unit commitment for sustainable integraon of large‐scale ......unit commitment for sustainable...

42
Unit Commitment for Sustainable Integra4on of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP, Carnegie Mellon Technical Conference on Unit Commitment SoGware Docket AD10‐12 FERC, Washington, DC June 2‐3, 2010

Upload: others

Post on 27-Nov-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Unit Commitment for Sustainable Integra4on of  Large‐Scale Wind Power and  Responsive Demand  

©Marija Ilic ECE and EPP, Carnegie Mellon  

Technical Conference on Unit Commitment SoGware Docket AD10‐12 

FERC, Washington, DC June 2‐3, 2010 

Page 2: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Acknowledgment Electric Energy Systems Group (EESG)  

hTp://www.eesg.ece.cmu.edu •  A  mul4‐disciplinary group of researchers from across Carnegie Mellon with common interest in electric energy. 

•  Truly integrated educa4on and research 

•  Interests range across technical, policy,  sensing, communica4ons, compu4ng and much more; emphasis on systems aspects of the changing industry, model‐based simula4ons and decision making/control for predictable performance. 

Page 3: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Outline •  Wind  power and demand side management—new sources of complexity 

•  Problem formula4on for integra4ng wind and elas4c demand—centralized UC/MPC; an example 

•  Scalability problem in centralized UC and UC market implementa4on—common challenge/approach 

•  Temporal vs spa4al LR issue ‐‐basic efficiency/emissions  concern with today’s UC 

•  Managing complexity—Distributed Interac4ve Unit Commitment (DIUC) 

•  Numerical example/comparison with benchmark solu4on‐ Integra4on of >50% wind  

Page 4: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

New source of complexity •  Supply the expected load with whatever produced by 

intermiTent resources combined with other tradi4onal power plants. 

__  = 

 Today: Choose output levels from conven4onal power plants to meet the expected  “net load” at minimum cost. 

Page 5: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Unit commitment for  sustainable integra4on of wind and demand side 

•  Net system demand func4on of system imbalance; greatly complicates the  unit commitment problem 

   ‐number of  states  poten4ally huge in inelas4c demand case; 

 ‐ number of decision variables poten4ally huge in the demand elas4c case.  

•  Two  qualita4vely  different methods”   

    ‐Centralized UC‐‐‐Demand, wind and genera4on cost func4ons short‐run marginal cost;  UC constraints explicit at the ISO level.  

    ‐ Distributed Interac4ve UC (DIUC) ‐When demand and  cost func4ons account for UC constraints (DIUC) [1—6]; computa4onally  manageable and provable lower bound performance under certain condi4ons 

Page 6: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Mo4va4on 

BeTer Predic4on of IntermiTent Resources? 

More efficient u4liza4on of intermiTent resources 

More reliable opera4on of intermiTent resources 

Page 7: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Managing wind power—our approach [5]  

•  Ac4vely control the output of available intermiTent resources to follow the trend of 4me‐varying loads. 

•  By doing so, the need for expensive fast‐start fossil fuel units is reduced. Part of the load following is done via intermiTent renewable genera4on. 

•  The  technique used  for implemen4ng this approach is called model predic4ve control (MPC) [5]. 

•  Implicit value of  storage 

Page 8: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Centralized MPC ‐‐Benchmark 

•  Predic4ve model of load and intermiTent resources are necessary. 

•  Op4miza4on objec4ve: minimize the total genera4on cost. 

•  Horizon: 24 hours, with each step of 5 minutes. 

Predic4ve Model and MPC Op4mizer 

Electric Energy System 

Page 9: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Centralized MPC—Problem Formula4on 

Page 10: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,
Page 11: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

11 

Model Predic4ve Control—Based  

www.jfe‐rd.co.jp/en/seigyo/img/figure04.gif 

•  MPC is receding‐horizon op4miza4on based control. •  At each step, a finite‐horizon op4mal control problem is solved but only one step is implemented. •  MPC has many successful real‐world applica4ons. 

Page 12: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

12 

Numerical Example 

Compare the outcome of ED from both the conven<onal and proposed approaches. 

Page 13: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

13 

Conventional cost over 1 year *

Proposed cost over the year

Difference Relative Saving

$ 129.74 Million $ 119.62 Million $ 10.12 Million

7.8%

*: load data from New York Independent System Operator, available online at hTp://www.nyiso.com/public/market_data/load_data.jsp 

Page 14: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Rethinking the problem— limits to complexity 

•  Clear that today’ MPC algorithms not scalable as of now; 

•  Typical approxima4on—LR  w.r.t.  4me; assumes hierarchical 4me scale separa4on of   SCED and UC 

•   LR w.rt. to 4me  ques4onable  with persistent changes in system inputs;  complexity will grow with new technologies (physics vs. binary decisions);  

Page 15: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

The basic efficiency/emissions concern   

•  Natural “op4mal” schedules of different technologies very different;  horizontal vs. ver4cal  unit commitment  

•  Brute‐forcing all technologies to re‐commit   using common  clock is  generally  very inefficient   

•  Two possible solu4ons:    ‐ centralized  mul4‐stage  UC over several 4me horizons; s4ll very complex 

 ‐interac4ve UC   between the resources and system operators; no LR  wrt 4me; LR wrt units  

Page 16: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

• Decomposi4on over (poruolia) of resources cri4cal; otherwise, the problem is not solvable; this is par4cularly true when combining with  line switching • Proposed  new approach‐Distributed Interac4ve UC (DIUC)  [2‐7] 

 ‐LR w.r.t.   (poruolia of)  units  NOT   w.r.t. 4me   ‐for the  changing industry (distributed, 

interac4ve)  ‐for the regulated industry (centralized 

algorithm) 

Page 17: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Basic idea of minimally coordinated self‐dispatch—Distributed Interac4ve UC (DIUC)  

•  Different technologies perform  look‐ahead decision making  given their unique temporal and spa4al  characteris4cs and system signal (price or  system net demand); they create  bids and are cleared by the  layers of coordinators 

•  Puvng Auc4ons  to  Work in Future Energy  Systems 

•  We illustrate next a  supply‐demand balancing process  in an energy system with wind, solar, conven4onal genera4on, elas4c demand, and PHEVs.  

Page 18: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Our Proposed Framework: DIUC 

18 

Genera4on  Load 

Look‐ahead Dispatch with  Ac4ve Load Management 

Model Predic4ve Control (MPC) 

Page 19: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

At Generator Level—Primal Problem 

Max(Total Profit) 

Predicted price 

Gen Capacity Constraint 

Ramp Rate Constraints 

Available Genera4on Predic4on 

Price 

Power (MW) 

Note: In regulated industry –predicted net system demand 

Page 20: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Main ideas of Adap4ve Load Management (ALM) 

•  Reflec4ng various end‐users’ needs and  preferences into demand response –  End‐users’ info on preference sent to system –  Mapping physical preference into economic preference 

 demand func4on  

•  (current systems) top‐down control of loads   (future systems) two‐way communica4ve and adap4ve control 

•   Load aggregators’ role –  Mediator between system/market and end‐users –  Value of aggrega<ng different resources and risk management 

•  Different load profiles, inelas4c and elas4c demands, distributed energy  resources (DER), etc. 

20 

Page 21: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Today’s  demand response scheme:  Direct load control 

•  One‐way flow of informa4on –  Load management conducted 

by u4li4es –  Top‐down control 

•  Exclusive contracts between supply and demand 

•  Direct load control –  Regardless of end‐users’ 

preferences –  No access to market 

informa4on for end‐users –  End‐users’ informa4on invisible 

to system 

21 

Page 22: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

 Adap4ve Load Management (ALM) –Look‐ahead distributed self‐dispatch 

•  Problem setup –  10 end‐users with different 

temperature preferences –  Op4mizing energy usage 

over 24 hours •  Hourly‐varying electricity price given (real‐4me pricing) 

•  Outdoor weather temperature given 

End­user index 

Temperature setpoints (⁰F) 

1  68  75 

2  70  77 

3  72  75 

4  74  79 

5  75  80 

6  64  75 

7  63  77 

8  72  79 

9  72  77 

10  73  81 

22 

10 

15 

1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

price (¢/kWh) 

hour 

Hourly real‐<me pricing rates 

Page 23: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Primal problem at the demand level 

•  Obtaining individual demand func4on subject to temperature comfort level 

   where 

   subject to                       for all  

•  Obtain different          s for different       s to infer demand func4ons    PHYSICS AT PLAY 

23 

Timin ≤ Ti[k] ≤ Ti

max

Page 24: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Demand func4on •  Objec4ve 

–  To model price‐responsive loads to integrate into the system op4miza4on 

–  To include informa4on of end‐users’ u4lity (benefit) in system op4miza4on 

–  To see if price‐responsive loads compensate with vola4le intermiTent resources 

•  What it is –  Func4on of end‐users’ willingness‐to‐pay with respect to electricity 

demand quan4ty 

Page 25: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Demand func4on (cont’d) 

•  How to obtain –  Calculate op4mal energy usage by hours with a given electricity price 

–  Perturb the given price by a certain percentage (e.g. ±20%) and re‐calculate op4mal energy usage with new prices 

–  Curve‐fit price‐demand quan4ty pairs to iden4fy the parameters of a demand func4on 

Demand  (kW)  

Unit price (cents/kWh)  

Page 26: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Resul4ng bid curves by demand—Result of solving primal problem 

•  Demand func4ons of end‐user #1 

26 

0 10 20 30 40 50 

0  0.1  0.2  0.3  0.4 

WTP

 (¢/kWh) 

energy usage (kWh) 

hour 13 

0 10 20 30 40 50 

0  0.1  0.2  0.3  0.4 

WTP

 (¢/kWh) 

energy usage (kWh) 

hour 14 

0 10 20 30 40 50 

0  0.1  0.2  0.3  0.4 

WTP

 (¢/kWh) 

energy usage (kWh) 

hour 15 

0 10 20 30 40 50 

0  0.1  0.2  0.3  0.4 

WTP

 (¢/kWh) 

energy usage (kWh) 

hour 16 

0 10 20 30 40 50 

0  0.1  0.2  0.3  0.4 

WTP

 (¢/kWh) 

energy usage (kWh) 

hour 17 

0 10 20 30 40 50 

0  0.1  0.2  0.3  0.4 

WTP

 (¢/kWh) 

energy usage (kWh) 

hour 18 

0 10 20 30 40 50 

0  0.1  0.2  0.3  0.4 

WTP

 (¢/kWh) 

energy usage (kWh) 

hour 19 

0 10 20 30 40 50 

0  0.1  0.2  0.3 0.4 

WTP

 (¢/kWh) 

energy usage (kWh) 

hour 20 

Page 27: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Informa4on flow of ALM—Auc4ons Put to Work (Primal‐Dual Solu4on Interac4ons) 

27 

Secondary level 

Primary level 

Ter4ary level 

Demand func<on  End‐user price 

End‐user 

Load aggregator I

Bid func<on 

Market price 

b(λ) 

λ 

b(λI)  λI

Load aggregator II Load aggregator III

Page 28: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Informa4on flow of ALM 

•   Primary layer (from end‐users to load aggregators)  –  Physical preference  economic preference –  Individual demand func4on 

•   Secondary layer (from load aggregators to market) –  Aggrega4ng end‐users’ energy usage + risk management –  Op4mal energy purchase/market transac4on given system price 

•   Back to primary layer (from load aggregators to end‐users) –  Energy price adjusted according to system/loca4onal price : λLA 

as a func4on of λsystem 

28 

Page 29: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Bid curves for different technologies—result of distributed MPC  

Page 30: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Implementa4on in  Markets—DIUC‐‐‐Primal‐Dual Solu4on Interac4ons (spa4al/not temporal) 

Predic4ve Model ] and MPC Op4mizer 

Generator i 

The System Operator: Maximize Social Welfare While Observing Transmission Constraints   

30 

Aggregated Predic4ve model] and MPC 

Op4mizer 

Load j 

[2] N. Abdel‐Karim and  M. Ilic,"Short Term Wind Speed Predic4on by Finite and Infinite Impulse Response Filters:  A State Space Model Representa4on Using Discrete Markov Process", IEEE PowerTech Conference, Romania June 2009 [3] J. Joo and M.D. Ilic, “A Mul4‐Layered Adap4ve Load Management (ALM) system: informa4on exchange between market par4cipants for efficient and reliable energy use,” submiTed to 2010 IEEE PES Transmission and Distribu4on Conference. 

Page 31: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Integra4ng fossil, wind, solar and demand side  and PHEVs  

Compare the outcome of ED from both the centralized and distributed MPC approaches. 

Page 32: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

BOTH EFFICIENCY AND RELIABILITY MET  

Page 33: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Preliminary Results: 50% Wind 

33 [5] Marija Ilic, Le Xie, and Jhi‐Young Joo, “Dynamic Monitoring and Decision Systems (DYMONDS) for Efficient Integra4on Wind Power and Price‐Responsive Demand: Proof of Concept on the IEEE RTS System”, EESG WP 2009. 

Page 34: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Preliminary Results: 50% Wind 

34 [5] Marija Ilic, Le Xie, and Jhi‐Young Joo, “Dynamic Monitoring and Decision Systems (DYMONDS) for Efficient Integra4on Wind Power and Price‐Responsive Demand: Proof of Concept on the IEEE RTS System”, EESG WP 2009. 

Page 35: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Poten4al Savings 

35 [5] Marija Ilic, Le Xie, and Jhi‐Young Joo, “Dynamic Monitoring and Decision Systems (DYMONDS) for Efficient Integra4on Wind Power and Price‐Responsive Demand: Proof of Concept on the IEEE RTS System”, EESG WP 2009. 

Page 36: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Op4mal Control of Plug‐in‐Electric Vehicles: Fast vs. Smart  

36 

Page 37: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Informa4on flow—Fantas4c Use of Mul4‐layered Dynamic Programming 

37 

Page 38: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Plug‐and‐Play (No Coordina4on)? 

Page 39: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Smart Grid [1]  

Page 40: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Distributed Interac4ve UC‐‐DIUC •  Allow  different technologies to op4mize in an4cipa4on of system condi4ons while taking into account their unique inter‐temporal constraints and sub‐objec4ves;  

•  The distributed op4miza4on done in a look‐ahead dynamic way at the resource level to create cost func4ons (bidding func4ons for both supply and demand) 

•  Result: Lower electricity prices  and higher efficiency; minimized  overall UC cost  

Page 41: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

Our general framework 

•   Use adequate performance measures •  Perform meaningful spa4al  decomposi4on and  

aggrega4on (zoned, poruolios)  •  Iterate to  ensure that the inter‐dependencies are 

accounted for by inter‐ac4vely exchanging  informa4on    ‐Even coordinated soGware  must account for the informa4on that is itera4vely updated from the non‐u4lity resources 

   ‐   In the market environment it becomes necessary to reconcile choice and system‐wide objec4ves  

    ‐Use  predic4ons  create bid  func4ons (instead of numbers) to control  soGware performance 

Page 42: Unit Commitment for Sustainable Integraon of Large‐Scale ......Unit Commitment for Sustainable Integraon of Large‐Scale Wind Power and Responsive Demand ©Marija Ilic ECE and EPP,

References •  [1] Electric Energy Systems Group (EESG) at CMU  hTp://eesg.ece.cmu.edu •   Ilic, Marija “Dynamic Monitoring and Decision Systems (DYMONDS) and 

Smart Grids: One and the Same, CMU EESG WP 019, October 2009.  •  [2] Ilic, Marija “IT‐enabled Rules, Right and Responsibili4es (3Rs) for 

Efficient Integra4on of Wind and Demand Side Response”, Public U4lity Fortnightly Magazine, Dec 2009.  

•  [3] M. Ilić, J.Y. Joo, L. Xie, M. Prica, and N. Rotering, A Decision Making Framework and Simulator for Sustainable Electric Energy Systems, IEEE Transac4ons on Sustainability, under review – submi=ed Jan 2010  

•  [4] M. Ilić, L. Xie, and J.Y. Joo, Efficient CoordinaDon of Wind Power and Price‐Responsive Demand Part I: TheoreDcal FoundaDons, Parts I and  II: Case Studies, IEEE Transac4ons on Power Systems, under review – accepted Dec 2009 

•  [5] L. Xie and M. Ilić, Model PredicDve Economic/Environmental Dispatch of Power Systems with Intermi=ent Resources, IEEE PES General Mee4ng, July 2009 

•  [6] J.Y. Joo and M. Ilić, A MulD‐Layered AdapDve Load Management (ALM) System, IEEE PES Transmission and Distribu4on Conference, April 2010. 

•  [7]  N. Rotering and M. Ilić, OpDmal Charge Control of Plug‐In Hybrid Electric Vehicles In Deregulated Electricity Markets, IEEE Transac4ons Power Systems, accepted 2010