtBu,cyclohexane, CH2Cl2,

50°C, 3h.

100 %

BnOCO2tBu

NHFmoc

H2N

OBn

L-serine

R1O2C

N3

CHOTBDPSO

TBDPSO azido-aldehyde

1

23

4

NN-ALKYLATION BY REDUCTIVE AMINATION-ALKYLATION BY REDUCTIVE AMINATION

TFA, CH2Cl2,RT, 30 min.

100 %

TFA, CH2Cl2,RT, 30 min.

100 %

BnBr, K2CO3,DMF, RT, 3h

100 %

BnOCO2Bn

NHBoc

EtI, Cs2CO3,CH3CN,

reflux, 1h30

100 %

BnOCO2Et

NHBoc

Aldehyde Aldehyde derivativederivative

RR11

BnBn

ttBuBu

ttBuBu

EtEt

O OP

CHOOBnO

CO2Bn

NH2.CF3CO2H

BnOCO2Et

NH2.CF3CO2H

BnOCO2tBu

NH2

reductive amination

BnOCO2H

NHBoc

2/ Serinyl derivatives

N3CO2R1

NHTBDPSO

TBDPSO

OBn21

34

O

CHOTBDPSO

O4

3

21

acetonide-aldehyde

H2N

OBn

L-serineR1O2C

reductive amination

R = H

R = Z

ZCl, K2CO3, DMF, TA, 1h.

OH CO2R1

NZTBDPSO

OBn

R'O

TFA, H2O, THF,

0°C, 3h.

R’ = H

R’ = TBDPS

TBDPSCl, ImH, DMF,

0°C to RT, 15h.

1/ Tf2O, 2,6-lutidine, CH2Cl2, -78°C, 2h.

2/ NaN3, DMF, 0°C to RT, 15h.

N3 OP

CHOPO

YYN3N3

8585

--

1/ Step 12/ NaBH3CN, EtOH abs., 18 h.

1/ Step 12/ NaBH3CN, EtOH abs., 18 h.

BnOCO2H

NHFmoc

DBU, THF, RT, 2h.

100 %

SYNTHESIS OF PRECURSORS INVOLVED IN REDUCTIVE AMINATION

Step 1 : reductiveStep 1 : reductiveaminationamination

DIEA, DCM, 4Ả molecular DIEA, DCM, 4Ả molecular sieves, RT, 15h.sieves, RT, 15h.

Ti(OTi(OiiPr)Pr)44, DCM, RT, 3h, DCM, RT, 3h

Ti(OTi(OiiPr)Pr)44, DCM, RT, 3h, DCM, RT, 3h

YYTBDPSTBDPS

9494

9090

Page 43: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

43

1,4-diazepan-2-one

NH

NH

O

PO

POC B

OH1 2

3

45

6

7

NH2

PO

amino-butanol

PO

Y

NH

H2N

O

PO

OH

1

2

34

5

6 7

Y

PO

N-alkylation

peptidecoupling

N-alkylationNH2

CO2H

NHPO

PO

OH

12

34

5

6

7

peptidecoupling

H2N

O

OH

HO

L-serine

CAG STRATEGY

ACG STRATEGY

ACCESS TO THE SCAFFOLD BY DIRECT COUPLINGACCESS TO THE SCAFFOLD BY DIRECT COUPLING

Page 44: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

44

NH2CO2H

NR2R3O

OBn

TBDPSO

N3CO2R1

NR2R3O

OBn

TBDPSO

N3CO2R1

NR2R3O

OBn

TBDPSO

NH2CO2R1

NR2R3O

OBn

TBDPSO

NH2CO2H

NHR3O

OBn

TBDPSO

NH

NHR3O

OBn

TBDPSO O

Target diazepanone

NH2CO2R1

NR2R3O

OBn

TBDPSON CO2R1

NR2R3O

OBn

TBDPSO Bu3P

RR11 RR22 RR33 Azido reductionAzido reduction YielYieldd

DeprotectionDeprotection YielYieldd

PeptidePeptide

CouplingCouplingYielYiel

dd

BnBn ZZ TBDPSTBDPS HH22, Pd/C 10 %, MeOH, AcOEt, RT, 24h., Pd/C 10 %, MeOH, AcOEt, RT, 24h. DCC, HOBt, DCM, RTDCC, HOBt, DCM, RT --

NH

NHR3O

OBn

TBDPSO O

Target diazepanone

NH2CO2H

NR2R3O

OBn

TBDPSO

EtEt HH TBDPSTBDPS 1 1 nnBuBu33P, toluene, RT (3h) to reflux (5h)P, toluene, RT (3h) to reflux (5h) 2 2 TFA, THF, HTFA, THF, H22O, RT, 15h.O, RT, 15h. --

NH

NHR3O

OBn

TBDPSO O

azido reduction

FORMATION OF NFORMATION OF N11-C-C22 LINKAGE BY PEPTIDE COUPLING LINKAGE BY PEPTIDE COUPLING

deprotection

peptide coupling

deprotectionAND

1 2

X

X

RR11 RR22 RR33 FormationFormation

BnBn ZZ TBDPSTBDPS Reductive aminationReductive amination

EtEt HH TBDPSTBDPS Reductive aminationReductive amination

ttBuBu HH HH Epoxide ring openingEpoxide ring opening

ttBuBu HH TBDPSTBDPS Reductive aminationReductive amination

R2 = H

ttBuBu HH HH

HCOHCO22NHNH44, Pd/C, MeOH, , Pd/C, MeOH,

RT, 20 minRT, 20 min

5151

TFA, DCM, RT, 20h.TFA, DCM, RT, 20h.

100100

DCC/ HOBt, DIEA, DCC/ HOBt, DIEA, DCM/ DMF, RT, 24h.DCM/ DMF, RT, 24h. PyBOP, DIEA, DCM, PyBOP, DIEA, DCM, RT, 24hRT, 24h

--

ttBuBu HH TBDPSTBDPS 7171 100100

EDCI/ HOBt, DIEA, EDCI/ HOBt, DIEA, DCM/ DMF, RT, 24h.DCM/ DMF, RT, 24h. DCC, DIEA, DCM, RT.DCC, DIEA, DCM, RT.

--

Page 45: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

45

NH

O

O

HO

H2N

O

SiO

Si

H

« hydrophobic site  »

-stacking interaction

-stacking interaction

acid function involved inpeptide coupling

amine function involvedin peptide coupling

O O

H

NH

O HO

NH2

O

Si

H hydrophobicinteractions

MOLECULAR MODELING OF THEMOLECULAR MODELING OF THE « COMPLEX AMINO-ACIDS » « COMPLEX AMINO-ACIDS »

bis-O-silylated compound

Mono-O-silylated compound

-stackinginteraction

Page 46: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

46

OP

NH2CO2H

NPPO

PO

OP

NR

NPPO

PO

O

OP

NH

NHP

O

R

PO

O

OHHO

O

NH2

NH

N

O

R2

O

O

O

OHHO

O

NH2

NH

N

O

R2

O

O

O

OHHO

O

NH2

NH

N

O

R2

O

O

O

OHHO

O

NH2

NH

N

O

R2

O

OX

O

OPPO

O

N3

PO

PHN

O

O-GLYCOSYLATION

PEPTIDE COUPLING

N-ALKYLATION

⇒ RING CLOSURE ?

CONCLUSION AND PERSPECTIVESCONCLUSION AND PERSPECTIVES

1

5

2

34

6

7

⇒ HOAt

Page 47: Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament

47

NH2CO2H

NHHO

OBn

PO

NH

NHHO

OP

POO

NH

NHHO

O

POO

O

OO

NHP

NH

NR1R2O

O

R3OO

O

HOOH

NH2

N3

PO

OH2N

OBn

OtBuON3CO2tBu

NHHO

OBn

PO

F

O

OO

NHP

R1, R2, R3 =O

OHAHO

OH

NHN

O

O

A = OH, NH2, NHAc...

(CH2)n CH3

(CH2)n CO2H

TOWARDS A NEW FAMILY OF POTENTIAL TOWARDS A NEW FAMILY OF POTENTIAL ANTIBIOTICSANTIBIOTICS

N-Alkylation of L-serine tert-butyl ester

+ Intramolecular peptide Coupling

+ O-Glycosylation of diazepanone heterocycle

Ribosyl-diazepanone scaffold

+ R1/ R2/ R3

Family of powerful MraY inhibitors

⇒ Biologic evaluation (Laboratoire des Enveloppes Bactériennes etAntibiotiques – Dr D. Blanot – Dr. D. Mengin-Lecreulx)