understanding the seismic vulnerability of water systems

53
Understanding the Seismic Vulnerability of Water Systems Lessons Learned and What You Can Do Regional Water Providers Consortium Board Donald Ballantyne October 2, 2013

Upload: vuongnhi

Post on 21-Dec-2016

225 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Understanding the Seismic Vulnerability of Water Systems

Understanding the Seismic Vulnerability of Water Systems  –

Lessons Learned and What You Can Do

Region

al W

ater Provide

rs 

Consortiu

m Boa

rdDon

ald Ba

llantyne

Octob

er 2, 2013

Page 2: Understanding the Seismic Vulnerability of Water Systems

Overview• Oregon Resilience Plan• Historic earthquake 

performance• Seismic risk and earthquake 

hazards– Liquefaction– Cascadia Subduction Fault– Portland Hills Fault– Canby‐Moalla Fault

• Expected performance • Desired performance• How are we going to get there?• Emerging seismic resistant pipe• Questions

Page 3: Understanding the Seismic Vulnerability of Water Systems

Oregon Resilience Plan• After 2 weeks without services, people leave; 

many don’t come back• Keep the supply and transmission system 

operable (fire suppression)• Restore distribution within 

2 weeks

Page 4: Understanding the Seismic Vulnerability of Water Systems

Historic Earthquake Performance• Tohoku, Japan 2011 ‐

40+ days

• Christchurch, New Zealand 2011 –

40+ days• Kobe Japan, 1995 – 60 days

– 1,200 pipeline failures• Northridge, California 1994 –

13+ days 

– 1,000 distribution  failures

– 35 transmission  main failures

Page 5: Understanding the Seismic Vulnerability of Water Systems

Tohoku  Earthquak e

Page 6: Understanding the Seismic Vulnerability of Water Systems

Kanigawa WTP

Pipes 

sheared 

off (typ)

Utilidore 

floated

Page 7: Understanding the Seismic Vulnerability of Water Systems

Tohoku ‐

Pipe Performance

Failure of 2.4M DIP, Sendai

No failures in Kubota seismic joint pipe

Page 8: Understanding the Seismic Vulnerability of Water Systems

Floating Sewers

Photo Credit SEAW

Tohoku, Japan 2011

Page 9: Understanding the Seismic Vulnerability of Water Systems

JWWA Manual for Emergency Countermeasure

Page 10: Understanding the Seismic Vulnerability of Water Systems

JWWA Emergency Water Supply Operations

Lining up at a base water supply facility

Water supply at an emergency medical establishmentSet up of canvas tanks

Emergency water supply  vehicles – maximum of 

430/day

Page 11: Understanding the Seismic Vulnerability of Water Systems

Damage to Water Supply・Limited accessibility to gasoline, light oil, and kerosene.

・ Difficult to obtain fuel for electric generators, water  trucks, official vehicles, and specialized task vehicles etc.

Water Purification

Plant

Electric Generator Operation Hours

Return of Electricity Type of Oil

Tank Capacity

(L)

Operational Hours/ Tank

Capacity

Moniwa 98 March 15 Kerosene 6,500 28.7

Kunimi 58 March 14 Light Oil 950 13.1

Nakahara 54 March 13 Kerosene 12,000 29.4

Fukuoka 68 March 14 Kerosene 10,000 29.9

Tohoku Fuel Shortage

Page 12: Understanding the Seismic Vulnerability of Water Systems

Water Restoration Timeline ‐

Sendai

Distribution area restoration

Aftershock

occurred

Earthquake occurred

Distribution area restoration

Distribution area restoration

Began receiving w

ater from

the Sennan Senen R

egional Area to Sendai

Transmission pum

p failure

Main trunkline restoration

Distribution station restorationSennan Senen R

egional Area

water distribution secured by

rerouting water system

Received water from distribution station

The number of the w

ater suspension ×1,000 houses

Page 13: Understanding the Seismic Vulnerability of Water Systems

Christchurch NZ Feb 22, 2011

City of 360,000 people

M6.3 Direct Hit

190 fatalities

CBD destroyed, 1,800 buildings demolished

55,000 residences damaged

$25‐$30B damage; 20% of GDP

Extensive liquefaction along  the Avon River

Page 14: Understanding the Seismic Vulnerability of Water Systems

Christchurch NZ

1645 water pipeline repairs 

out of 1000 miles pipe

Most was AC pipe

Have moved to HDPE

300 km of sewer damaged

8 PS require replacement

Chemical toilets distributed  to 30,000 residents

Page 15: Understanding the Seismic Vulnerability of Water Systems

15

Kobe, Japan 1995 Pipe joint pull out due 

to liquefaction

Over 1/2 of the failures were due to joint 

pull out. Pipeline damage rates for the Kobe 

earthquake are shown in the table below.

Failure Rates/km - Number of FailuresDIP CIP PVC Steel AC

PipeLlength (km) 1874 405 232 30 24Barrel 0 9 0.63 257 0.38 88 0.33 10 1.24 30Fitting 0 1 0.31 124 0.17 40 0.03 1 0.04 1Pulled Joint 0.47 880 0.49 199 0.33 76 0 0 0.37 9Joint Failure 0 2 0.06 25 0.5 115 0.07 2 0.08 2Joint Intrusion 0 5 0 1 0.01 3 0 0 0 0

Failure Mode

Page 16: Understanding the Seismic Vulnerability of Water Systems

Kobe, Japan 1995 Lateral Spread 

Resulting in Pulled  Joint

16

Lateral spreading resulted in DIP  joint separation

Page 17: Understanding the Seismic Vulnerability of Water Systems

Liquefaction Damage to Treatment Plants

Higashinada Wastewater Treatment Plant, Kobe, Japan

1995

Page 18: Understanding the Seismic Vulnerability of Water Systems

Buried Pipe Failure   Jensen WTP 81”

Raw Line

Northridge 1994

Page 19: Understanding the Seismic Vulnerability of Water Systems

Tank Damage – Elephant’

Foot 

Buckling 

Northridge 1994

Page 20: Understanding the Seismic Vulnerability of Water Systems

Tank Damage

Rocking tank separated 

piping

Inadequately attached roof slid

Northridge 1994

Page 21: Understanding the Seismic Vulnerability of Water Systems

Wire Wrapped  Concrete Tanks

Loma Prieta 1989

Page 22: Understanding the Seismic Vulnerability of Water Systems

Regional Earthquake Hazards• Tsunami – only on the coast• Liquefaction• Cascadia Subduction Fault, (Magnitude 9.0); 

500‐year recurrence (last event 1700)• Portland Hills; East Bank Fault (Magnitude 6.8)• Canby‐Moalla Fault

Page 23: Understanding the Seismic Vulnerability of Water Systems

Tsunamis

Sendai WWTP Pump Station hit by tsunamis, Japan 2011

Page 24: Understanding the Seismic Vulnerability of Water Systems

Liquefaction 

Loss of bearingLoss of bearing

Page 25: Understanding the Seismic Vulnerability of Water Systems

Liquefaction

Occurs due to shaking

Soil particles consolidate squeezing out water

Water pore water pressure increases reducing friction between soil particles

Soil becomes a viscous liquid

Costa Rica, 1991

Consolidated sand grains

Loosely packed sand grains

Page 26: Understanding the Seismic Vulnerability of Water Systems

Initial Section

Lateral Spread

Deformed Section

Soil Blocks 

“Floating”

on 

Liquefied Material

Liquefied Material

X X X X XX X

Design pipeline to move with 

the soil blocks – expand to 

relieve strain and be dragged 

through the ground.

Pipeline

Page 27: Understanding the Seismic Vulnerability of Water Systems

Liquefaction

Liquefaction

Willamette,

Columbia,

Tualatin

Page 28: Understanding the Seismic Vulnerability of Water Systems

Pacific Northwest Earthquake Source Zones

Page 29: Understanding the Seismic Vulnerability of Water Systems

Cascadia  Subduction Zone

500 year return period for full length

Most recent event 1700

25% probability within next 50 years

40% probability southern segment

Page 30: Understanding the Seismic Vulnerability of Water Systems

Groundmotion Cascadia Subduction

Higher ground motions west of Portland

Will impact older/poorly engineered structures will fail

Long duration shaking will cause liquefaction

Page 31: Understanding the Seismic Vulnerability of Water Systems

• Movement in the North  American Plate

• Remnant from the northwest  movement of the Pacific Plate

• Western Oregon rotating  northwest

• Portland to Bellingham getting  squeezed ~ 10 mm/yr

• Differential movement results in  surface faults

Block Movement

Page 32: Understanding the Seismic Vulnerability of Water Systems

Earthquake Faults

Surface fault ruptures could shear pipelines

Ground motions stronger near field damaging

Tanks & structures

Page 33: Understanding the Seismic Vulnerability of Water Systems

Portland Hills  Fault 

Groundmotion

Page 34: Understanding the Seismic Vulnerability of Water Systems

Fault Crossings

Page 35: Understanding the Seismic Vulnerability of Water Systems

Recommendations from Resilient  Oregon Plan

• Reset public expectations for recovery times• Require seismic assessments for all systems• Encourage water & fire agencies coordinate plans• Encourage upgrades; sanitary surveys & designs• Encourage business continuity plans• Encourage essential support for employee families• Establish seismic design standards for pipelines• Clarify regulatory expectations during emergency• Encourage participation in ORWARN• Plan for emergency water distribution  

Page 36: Understanding the Seismic Vulnerability of Water Systems

Hazard 

Quantification

•Groundmotion•Liquefaction

Component 

Fragilities

Component 

Impacts

•Functionality•Outage time

System Analysis•Capacity•Outage time

Business Interruption/    

Societal Losses

•Daily outage per capita $•% GRP•Business specific losses

Seismic Assessments

Page 37: Understanding the Seismic Vulnerability of Water Systems

Pipe Damage Relationships

ALA Repair Rate - PGD

0.000.501.001.502.002.503.003.504.00

0 10 20 30 40 50

PGD (inches)

Rap

air R

ate

(1,0

00 ft

) CIP

DIP

Steel

CIP

DIP

Steel

CCP

Repair Rate for Shaking Damage Repair Rate for Ground Deformation

Page 38: Understanding the Seismic Vulnerability of Water Systems

Portland GIS Analysis Input

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1% 10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Peak Ground Acceleration

Prob

abili

ty o

f Fai

lure

Pipe Material/Facility Information

Damage/Fragility FunctionsLiquefaction Susceptibility

Ground Motion Scenario - Subduction Earthquake

Page 39: Understanding the Seismic Vulnerability of Water Systems

Asset Inventory

Facility

Age (yrs)

Moved from UBC 

Zone 2 to Zone 3

Page 40: Understanding the Seismic Vulnerability of Water Systems

Component Reliabilities/Fragilities

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PGA (g's)

Rel

iabi

lity

Pump Bldg.Control Bldg.ReservoirWellsWell Collection PipingMain PumpsSubstationControl EquipmentTotal

Page 41: Understanding the Seismic Vulnerability of Water Systems

Example ‐

System Critical Facilities Status

Page 42: Understanding the Seismic Vulnerability of Water Systems

Example ‐ Outage Maps

LADWP following  Northridge

Page 43: Understanding the Seismic Vulnerability of Water Systems

Develop Recommendations; Input into Capital Improvement Plan

• Identify vulnerable sections of transmission  system – replace as required

• Identify vulnerable pipelines within distribution  systems – replace with seismic resistant pipe

• Evaluate storage, pump stations – upgrade as  required

• Schedule mitigation to achieve desired  performance over 50‐years

Page 44: Understanding the Seismic Vulnerability of Water Systems

Seismic Resistant Pipe• Modern pipe works well in competent soils• In liquefiable soils:

– Restrain joints– Allow for strain 

relief

Page 45: Understanding the Seismic Vulnerability of Water Systems

Ductile Iron Pipe (DIP) AWWA C‐150  with Restrained Joint (Field‐Lok 

Gasket)

• Design to resist ground movement• Material strength and ductility  • Restrained joint • Does not allow release of strain due to ground deformation

DIP Joint 

Bell

GasketRetainer 

Seat

Wedge DIP Joint 

Spigot

zz

Page 46: Understanding the Seismic Vulnerability of Water Systems

Ductile Iron Pipe Expansion Sleeve

• Expansion sleeve for strain relief• $900  ‐

8”; $1,200 –

12”

EBAA Ex‐Tend• Proposed “custom”

expansion sleeve –

hook into the bell with a split 

harness; about half the above cost

EBAA Ex‐Tend

Page 47: Understanding the Seismic Vulnerability of Water Systems

Japanese Seismic Joint DIP

• Restrained joint• Allows expansion/compression

Page 48: Understanding the Seismic Vulnerability of Water Systems

PVC (C‐900) with 2X Deep  Bell  and Joint Harness 

(Manufactured by Kubota)

• Vulnerable to corrosive soils • Expansion can be provided for strain relief

Page 49: Understanding the Seismic Vulnerability of Water Systems

Polyvinyl Chloride (PVC) AWWA C‐900  with joint restraint

• Vulnerable to corrosive soils ?• No expansion allowed for strain relief

Bulldog Joint – “Wedge” Ring Embedded in Joint

Joint Harness – Add anode  caps on bolts? 

Page 50: Understanding the Seismic Vulnerability of Water Systems

Molecularly Oriented PVC  AWWA C‐909

• Stronger/more ductile than C‐900

• Telescope (compress) without loss of 

hydraulic integrity

Page 51: Understanding the Seismic Vulnerability of Water Systems

High Density Polyethylene (HDPE)  AWWA C‐906 –

Fused Joint

• Excellent performance in  Christchurch and Tohoku  earthquakes 

• Relieves strain through  ductility

Page 52: Understanding the Seismic Vulnerability of Water Systems

Summary• Water systems have been heavily damaged in past 

earthquakes• Oregon is seismically active• The Oregon Resilience Plan is pushing to mitigate 

vulnerable facilities within 50 years• Seismic vulnerability assessments can identify expected 

damage and system performance in an earthquake• Implementation of developing pipe 

materials can help provide resilient  systems

Page 53: Understanding the Seismic Vulnerability of Water Systems

Questions ?

Don Ballantyne PE Ballantyne Consulting LLC

[email protected]