unclassified ad number - dtic · repo e.g., interim, progress, summary, antual, or final. if the...

78
UNCLASSIFIED AD NUMBER AD474255 NEW LIMITATION CHANGE TO Approved for public release, distribution unlimited FROM Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 31 AUG 1965. Other requests shall be referred to Air Force Research and Technology Div., Wright-Patterson AFB, OH 45433. AUTHORITY AFML ltr, 7 May 1970 THIS PAGE IS UNCLASSIFIED

Upload: others

Post on 04-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

UNCLASSIFIED

AD NUMBER

AD474255

NEW LIMITATION CHANGE

TOApproved for public release, distributionunlimited

FROMDistribution authorized to U.S. Gov't.agencies and their contractors;Administrative/Operational Use; 31 AUG1965. Other requests shall be referred toAir Force Research and Technology Div.,Wright-Patterson AFB, OH 45433.

AUTHORITY

AFML ltr, 7 May 1970

THIS PAGE IS UNCLASSIFIED

Page 2: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

I AD 474 255

MECHANICAL AND PHYSICAL PROPERTIES OFINVAR AND INVAR-TYPE ALLOYS

William S. McCain, et al

Battelle Memorial InstituteColumbus, Ohio

31 August 1965

DISTRIBUTED BY:

U. S. EPARTUNT OF CIUMME5285 Port Royal Road, Spdng•ed Va. 22151

K.j

Page 3: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

a ~ ,1 Augu'st 31t 196- 20

AD 474 -255

ME~CHANICAL AND PHYSICAL PROQPERTIES OF INVAR AND

INVAR-TYPSE ALLOYS

DEFENSE ME tALS INFORMATION CENTER

'1 ~BATTELLE JAWORIAL THSTITUTE

COLUMBUS, OHIO 43201

V-'-'-'.

Page 4: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

The Defense Metals hiformation Center wps establishe t Aaltelle Memorial institute atthe requeet oi the Office el the Director of Defense Rr'search and Mogimering *4 provide Govern-.ment contractort and their cuppliers tecbnical Loptatance and informatiov on titanium, beryllium, :magnesium, aluaxinum, 3,efractory metalu, high-str"•ngth alloys for high-44mperatr'e sarvice,corrosion- andt oxidation oaeistant coatin•z, and thernalt-protecuan systems. Its functions, underthe direction of the Office nf the Director of Defense Research and Engineering, are as follow's:

1. Te collect, store, and disseminate technical iaiormation on the currentstatue of research and development of the above material' .

2. To supplement established Service activities in providing tcchnicai ad-visory services to producers, melters, and fabricators of the abovtmaterials, and to designers and fabricators of military equipment co••_-taining these materials.

3. To assist the Gor.irnment agencies and their contractors in 6evelopingtechnical data required for preparation of specifications for the abovematerials.

4. On assignment, to conduct surveys, or laboratory research irveatiga-tions, mnainly of a short-range nature, ar . .quired, to s ec'rtain causesof trouWb-q encountered by fabricators, or 2o fill minoe gags in estab-lished research programs.

Contract No. AF 33(615)-l IZ?Project No. 8975

Xt g.r J. RunckDirector

Notice a

When Government drawings specifications, or other data are used for any parpore otherthan in connection with a definitely related Government procurement operation, the United StatesGcvara.mnt thereby ir.curs no responsibiiity nor any obligation whatsoever; and the iAct that theGov-ernment may have formulated, turnished, or in any way supplied the said drawings, speciica-tions, or other data, is not to be regarded by implication or otherwise as ia awy mat.er licenisinChe holder or any other person or corporation, or conveying any ryghts or permission to manufac-ture, use, or seli any patented invention "hat z.-y -in any way be related thereto.

QualiflIt. requesters may obtain copies of this report from the fl.fense Doc.uneriabionCeu.•- {DDC), Cameron Station, Bidg. 5, 5010 Duke St,-eet, Alexandria, Virginia, 223•4• Thedistribution of this report is limited because the report contains technology identifiable with itemron the strategic embargo lists excluded from export or re-export under U. S. Export Control Actof 1949 (63 STAT. 7), as amende-. "') U. S.C. App. 2020. 2031), as-implemented by APR 400-i0,

Copies o-% •his report should not be returned to the Research and Technology Division,Wright-ratterson Air Force Base, Ohio, unless return is required by 9ecurity conoideratont-contractual obligations, or notice on a specific document.

Page 5: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

!:I! el N. MO q. A' M*.f.

Unclassifiedsecutdy claselfication

~ C~~zrh' ~aqafjctja of ti. ~ ONTOL CATA - R&Daalao 4c*oi~d(Vocrit- ca~aficeionef 4, odyof *ebtatct and indoin' ann ltt~ -.-jet be antood whe t~h e vtl lprtt lelid

I 0RIGlrATIN G ACTIVI-y (Corporate authc") Zof. nFUPORT 3lECLr4;TY C LA*9SS',OAT1ON

Satteli~e Memorial Institutc UnlasiieSDefense Metals Information Center 26AU

5415 King Avenue, Columbus. Ohio 43201 -

jMechenical and Physical Properties of Invar and invar-Type Alloys

[i. DEC~eRIPYVE NOCTES (T""o of ,poa and inclunivq dot..)

DMIC MemorandumP- 5AUTHOR(S) (Loot nano, first nom,, initial)

SMcCain, Willia.,' S., and Maringer, Robert Me

43.RIEPORT DATE 7. TOTA: .0 HO O PA.G-,t 7b No OF Rrvs

ýi,.qust 31, 1965 70 207

di OTRACT OR GR04NT NO. 190 IftIGIN ATOR'S REPORT wHaC'lES)

A -.FM 33(615O.1121 WJC Memorand-um 207

8975______________________C. Sb. OTHER " PORT mo(S~) (Any ohrnumbora that may be &#41#20d

10,. AV A ILASILITY/LiMIATION NOTiCr-S Copies cf this nmemorandumi may be obtained, whilethsupply lasts,, f rowp DIC at no cost by Government agencies, contractors,, subcontrac-

(toe.s, and their s~.zppliers. Qu~i1if'-ed .,.eruestors ma-1 also cbtaln copies of this re-

111. SUPPL EMENTARY MOTLS 1 2 5t-o.,ISOftING U!LITA;RY ACT IITY

United States Ai.r Fo-rfe-- Research -Lnd Technologyr Division

A Wright-Patterslon Ai.r Force Base, Chlo 45433

VI 13 ABZTfACTI ~This memorandum deal s with~ the mechanical and physical properties ofSInvzr and invar-type alloys. Most of these are basically iron-nickel. alloys whichSdisplay unusual tenrpeeratur,ý dependencies cf the thermal expansion and/or thermo-elastic coefficients. This r-emorandun, describes the compositions and propertiesof the most useful of these alloys, principally 6Lhose which exhibit a constantmodulus of elaaticity or a r'er-! low t~'oe;ýrnal expansion over a significant temperaturýýr~ange, Specific alloys discussed are as followst invar, Supeer Invarl, Stainless

SInv&r, Elinvar, Ni-Span -.1,ovs, Vibxa'--'oyg, Iso-Ekaztic, as well as some experimental~

DD JAN 1473 insla~sif 'Led ____

SeuiyCasfcto

Page 6: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

!U

UnclassifiedS e c u rity C la s s ifi c a tio n L N ALI aL N K14 INALI'.K. .... Nu

nKY WONO' ROLe WT ROLE WY RIOL.l WY

Mechanical properties 8 3Physical properties 8 3Invar 9 3Super Invar 9 3Stainless Invar 9 3Elinvar 9 3Ni-Span alloys 9 3Vibralloy 9 3Iso-E] astic 9 3Invar-type alloys 9 3Constant-moudlus alloys 9 3

INSTRUCTIONS1. ORIGINATING ACTIVITY: Enter the name and address imposed by security classifcation, using stadaord sttemautaof the contractor, subcontractor, grantee, Depastment of De- such as:fense activity or other organization (corporate author) issuing (1) "'Quaified requesters may obtain copies of thisthe report, report from DDC."2a. REPORT SECUETY CLASSIFICATION: Enter the over- (2) "Foreign announcerert ad dismination of thisall security classificstion of the report, Indicate whether () Fore anno t and dise ai f"Restricted Data" is included. Marking is to be in accord- report by DDC is not authorized."ance with appropriate security regulations. (3) "U. S. Government agencies may obtain copies ofthis report •..recUy from DIDC. Other qualified DDC2b. GROUP: Automatic downgrading is specified in DoD Di- usert slreques troughrective 5200. 10 and Armed Forces Industrial Manual. Enter users shall request throughthe group number. Also, when applicable, show that optionalmarkings have been used for Group 3 and Group 4 as author- (4) "U. S. military agencies may obtain copies of thisizad. report directly from DDC. Other qualified users

3. REPORT TITLE: Eater the complete report title in all shall request throughcapital letters. Titles in all casos should be unclasified. .0tIf a meaningful title cannot be selected without classifica-tion, show title classiftcation in all capitals in parenthesis (5) "All distribution of this report is controlled. Qual-immediately following the title. ified DDC users shall request through

4. DESCRIPTIVE NOTES: If appropriate, enter the type of ofrepo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of TechnicalGive the inclusive dates when & specific reporting period is Services, Department of Commerce, for sale, o the public, indl.covered. cate this fact and enter the price, if known.

- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on IL SUPPLEMENTARY NOTES: Use for additional enplana-or in the report. Eiter last name, first name, middle initial tory notes.It military, show rank and branch of service. The name ofthe principal author is an absolLte minimum requirement. 12. W'ONSORING MILITARY ACTIVITY: Enter the name of

the departmental project office or laboratory sponsoring (pay-6. REPORT DATrl Enter the date of the report as day, and for) the research and development. Include address.month, year, or month, year. If more than one date appemon the report, use date of publication. 13. ABSTRACT: Enter an abstract giving a brief and factual

summary of the document indicative of the report, even though7&. TOTAL NUMBER OF PAGES: The .otal pagu count it may also appear elsewhere !n the body of the technical re-should follaw normal paginadon procedures, Le., enter the port. If additional space is required, a continuation sheet shallnmAber of pages containing information. be attached.7b. NUMBER OF REFERENCE& Enter the total number of It is highly desirable that the abstract of classified reportsreferences cited in the report. be unclassified. Each paragraph of the abstract shall end with6&. CONTRACT OR GRANT NUMBER: If appropriate, enter an indication of the military security classification of the in.the applicable number of the contract or grant under which formation In the paragraph, represented as (TS), (S), (C), or (U;the report was written. TIwre is no limitation on the length of the abstract. How-8b, 9c, & &d. PROJECT NUMBER: Ente. the appropriate ever, the suggested length is from 150 to 225 words.mluitary department identification, such as project number,subproject number, system numbers, task number, etc. 14. KEY WORD!, Key words are technically meaningful terms

or short phrases that characterize & report and may be used as9e ORIGINATOR'S REPORT NUMBER(S): Enter the offi- index entries for catalogisg the report. Key words must becial report number by which the document will be id-ntified melected so that no security classification is required. Identi-and controlled by the originating activity. This number must fiers, such as equipment model desi•.nation, trade name, militarybe unique to this report. proj.-t code name, geographic location, may be used as key9b. OTHER REPORT NUMBiWR(S): If the report has been words but will be followed by an indication of technical con-asig•ed any other report numbers (either by the originator text. The assignment of links, rules, and weights is optional.or by the aponlor), also enter this number(s).10. AVAILABILITY/LIMITATIh NOTICE&: Enler any lim-itations on further dissemtuation of the report, other than those

Unclassified; Security Classification

Page 7: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

TABLE OF CONTENTS

pane

SUMMARY9 , • • 0 • . 0 . . . . . . . .0 0 1

INTROWXCTION o o * * e o a . . . . o

Background . . . . . . . . . . . .o . . . . 1 oo

The Inv er Effect . . ., 0 0 0 o 0 9 !;Thinarffct ....... .. •.... .... 2 ~

ALLOY ROPERTIESo o o . o . * o . . . . . . . o o 3

Invaro . . . . . . . . . . . . . . . . . . . . . .o o e o 3 "

Super Invar . . . . . . * . . . . . . . . . .. . * 3

Stainless Invar o . , , . . 0 . . . . .0 o . , , 0 4

Elinvar e o o . . . . . . . . . . . . . . 4

Ni-Span Alloys. 0 o 0 . 0 o 0 . 0 0 . 5

VIbralloy , a o o. . . . . . . . . . . . . . . 5

S••• •IsooElasttc . . . . . . . . . . . . . . . 5

Expx.zimental Alloys . . . . . . * . a , * 6

ALTERNATIVE APPROACHES . . . . . . .. . .9 * o . .,. 6

Composites . . . . . . . . . . . . . . . . . . 6

Alternative Materials (Nonferromagnetic) . . . . . . . . . . 6

Magnetic Effects . . . . . . . . . . . . . . . . . 6

REFERENCES . . . . . . . . . . . . . . . . . . . . . 8

I4"

~L J-~

Page 8: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

MECHANICAL AND PHtYSICAL PROPERTIES OF INVAR AND INVAR-TYPE ALLOYS jW. S. McCain and R. E. M\ringer*

alloys increases their mechsuical strength. Also,the thermoelastic properties of these alloys are

The need to eliminate or minimize the effects less sensitive to vAxiations in nickel contentsof temperature on elasticity and on the dimensions than those of en iron-nickel alloy.

of precision-instrument components has led to thedevelopment of a hist of alloys which display the Iii'a•-iype experimenta -wtloys based on"Invar Effect" . Most of these are basically iron- binary systems of Fe-Co, Fe-Pt, Ni-Co, and Fe-Pd,nickel alloys which display unusual temperature as well a- ternary and quarternary systems con-dependencies of the thermal expansion and/or ther- taining these and other elements, also have beenmoelastic coefficients. This memorandum describes studied. The composite approach to the achieve-the compositions and properties of the most useful ment of a low temperature coefficient of modulusof these alloys, principally those which exhibit a springs has been and will continue to be a fruit-constant modulus of elasticity or a very low ther- ful area for additional research.mal expansion over a significant temperature range.

Attention must be paid to the environmentInvar (an alloy with about 35.5 to 36 percent in which an Invar-type alloy is to be used, since

nickel) is the simplest of the Invar-type alloys. it is known that a magnetic field causes a changeA number of other Invar-type alloys has been de- in the dimensions of a ferromagnetic material. Itveloped (primarily by the addition of other ele- is to be expected, though it is not always recog-ments to the iron-nickel base) to achieve desired nized, chat the elastic moduli will also be affect-properties sucth as Wess sensitivity to variations ed.in composition, better machinability, corrosionresistance, higher strength, etc. INTRODUCTION

The substitution of 4,mall amounts of cobalt Just before the turn of the century, thefor some of the nickel lowers the thermal-expansion French physicist Charles E. Guillaume discoveredcoefficient of Invar. This improved alloy is that the coefficient of thermal expansion of iron-called Super Invar. The mInwnum expansivity is nickel alloys depended strongly on the alloy com-reached at about 6 percent conalt. position, show.ng a minimum at about 36 percent

nickel. The "i,.variable" dimensions of this alloyImproved machinability without loss of other led to its name, Invar. Later, Guillaume reported

desired properties can be achieved by adding that there were anomalies in the elastic moduliselenium to the basic alloys of iron and nickel. which corresponded closely to the anomalies inStainless Invar, so called because of its superior thermal expansion. In some cases, the elasticresistance to corrosion in NaCl, is remarkably moduli were effectively constant over a significantstable with respect to time. It is reported to be range cf temperature.three times better than conventional Invar.

Obviously, such alloys were an importantElinvar, which possesses a zero thermoelastic development, and found ready application in the

coefficient Qver a significant temperature range, precision apparatus of the day. Their usefulnessis an Invar in which 12 percent of the iron has inspired further research, until today we havebeen replaced by chromium. Elinvar has other available a whole series oV alloys showing whatcharacteristics which enhance its usefulness in has been called the Inv: Effect. These alloysprecision devices. It possesses a high degree of display unuiuaek 4emperLture dependencies of thermal-resistance to oxiiation and corrosion; it has a expansion coefficients and/or thermoelastic co-low thermal expansi.-vlty, and it possesses a prac- efficients, and frequently have other unusualtical Immunity to magnetic effects. properties as well. Since the various aspects of

the Invar Effect appear to be related, it isNi-Span.C is ess'"ially an Elinvar alloy difficult to discuss one without referring to the

with titanium added. The addition of titanium others. Nevertheless, in order to keep thismakes the alloy heat treatable by precipitation of memorandum within reasonable bounds, the discussionan intersetallic compound of nickel and titanium. will be limited as nearly as possible to thoseThe most important uses of Ni-Span-C are to elim- alloys which exhibit a constant modulus.or a verymnate the effects of temperature variations on the low thermal expansion over a significant tempera-responses to stress of elastically loaded members, ture range.such as helical and flat springs, Beilevillewashers, diaphragms, bellows, and Bourden tubes. Ba~karoundIsoelastic is another alloy of the Elinvar class.This alloy is extensively used for precision ex- There is, in our modern technology, a con-tension springs. tinuing and pressing need for ever-increasing

precision. The demands put upon materials andVibralloy consists of 9 percent molybdenum, equipment by designers are in many cases beyond

38 to 42 percent nickelq and the balance iron. the state of the art. This is not unrecognized,The addition of the molybdenum to the iron-nickel and as a result, a considerable aiont of research

has been undertaken during the last decade or so,*eNChanlcal Engineer and Associate Chief, aimed at various aspects of this need for pre-mechanical Metallurgy Division, Battelle Memorial cision. In particular, research has tried toInstitute, Columbus, Ohio develop designs and materials in which the effects

VA.. _

Page 9: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

I W~

2of environment will be lizid. For example, The theiimoelastic coefficient (at roomconsider a tuning fork which Is designed 4to pro- temperature) also is a function of the P'zkel con-duce a given resonant frequency as a reference teoit, cs shown in Figure 2, and reacher a maximumpoint. If an ordinary. st~e is used, the resonant around 35 percent nickel. Between 27 percent andfrequency will be stongly, temperature dependent. 44 percent nickel, the theroelastic coefficientIt is possible, however, by utilizing the Invar is positive, which means that the modulus is in-Effect to produce-& fork whose frequency is inde- creasing with temperature. lhis is Just the reversependent of temperature over a moderate temperature of almost all other materials.r"an ge*

The magnetoelastic behavior of iron-nickelRelated problems require a knowledge of some alloys is shown in Figure 3. The variation of the

of the basic properties of metals and alloys. For Curie point (0) and the saturation induction (1s)this purpose, we will define some of the terms as are shown in Figure 4. The variation of electricalthey will be used throughout this memorandum. resistivity with nickel content Is shown in Figure

5.Perhaps the most commonly recognized source

of instability in materials and devices is thermal Masumoto(1) proposed an empirical rule thatexpaw sion. It is not uncomon to define a mean relates the anomalies in the magnetic propertieszero coefficient of thermal expansion (7) as of the iron-nickel alloys to the anomalies in the

L -L expansivities of the alloys. He observed that:ST () "The circumstances whether a ferromagnetic alloys

L 2 1 may have small expansivity depend merely on theratio of the saturation magnetization to the

where Lo Is the length at 0 C, L1 is the length at transformation (Curie) temperature and the greatertemperature T1 , and L2 is the length at temperature the ratio the smaller the coefficient of expansionT2 . This expression introduces some inaccuracy, becomes".however, where the thermal expansion is not a linearfunction of the temperature. The thermal-expansion It is clear from various properties that somecoefficient (a) can be defined more accurately as fundamental changes in the properties of the alloy

are occurring. Consequently, a number of theorieshave been advanced to explain this behavior, te-

L0 dT ' (2) ginning with that of Guillaume~2 in 1938. He0 dassumed the formation of a compound, Fe 2NI, but this

has never been verified.where Lo again is the length at 0 C, and dL/dT Isthe slope of the L ve T curve at some temperature T. lueirous proposatst such as those of

Dehlinger 3) and Zenar 4 , relate the anomaliesSimilarly, the thermoelastic coefficient (Y) to the magnetic behavior. All the commercially

which is the temperature coefficient of the mwilus available constant-modulus alloys are ferromagnetic,of elasticity, can be defined as and achieve their constant-modulus properties in

the temperature range just below the Curie tempera-ture. Thus, t'he theory suggests that the contrac-

Y3) tion is due to the loss of ferromagnetism compen-0 sates for the thermal expansion. Hence, the modulus

tends to remain constant and the thermal-expansionwhere Eo represents the modulus at 0 C, and dE/dT coefficient tends to be low or even negative.is the slope of the E vs T curve at the temperature tha7oT. Other proposals, such as that of enedicks,

suppose that if there is a temperature increase, aSince virtually all of the alloys to be dis- partial transformation occurs of the iron-rich alpha

cussed are ferromagnetic, a further property, phase into the nickel-rich geam phase. The dif-magnetostriction, becomes of interest. Magneto- faring volumes of the two phases provide the com-striction refers to the change in length of a pensotion to achieve a constant thermal expansionferromagnetic body wh~ch occurs during magnetiza- and presmably, constant modulus. These theoriestion. The fractional change of. length LA/A is have never gained appreciable support."presented by the symbol A or, for saturationmgnetization, by the symbol A5 " It should be The most moderp of the theories (1963) isnoted here that the inverse of magnetostriction that of R. J. Weiss.8? Earlier work showed thatexists. That is, the magnetic behavior of a y-iron has two electronic states (y, and y-)ferromagnetic substance may be altered by the separated by a mall energy difference. 1Re Y2 isqaplication of mall stresses and strains, ferromagnetic with a magnetic moment per at• of

2.8 magnetons. The ir state is antiferremagniticTwith a magnetic spin per atom of 0.6 magnetbn.

These two species will each form fcc Structures,As remarked earlier, there are a series of but with slightly different lattice parameters.

related anomalies which occur in #roýnickel alloys. Nickel in the fcc irOn-base systm stbilitzes theThe behavdor' ofisthe average or mean thermal- higher lattice-"rit ter s6peci's. Pot sichisnexpansion coefficient (1) as a function, of nickel alloy, raising the timpeeatikre tenas to estilishcontent is shown Iii Figure 1. .t nickel contents the lower lattica-pameter species. Th•'ot

betwee ibut U4 and 36 percet, T. is, less than of this phase will offset the normal temperaturex'106 t 1owv the "istm e ` f' expansion that is asiociated with a single-ps.ie-.00 o 0 . ... . alloy.

Ofigme.be-g on pop 1% eences are given an p" a 8-14.

Page 10: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

$ 3

Interestingly enough, Ananthanarayanan and ordering, etc., make the dimensions time dependen!Peavler(9) repcrted X-ray evidence of such a tran- at most operating temperatures. This was recognizedsition in 1961, although Weiss did not reference by Guillaume,( 17 Invar's discoverer, who foundthis work and apparently was not aware of it. that carbon wag at least in part responsible forFurther, Weiss predicted that Fe-Pd alloys would this instability. An example of these data areshow the Invar Effect, and this has been recently given in Figure 6. In this case, after about 8substantiated by Kussmann and Jesson.(10) vears, the specimen had expanded some 10.8 microns

per mete-. This, however, was the change whichAt present, it must be -3&mitted that none of followed a&ter a very painstaking stabilization

the early theories for the Invar Effect are com- heat treatment. Ordinar/ cold-worked Invar, bypletely satisfactory. That of Weiss app2ars comparison, might change by 150 microns per meterpromising, but it has not yet faced the test of or more in a much shorter time period under servicescrutiny by the scientific community. conditions.(18) Further, simply dropping a sample

of quenched and annealed Invar on a hard surfaceALLOY PROPERTIES might change its dimensions by as much as 100

microns per meter. These latter dimensional changesThe alloys to be consiaered in thio section are all the more significant when it is realized

are listed in Table l*along with their normal com- that they are more than would be expected to -esultpnsitions-as found in the literatu_-e. Table 2 from a temperature change of 50 C (122 F).gives a simple listing of references pertinent toeach of the various alloys. The work of Lement, Averbach, and Cohen(19)

indicates that botl. internal stress and carbon canin the following sections, the data collected be responsible for instability. Based on their

are presented essentially as they are found in the experiments, they recommend the following heatliterature. Therefore, in many cases, there is treatment to achieve the optimum combination of lowsome overlap and duplication among the various expansion coefficient and high dimensional stability:tables and graphs. This is believed preferable,however, to arbitrarily selecting data from any (a) 830 C (1525 F), 30 minutes, water quenchparticular source. (b) 315 C (600 F), 1 hour, air cool

(c) 95 C (205 F), 48 hours, air cool.Invar**

Instability may still result from magneticThe simplest of the Invai-type alloys is effects as will be d'scussed in a later section.

Invar itself. Free-machining Invar, which containsa small amount of selenium, is included in the Data on the various mechanical and physicalfollowing data since the selenium has little effect prope ties of Invar are given in Tables 3 throughon properties other than machinability. There is 23 and in Figures 8 through 26.a geat deal of literature concerning the physicaland mechanical properties of Invar. Since these Super Invarproperties vary somewhat among different lots ofmaterial, after various amounts of deformation, The substitution of small amounts of cobaltwith leat treatment, etc., different sources for some of the nickel lowers the thermal-expansionfrequently report somewhat different properties. coefilcient of Invar. This was noted by severalIndeed one can distinguish several grades o: authors prior to 1930.(34-36) This improved alloyInvar;(15) Standard, Superior, and Geodesic, each was called Super Invar. The minimum expansivityreferring to successively more precise control is reached at about 6 percent cobalt. Progressiveof properties. This makes it difficult to present amounts of cobalt above 10 percent tend to increasemaster plots which are not somewhat misleading. the minimum thermal-expansion coefficient of theTherefore, in the interest of accuracy and ex- ternary alloys, until the minimum disappears atpediency, the data appearing on subsequent pages about 40 percent cobalt (see Figure 27).are reproduced as they were taken from the litera-ture. This leads to some duplication, but provides Cobalt additions increase thg susceptibilitysets of self-consistent data. of the alloy to the fcc to bcc transfo-nmations.

This condition limits the ranges of ustful compo-For the most part, data on workability, sitions. For example, an alloy of the composition

weldability, machinability, pickling, plating, etc., 63.5% Fe, 305% Ni, 6.0% Co will have lom-expansivityaxe not included In this memcrandum. These data properties, but will have an irreversible fcc toare readily available in brochures put out by the bcc transformation at about -10 C (14 F). Thisvendors (see Reference 16). transformation would limit the usefulness of the

alloys to temperatures above 14 F.Because of Its low thermal-expancion coeffic-

ient, Invar is often used for precision applica- In addition to cobalt, the Super Invars willtions where small temperature changes might other- contain carbon, manganese, and silicon. It iswise produce unwanted dimensional changes, It necessary to adJ manganese and silicon to themust be recognized, however, that most materials ternary compositions when melted in air, to renderhave inherently unstable dimensions. Various tne. easily f"-.,.able. Carbon is picked up fromprocesses such as stress relaxation, precipitation, the furnace atmosphere during melting. Silicon

is present in such small quantities that it has no*Tables begir on page 40. important effects. On the other hand, carbon and

**Also sold under the names Inver 36, Nilex, - manganese have considerable effects on the SuperNilvar, Indilitanb, Uniloy-36, Nilo-36, Minvir, Iavars.or Minovar.

Page 11: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

4On the favorable side, both carbor. and could not obtain reprodiicible expansion coefficients

manganese lower the fcc to bcc transformation tea- for the stainless Invar because of this phaseperature. Manganese tends to lower the inflection change, Hidnert and lirby's work indicates, how-temperatire and raise the minimum and mean values ever, that stable game alloys can be obtained.of the expansivity.oi Valet and Bonhoure(40) report that Stainless

The ability of carbon and manganese to lower Invar is remarkably stable with respect to time,the Ar 3 temperature helps to counteract the oppo- being some three times better than conventionalsite affect of cobalt, which tends to raise the Inver. They observed that, on drawing wire from aalpha-to-gama transformation temperature. rod of the material, the thermal-expansion coeffi-Scott(36) found that an equivalent nickel content cient increased from about 0.7 x 10-6 per C to(percent L") could be established which could 8.2 x 10-6 per C. This is just the reverse of thebe used as a mearsure of the combined effectiveness behavior of ordinary In~ar. On annealing theof the three elements nickel, manganese, and thermal-expansion coefficient decreases slightlycarbon in the depression of the Ar3 t'mperature: with increasing annealing temperatures, rises to

about 10.5 x 10-6 for an dnneal near 750 C, then%L" = 01i + 2.5 (,Vtn) + 18 (%C). drops rapidly to zero for anneals near 900 C. The

elastic modulus is also affected by annealing, beingScott was able to summarize the effects of about 16,500 kg/mm2 for the as-drawn wire and about

carbon, manganese, nickel, and cobalt by devising 19,600 kg/mm2 for e wire annealed at 750 C. Therea parameter be called~the "mecit index" (designated is a modulus minimum (14,800 kg/mm2) for material

B)" annealed at 800 C. Higher annealing temperatureresult in a modulus of 17 to 18 kS' ,;2. The normal

B = ,valu%' of the thermoelastic eoeff:clent is given as-300 x 10-6 per C, but this approaches zero for

where is the inflection temperature in the heat treatments in the vicinity of 800 C.expansion-versus-temperature curve and a is eitherthe mean thermal-expansion coefficient, or the It is therefore possible to have either a lowminimum thermal-expansion coefficient, end A is a thermal-expansion coefficient, or a zero thermo-constant. The parameter B is devised such thae as elastic coefficient, depending upon ".qe degree ofthe inflecti n temperature increases or the thermal- working and the annealing schedule. This has beenexpansion coe^ficient decreases the merit index studied by Chevenard and Bouchet.(41) So"e of theirrises. Figures 28 and 29 show at a glance the results are shown in Figure 35.harmful or useful effects of manganese C(Lo + NI)

or cobalt. Figure 28 illustrates the effective-ness of cobalt additions in improving the thermal- Scme corrosion data as reported by Masumoto(34)expansive properties of ordinary Invar. This are given in figure 36.impiovement is due to xhe dual effects of cobalt,namely, cobalt raises the inflection temperat,,re Masumoto(33) measured the intensity ofand lo-ers the mean and ml.nimum thermal-expansion magnetization and the magnetostriction of one ofcoefficients. Or, the other hand, increases in the his samples. These data are given in Figure 37.nickel content will raise tha inflection tempera- The electrical resistivity for this same specimenture, but only by sacrificing the low expansivity. at 20 C was reported as 66.6 x 10-6, while its

mean temperature coefficient between 0 to 40 C wasFurthermore, Figure 29 demonstrates that 0.832 r 10-3. Mhe units for the former property are

carbon is only mildly harmful to the merit index presum $Ay ohm-cm.and that manganese drastically veduces the meritindex. Elinv r

Unfortunately, no information on the mechan- Guillaume is credited with the discovery andical properties of these all,.ys has been found. development of the first of the constant-modulus

alloys, which he named Elinvar for invariantStainless InvD elasticity. Essentially, the original Elinvar is

an Invar in which 12 percent of the iron has beenStainless Invar, so ca~led because of its replaced by chromium. Curve A of Figure 38

superior resistance to corrosion in NaC1, was shows that the binary iron-nickel system has alloysapparently discovered by Masumoto(34) in the early of two compositions (at 27 and 44 percent nickel)1930's. He investigated a portion of the Fe-Co-Cr which possess zero temperature coefficients ofternary system, and showed that, for Just over 35 elastic modulus. It is difficult to take advantagepercent iron, and for chromium contents between of the c~nstant moduli of alloys having either of9 and 10 percent, the thermal-expansion coefficient these c¢snpositions, however, because both are soactually becomes negative. Some of these data are sensitive to nickel ccnte.at that a small error inshown in Figures 30 and 31. composition or even chemical inhomogeneities in the

same casting would result in appreciable variationsHidnert and Kirby(23) did further work on the of the temperature coefficient of modulus. Guillh'ne

Fe-Co-Jr ternary, and verified some of Masumoto's discovered that the addition of 12 percent chromium,findings. A series of alloys of the compositions or its equivalent, were small quantities of mangan-shown in Table 24 was investigated. Some of the ese, tungsten, or carbon are also included, lowersresults are given in Figures 32 and 33. Some of thermoelastic-coefficient curve to the positionthese alloys tended to undergo a gamma-to-alpha shown in Curve B. In the ternary alloy, the zerophase change on cooling (see Figure 34), thus temperature coefficient of modulus occurs at 36making them unsuitable as iimfnsionally stable percent nickel, and fortunately it is relativelymaterials. Lament, et al, 39) reported that they insensitive to minor variations in composition.

Page 12: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

It is now cW:2.' modify the composition Vibralloyof Elira.3r thretgh ,ie idition ot elements suchas tutgsten, molybdenam, ,ancanese, etc., in order Vibralloy consists of 9 percent molybdenum,to obtain or intenqify specia.ized secondary prop- 38 to 42 percent nickel, and the balance iron. inerties and to increase ease of man nfacturing. this alloy, molybdenum seives a dual purpose.

First, the addi.lon of 9 percent molybdenum to theElinvar has other characteristics that enhance iron-nickel alloys increases their mechanical

its usefulness in precision devices; namely, , strength. For example, the cold-worked 9 percenthigh degree of resistance to oxidation and co:..o- molybdenum alloy has a proportional limit ofsion, low thermal expansivity, and practical i,, 110,000 pounds per square inch. On the other hand,munity to magnetic effects, the proportional limits of the iron-nickel alloys

are only about 50,000 pounds per square inch.Other constant modulus alloys for which Elin- Second, the thermoelastic properties of the 9 per-

var is the prototype will be discussed in the fol- cent molybdenum-containing alloy are less sensitivelowing sections of this memorandum. to variations in nickel contents than those of an

iron--nickel alloy. Figures 72, 73, and 74 illus-& _-Span Alloys trate the effect of molybdenum on the thermal

change in Young's mooulus. The data are plottedThe Ni-Span Alloys, particularly Ni-Span-C, a such that changes in modt'li oi the alloys when

are age hardenable and have considerably higher heated from -40 C (-40 F) to temperature up tostrengths than many of the other Invar types. Ni- 80 C (176 F) relative to the moduli at 20 degressSpan-C has been developed specifically for its (4 F) are plotted as a function of temperature.constant-modulus properties. Other alloys in theNi-Span class are: Ni-Span Lo 42, Ni-Span Lo 45, The slopes of these curves at a te.nperatureNi-Span Lo 52, and Ni-Span Hi. The first three are T are proportional to the slopes of the cortes-low thermal-expansion alloys, and the fourth a ponding modulus-temperature curves at the samehigh-thermal-expansion alloy. The composition of temperature. That is, the occurrence of a negativethese alloys can be found in Table 25. slope at temperature T in Figures 73 or 74 indicates

that the temperature coefficient of modulus ofNi-Span C is an excellent sample of the bene- elasticity (y) is also negative at that temperature.

fits of age-hardenable alloys of the Invar types. A positive slope indicates that y is positive at T.It is essentially an Eiinvar alloy with titanium The data in Figures 72 and 73 are summarized inadded. The addition of titanium makes the alloy Figure 74, Mhich mean thermoelastic coefficientsheat treatable by precipitation of an inter- are obtained by dividing the relative change inmetallic compound of nickel and titanium. The modulus on heating from -40 to +80 C by 120 (theheat treatment is normally carried out in two steps: temperature range over which change is taken). Thea solution anneal, usually performed by the materi- curves reveal that the additions of 9 percental supplier, and a precipitation-hardening treat- molybdenum reduce by a factor of two the sensitivityment performed by the user after the forming of the mean temperature coefficient of elasticoperation. modulus to changes in nickel contents.

The solution anneal is accomplished by heating The curves in Figures 72 and 74 are valid onlyto about 1700 to 1850 F, and quenching in water or only for a definite amount of cold work. Figure 75oil. The material should be at temperature from illustrates how cold work affacts the thermoelastic20 to 90 minutes depending upon size. Some appli- properties of molybdenum-free and molybdenum-bearingcations may require additional stress-relieving alloys. Although the magnetic parmeability ofand stabilizing treatment.(118) Vibralloy is lower than for a corresponding iron-

nickel alloy, it is still sufficiert for magneticThe most important uses of Ni-Span C are to actuation and vil-ration. The work-hardened alloy

eliminate the effects of temperature variations has permeability values between 700 to 850 at 3500on the responses to stress of elastically loaded gauss over the temperature range -40 to +80 C.members, such as helical and flat springs, Belle-ville washers, diaphragms, bellows, and Bourdontubes. Within the range of -50 to 150 F, the Isc-Elastiumodulus of Ni-Span C is a-mcst constant. Thetemperature range can be widened (-90 to -240 F) Iso-Elastic is an alloy of the Elinvar class.with a slight deviation fron the constancy-of- It has a low-temperature coefficient of the modulusmodulus property. of elasticity, and:is very adaptable for precision

instruments, since -drift error is less than 0.02There is a marked effect of frequency on the percent and hysteresis error is less than 0.01 per-

thermoelestic -oefficient of Ni-Span C. Experience cent of the total deflection. Iso-Elastic must behas shown that the problems of producing a zero highly cold worked (tip to 93.5 percent reduction inthermoelastic coefficient can be divided into two area) to obtain sufficient mechanical strength.classes of applications: (1) low-frequency applica- Safe torsional stresses of 40,000 .o 60,000 psi cantions including springs and Bourdon tubes, and -e applied to Iso-Elastic after the suitable cold-(2) high frequency applications, including tuning working treatment. Iso-Elastic is not heat +reat-forks and vibrating reeds. Processing variables able, but the cold working is normally followed by(cold-work level, time and temperature of heat a low-temperature 750 F stress-relief treatment.treatment) can be adjusted to produce the desiredthermoelastic coefficient for any frequency. The alloy is extensively used for precision*

extension springs. It is also used for torsion,The available mechanical and physical prop- spiral, or compression springs. The recommended

erties of the Ni-Span alloys are given in Tables range for obtaining Iso-Elastic's desirable low-26 to 36 and in Figures 39 to 71. temperature coefficient of modulus properties is

Page 13: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

6from -50 to +150 F. $ome physical and mechanical Figure 91 shows nondimensional spring con.-properties for Iso-Elastic are given in Tables 38 stants (ratio of spring constant at test tempera-and 39. ture to reference spring constant taken at 750 F)

for several bimetallic coil-spring nests.Exirimental Alloys

It seems reasonable to believe that theThe materials listed in the previous section composite apDroach to achievement of a low

uo not by any motns exhaust the possibilities of temperature coefficient of modulus springs vill be athe Invar-type alloys. A great deal of research, fruitful area for additional research.particularly in Japan, has oontinued, &nd a widevariety of alloys has been investigated. Some of _Alternative Materials (Nonferromaanetic)the summarized results follow.

The materials previously listed cove- mostMcsumoto and his ,:o-workers have done an of the metallic materials which have been utilized

enormous amount of work measuring moduli, thermal or studied from the point of view of low thermalexpansion, and thermoelastic coefficients in a expansion or temperature-independentmodulus. Al-wide variety of systems. This wprk led to the though each of these materials has been ferromagnetic,development of strainluss Invar,k34) Co-e li var ,(54) this is not a necessity. The one major materialVelinvar,(55) and a new sll-y Mselinvar.755) They which differs appreciably from the above is quartz.have studied the properties of the binary system• Quartz crystals, specially cut, are used in a wideFp-Ni,(37) Fe-Co,(57) Fe-Pt,(58) Ni-Co, 9,057) variety of ways as frecvincy standards. FusedFE-Pd,(69) the ternary rystems 7e-Ni-Co,(37) silica has an extremely low coefficient of thermalFe-Co-Cr, 34,54,61) Fe.-co-Mo,(55) Fa-Cc-V,\55) expansion (about 0.5 x 10-6 per C). CrystallineCo-Fe-Mn,(67) Co-Fe-W;(68) and the quaternaries quartz has a considerably higher 0, but it isFe-Co-Cr-,i (1,62,63,64) Fe-Co-Cr-Cu,(65) anisotropic, having coefficient of expansion valuesFe-Co-Ni-V,(66) Fe-Co-Mo-Ni,(56) Co-Fe-,An-Ni,(67) of about 8 x 10-6 per C parallel to the crystaland Co-Fe-!Ni.(68) Some of these data are given optic axis and 14 x 10-6 per C perpendicular to thein Tables 40 through 51, and in Figures 83 through axis. Its modulus also is anisotropic, being 10.387. x 1011 dynes/cm2 perpendicular and 7.9 x 106 parallel

lel to the optic axis. Because of tnis, it isThe thermal-expansion characteristics of the possible to select a crystalline direotion in which

Fe-Pt binary has also been studied in Germany.(70) the tnermoelastic coefficient is almost zero. Hence,Some of the results are shown in Figure 78. quartz, properly cut, is an excellent material for

reference frequency standards.

Russian work in this area appears limited.The Russian papers encountered were restricted to So far as the writers know, no such use hasthree coauthored by Ivanushkino and Livshits,(71- 7 3 ) boen made of metallic single crystals, althoughand four papers authored by S. I. Doroshek.,ý'4-7) numerous examples of anisotropIc metals and alloysIvanushkino and Livshits studied the ternary exist. Uranium, for example, has thermal-systems of Fe-Ni-Cr, Fe-Ni-Mo, and Fe-Ni-Nb. It expansion coefficients of 21, -1.4: and 22.6 xwas shown in these studies that additions of the 10- per C in its threu principal directions.third element caused the hardness and the electrical Hence, depending upon the crystal axis, any O fromresistivity to become functions of annealing time -1.4 to 22.6 x 10-6 could be obtained as desired.and temperature (Figures 79 and 80). Presumably a similar choice exists for a wide

variety of thermoelastic coefficients. OtherDoroshek investigated the properties of anisotropic metals of potential interest are listed

ternary Fe-Ni-Co,(74,77) Fe-Ni-CuM74) Fe-Ni-Ti,(76) in Table 55.and quaternary Fe-Ni-Mo-Ti.(75)

It is also possible for cubic metals to disALTERNATIVE APPROACKHS play anisotropy. Armstrong and Brown(79) have

shown that this occurs in columbium. For thei •single columbium crystal, Young's modulus decreases

with temperature in the [100] direction, but in-It is often possible, by balancing the creases up to 16 percent between room t.-mperature

temperature-dependent properties of two or more and 900 C (1652 F) in the [110] and [111] direc-alloys, to achieve a degree of temperature inde- tions. Thus, increases in the measured modulipendence. In keeping with the gcneral intent of with increased temperature are possible fo; singlethis memorandum, it is fitting to give a specific crystals whose moduli are measured in a d' ctionexample of this approach. away from the [100]. Polycrystalline columbium,

also shows this anomalous modulus-temperatureGascoigne, Enns, Kessel, and Orsondroyd(78) behavior.

approached the problem of constant spring propertiesby attempting to balance the positive theraoelastic M,.nedlic Effectscoefficient of Invar type iron-nickel alloys withthe negative thermoelastic coefficients of Inconel X Almost all of the alloys discussed up to thisor 304 stainless steel. This was done both by point have been ferromagnetic. Since it is knownnesting coil springs and by stacking Delleville that a magnetic field causes a change in the dimen-springs. By these means they were able to achieve sions of a ferromagnetic material, it is to be ex-spring constants which varied by less than *0.25 pected that the elastic moduli will also be affect- .percent over the temperatdre range from -65 to ed. This is indeed true, but not alwAys recognized.+600 F.

Page 14: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

7When a magnetic field is applied to a ferro- Because of the n~ature of domain-wall move-

magnetic material, its E modulus changes (it usually ment, it can further be anticipated that the modu-increases) by some amount called AE. Therefo:e, the lus will be a function of stress. That Is, E willeffect has come to be known as the 4E effect. The not be a constant. This has been demonstrated inmagnitude of the effect varies, of course, with the iron,(87) although the ferromagnetic origin of thisstrength of the field. iowev3r, even minute tields dependence has not been verified.can inviuduce a significant AE in presision mepsure-mecits. T. S. Kt(88) has also observed an interesting

and previously unreported effect. In most cases,It has been shown, for example, that the the damping rapacity of a vibrating body (damping

period of an Invar pendulum (for gravity d-stermina- is a measure of the area under the dynamic stress-tions) was altered by the enrth's gravitatioral strain loop) will decrease as a magnetic field isfield.(81) This was eventually eliminated by applied to the body. Ke found tha., fo• an Armcocnialding the instrument in a specia] ,:)x whenever Iron sample vibrating transv, rsly vin a magneticit Yas moved, field, the damping increased [Ich the strength of

the fieil, and reached a maximum at saturation mag-Hibi(82) has shown the change in K/K0 , which netization. Since an increase in damping is normal-

is a measure of relative modulus, as a 4unction of -y accompanied by a decrease in dynamic modulus,magnetic field for an Fe + 35 percent nickel semple ,*ds :s the equivalent of saying that the modulus(see Figure 92). Here the changes are of the crcr oicreasic as the field increases. The dampingof several percent, and this is appreciable, even d. 'reases with increasing magnetic field for longi-in less orecise applications. tudinal or torsional vibrations. Ke suggests that

v(3) tl.'L effect may result frc 'the stress-inducedKatayev ) has shown the same thing for rotation of magnetic vectors.

Elinvar and Co-elinvar.(Figures 93 and 94).Koster(84) has studied this effect over a Mhole An additional point deserves to be recognized.ranje of Fe-Ni alloys. Alers,(85) et al, have ob- In some alloy systems (C in a-Fe is a good example)served the aE effect in Fe-3Ni, and Yamamoto(86) a solute element will tend to accupy a specifichas stated it in Ki-Cu alloys. The effect is a]so lattice position relative to the magnetization vec-found in pure metals such as nickel and iron.(91) tor. Thus, if a piece of iron containing carbonThe point to be emphasized is that the UE effect is ia solution is magnetized (with a relatively smallapparently a characteristic of ferromagnet'.c alloys, field), it will first increase in length due to

magnetostriction, then it will decrease in length"At least in part, the modulus chanre is the as a function of time as the carbon atoms diffuse

result of the existence of a domain-wall structure, to energeticilly more favorable posicions.(89)Because of magnetostrictive coupling, -,ie applica- This type of reaction is known as directionaltion of a strain to a ferromagnetic system induces ordering, and seems to have many unexplored ramifica-the domain walls to move. Thus, the total strain tions. A porticular y pertinent one is reported bybecomes the sum of the elastic and the magneto- Kekalo and Livshits.(88e9l) They report that theelastic strains, and the modulus measured is lower damping capacity of Inva- changes with time, atthan t he pure elastic modulus. When a magnetic temperatures below the Curie point, after thermalfield is applied, the domain-wall density and or- treatment, or aft r demag.tetization. Once again,ientation change, and consequently the measu-ed this means that the modulus (and probably also themodulus changes. At saturation magnetization, the length) is changing as a function of time. Thus,domain-wall structure no longer exists, and the some attention must be paid to the environmernt inmodulus reaches its maximum. which an Invac-type alloy is to be used if its full

potential is to be realized.

t-

o

Page 15: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

I YJ

8

(1) Masumoto, H., "On the Thermal Expansion of (17) Marsh, J. S., Alloys of Iron and Nickel -

the Alloys of Iron, Nickel and Cobalt and the Volume I. Special Purpose Alloys, McGraw-HillCause of the Small Expansivity of Alloys of Book Co., Inc., New York, New York, pp 135-the Invar Type", Kinzokv no K611KyU, -, p. 237 183 (1938).(1931).

(18) Eberly, W. S., "How to MRke Invar Stay Put",(2) Guillaume, G. E., "Discovery of the Anomaloy", Prod. Eng., 28 (D9), 80-81 (1957).

Proc. Phys. Soc. (London), I&, pp 374-404(1920). (19) Lement, B. S., Averbach, B. L., and Cohen, M.,

"The Dimensional Behavior of Invar", Trans.(3) Dehlinger, U., "Alteration in Volume or ASM, pp 1072-1097 (1951).

Magnetization and the Invar Alloys", Z.Metallk., 28, pp 194-196 (July, 1936). (20) Lyman, T., Metals Handbook, ., 8th Edition,

The American Society for Metals, Metals Park,(4) Zener, C., "Impact of Magnetism Uporn Metal- Ohio, 816-819 (1961).

lurgy", Trans. Inst. AIME, Met. Div., 2(ro3,pp 619-630 (1955). (21) "Carpenter Alloys for Electronic, Magnetic,

and Electrical Applications", The Carpenter(5) Benedicks, C., "One-Phase or Two-Phase Condi- Steel Company, Reading, Pennsylvania (1963).

tions in the System Fe-Ni; Theories ConcerningMeteoric Iron and Invar", Ark. Mat. Astr. Fys., (22) Schwartzberg, F. R., Osgood, S. H., Keys,A28 (14), 1-32 (1942). R. D., and Kiefer, T. F., "Cryt.,;nic Materials

Data Handbook", Report ML-TDR-64-280,(6) Benedicks, C., and Sederholm, P., "The Abnor- PB 171809 (Revised) and PB 171809-6, The Martin

mal Expansion of Invar", Ark. Mat. Astr. Fys., Company, Denver, Colorado, under Air ForceB19 (W); 1-6 (1925). Contract AF 33(657)-9161 (January 15, 1964,and Aug!Jst, 1964).

(7) Benedicks, C., Metallographic Researches,McGraw-Hill Book Co., Inc.. New York, New (23) Johnston, H. L., and Brooks, H. E., "ImpactYork (1926). Strength of Various Metals at Temperatures

Down to 200 Absolute", Tech. Report 264-17,(8) W3iss, R. J., "Ti.e Origin of the 'Invar' The Ohio State University Research Foundation,

Effect", Technical Report AMRA TR-63-07, Columbus, Ohio.U. S. Army Materl.als Research Agency,Watertown, Massachusetts (June, 1963). (24) Bornemann, A., and Gela, T., "Studies in the

Behavior of Certain Non-Ferrous Metals at(9) Ananthanarayanan, N. I., and Pearler, R. J., Low Temperatures", Final Report, Stevens

"A New Reversible Solid-State Tr.nsformation Institute of Technology, Hoboken, New Jersey,in Iron-Nickel Alloys in the Invar Range of under U. S. Army Contract DA-36-039-SC-15393Compositions", Nature,.=, p. 962 (1961). (December 31, 1953).

(10) Kussman, A., and Jesson, K., "Magnetic and (25) "Mechanical Properties of Uniloy 36 at

Dilatometric Measurements of the Transforma- Temperatures from 75 F to -300 F", RD Memo 15,,Universal-Cyclops Steel Corporation (April 24,54 (9), 54-510 (1963). 1962).

(11) "Iron-Nickel and Related A'loys of the Inver (26) Schummer, A., and Bladwin, W. M , Jr.,

and Elinvar Types (30% to 60% Nickel)", The "Investigation of the Brittleness of Non-International Nickel Company, Inc., New York, Sensitized Stainless Steels at High Deforma-New York (1956, revised 1962). tion Speeds", preliminary information by Case

Institute of Technology, Cleveland, Ohio, in(12) "Engineering Properties of Ni-Span-C, Alloy cooperation with American Iron and Steel

902", Technical Bulletin T-4!, Huntington Institute.Alloy Products Division, The InternationalNickel Compan7i, Inc., Huntington, West (27) "Latrobe Steel Company Data Sheet - Invar",Virginia (1963). Latrobe Steel Company, Latrobe, Pennsylvania.

(13) Bozorth, R. M., Ferromagnetism, D. Van (28) Schetky, L. M., "The Properties of Metals and,Nostand Company, Inc., New York, New York, Alloy of Particular Interest in Precisionpp 102, 448, 642, 644 (1951). Instrument Construction", Report R-137,

Massachusetts Institute of Technology,(14) "Invar and Related Nickel Steels", Circular Cambridge, Massachusetts (January, 1957).

58, U. S. National Bureau of Standards(June, 1923). (29) Rosenfield, A. R., and Averbach, B. L.,

"Effect of Stress on the Expansion Coefficient",(15) "Alloys with a Fixed Rate of Dilatation", J. Appl. Phys., X (2), 154-156 (February,

Aciers Fins and Speciaux Franczls (13), 1956).pp 82-85 (March, 1953),

(30) Sands, J. W., "Invar, Elinvar, and Related(16) "Technical Service Letter TL I", International Iron-Nickel Alloys", Metals and Alloys, a (6),

Nickel Company, Tnc., New York, New York 131-135, 150, 156-165 (June, 1932).(1962).

Page 16: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

' "'

(31) Sefing, F. G., and Nemser. D. A., "Low- (47) Mooradian, V. G., Gosch, D. R., end Mclsaac,Expansion High Nickel Alloy for P7eoision D. F., "Development of Improved Metal'.i;

Parts; Minvar", Prod. Eng., ).&, pp 799-801 Materials for Electronic Components Operating(November, 1945). at High Temperatures", Final Report, Engelhard

Industries, Inc., Union, New Jersey, under(32) "Technical Information Bulletin No. 210", U. S. Navy Bureau of Ships Contract NObs 77085

Driver-Harris Company, Harrison, New Jersey. (September 30, 1965).

(33) Lement, B. S., and Averbach, B. L., "Measure- (48) Favor R. J., Gideon, D. N., Grover, H. J.,ment and Control of the Dimensional Behavior Hayes, J. E., and Me'flurE, G. M., "Investiga-of Metals", Summary Report No. 1 R-95, tion of Fatigue Behavior of Certain Alloys inMassachusetts Institute of Technology, the Temperature Range from Room Temperature toCambridge, Massachusetts, under Air Force -423 F", Report WADD-TR-61-132, BattelleContract AF 33(616)-2039 (December, 1955). Memorial Institute, Columbus, Ohio, unde.

Air Force Contract AF 33(616)-6888 (June, 1961).(34) Masumoto, H., "On the Thermal Expansion of

Alloys of Cobalt, Iron, and Chromium, and a (49) "Wilco Ni-Span-C - Constant Modulus Alloy",New Alloy 'Stainless Invar"', Sci. Rept. Res. Engelhard Industries, Inc., H. A. WilsonInst., Tohoku University, 23, pp 265-280 Division.(1934-1933).

(50) Fine, N.. E., "Vibralloy - A New Ferromagnetic(35) Brace, P. H., U. S. Patent 1,689,814. Alloy", Bell Lab. Record, 30 (9), 345-348

(September, 1952).(36) Scott, H., "Expansion Properties of LoC-

Expansion Fe-Ni-Co Alloys", Trans. AIME, (51) Fine, M. E., and Filis, W. C., "ThermalInst. Metal Div., 89, pp 506-537 (1930). Variation of Young's Modulus in Some :e-Ni-Wo Al.

Alloys", J. Metals, Trans. AIME, _3, pp 761-764(37) Masumoto, H., "On the Thermal Exponsion of the (September, 1951).

Alloys of Iron, Nickel, and Cobalt, and theCause of the Small Expwnsibility of Alloys (52) "'echnical Information on Vibra~loy - A Control-of the Invar Type", Sci. Rept., Res. Inst., lable Modulus Ferromagnetic Alloy", Data SheetTohoku University, 2, pp 101-123 (1931). from the Arnold Engineering Company, Marengc,Illinois.

(38) Hidnert, P., and Kirby, R. K., "ThermalExpansion and Phase Tran%.urmations of Low- (53) "Iso-Elastic Spring Alloy", Engine.ringExpanding Cobalt-Iron-Chromium Alloys", 3. Bulletin, John Chatillon and Sons, New York,Res. Nat. Bur. Std., Res. Paper 2602, U (1), New Vork.29-37 (July, 1955). (54) Masumcto, H., and Saito, H., "On Young's Modu-

(39) Lement, B. S., Roberts, C. S., and Averbach, lus and Its Temperature Ccefficiert of theB. L., "Determination of Small Thermal Expan- Alloys of Cobalt, Iron. and Chromium, and asion Coefficients by a Micrometric Dilatometer New Alloy 'Co-Elinvar"', Sci. R.pt. Res. Inst.,Method", Rev. Sci. Instr., 22, pp 194-196 Tohoku University, Adl, pp 17.-22 (1949),(March, 1951).

(55) Masumoto, H., Saito, H., And Kobayeshi, T., A

(40) Volet, C., and Bonhoure, A., "bome Properties "On the Thermal Expansion, Rigidity Mo&ulus "Aof Stainless Invar", Compt. Rend., 2:6, and Its Temperature Co fficient of tne Alloyspp 734-735 (1943). of Cobalt, Iron, and Vanadium, and a New

Alloy 'Velinvar,", Sci. Rept. Res. Inst.,(41) Chevenaid, P., and BoJchet, P. J., "Sur I'- Tohoku University, &4, pp 255-260 (1952).

anamalie dilatomctrique et l'anomaoe thermo.-elastique de l'invar Japanais", Compt. Rend., (56) Masumoto, H., et al, "New Elinvar-Type Alloy220, pp 774-776 (1945). 'Moelinvar' in the iernary System of Cobalt,

Iron, and Molybdenum, and the Chrr'cterlftics(42) "Spring Materials High and Low Temperature Dependent an the Addition if Nickol", Trans.

Applications", Report No. AL-2606, North Japan Inst. Mexais, 3, pp 4-9 (1962).American Aviation, Inc., under Air ForceContract AF 33(600)-28469 (September 16, (57) Masamoto, H., end Nara, S., "On the Coefficient1957). of Thermal Expansion in Ni-Co and Fe-Co Alloys,

and the Magnetottriction of Fe-Ni Alloys",(43) Mudge. W. A., and Talbot, A. M., "Ni-Span", Sci. Rept. Res. Inst., Tohoku University, I

Iron Age, J7, pp 66-70 (1946). J, pp. 333-341 (1927).

(44) Ward, M., "Constant Modulus Alloy for Elastic (58) Masumoto, H., and Kobayashi, T., "On theElements", Prod. Eng., 27, p. 135 (1956). Abnormality in the Thermal Expansion of Iron-

Platinum Alloys", Sci. Rept. Res. Inst.,(45) Ochsner, F. C., "Age-Hardening Nickel Alloys", Tohoku University, _, p. 856 (1950".

Prod. Eng., 12, pp 126-128 (October, 1948). (59) Masumoto, H., Saito, H,, and Takbhashi, )A.,

(46) Burnett, H. C., "Thermoelastic Properties of "Magnetization, Magnetostrictior., and Relaxa-1 Alloys", Second Progress Report from the tion Phenomera During Iso+hermal MagneticNational Bureau of Standards to U. S. Navy Annealinq at High Temperatures in Ni-Cb Alloys",Bureau of Aeronautics. Sci. Rept. Res. Inst., Tohoku University, 9,

pp .93-308 (1957).

Page 17: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

10(60) Masumeto, H., Xnee, S., and Ukaj!, I., "Or. (70) Kussman, A., Anw~rter, M., and von Rittberg,

a New Anomaly in the Alloys of Nickel and G., "The Iron-Platinum Invars and Their Expan-Cobalt. 1, The Effect of Heat Treatment in sion Anomalies", Ann. Phys., Leipzig (Folge 6),Mafnelics on Their Magnetic Properties", 4 (3-4), 174-182 (1948), in German.Sci. Rep'.. Res. last., Tohoku University, A6(4), 37.,-383 (August, 1954). (71) Ivanushkina, A. Z., and Livshits, B. G.,

"Invar Can be Made Heat-Treatable by Alloying",(61) VaumoTeo, H., anJ Saito, H., VOn the Rigidity Fiz. Metal. i Metalloved, A (1), 150-151 (1957),

Modu)ui, and Its Tpw4.eratvre Coefficient of in Russian.the t,'.oyb of Co!.alt, Iron, and Chromium!",Sci. Rept. Ros. Inst., T~hoku University, A4, (72) Ivanushkina, A. Z., aid Livshits, B. G., "Studyp. 245 (i95,.). of the Properties and Structure of Invar

Alloys Containing Mclybdenum, Chromium, and(62) Aaim•t' ., i!., Saito, it.) ane Sugal, Y., "In- Niobium", Fiz. Metal. i Metalloved., 1 (3),

2=lu•o., of ýddition of lvi-iAal on the Thermal 527-535 (1957), in Russian.Expansion, Rigidity Modulus and Its Tempera-ture Coefficient of tne Alloys cf Co, Fe, (73) Ivanushkina, A. Z., and Livshits, B. G.,and C%, Especially of Cc-Elinvar. II. Addi- "Alloying of a 36% Invar Leads to a Change of,.ionG oi 30 ini 40% N1", Sci. Rept. Res. Inst., Its Prope:ties After Quenching %nd Tempering",

Tt~hoku Uni,!erslty, !7, pp 533-540 (1955). Fiz. Metal. i Metalloved., A (1), 184-185(1957), in Russian.

(63) M•sumuto, H., Saito, H., and Kono, T., "In-fluer.-e of Nickel or. the Thermal Expansion, (74) Doroshek, S. I., "'Influence of the ThirdRigiditt, Modulus and Its Temperature Coa- Elements and Structure on Elasticity Modulusefxiciert oi the Alloys of Co, Fe, and Cr, and Physical Anomalies in Invar", Fiz. Metal. iEspect Ally. nf Co-E.j,:war. I, Additions of Metalloved., L7_ (4), 638-640 (1964), in Russian.10 and 20% of Nickel", Sc'.. hept. Res. Inst.,

Tohoku University, M.A, pp i529-538 (1954). (75) Doroshek, S. I., "Influence of Molybdenum onthe Properties and Anomalies of Dispersion

(64) Masumotn' H., Siito, H., %nd Kon,, T., Hardening Invar-Type Alloys", Fiz. Metal. i"Thernl Expansion Coeff'c..nt, Shear Zodulus, Metalloved., 17 (2), 243-251 (1964), in Russian.San% Its Temperatire Coefficleat of the Alloyscf Ironý Niccel, .;oba,,.t, and Chromium. I. (76; Doroshek, S. I., "Physical Anomalies and Prop-"Thormal Fxoansion and the Relation Between erties of Dispersion Hardeited Invar Alloys",Super Invar and Stainless Invar; II. Sheir Fir. Metal. i Metalloved., _1 (1), 122-131Moduiut. ind Iti Temperature Coefficient, and (1964), in Russian.the R~latio' between Co-Elinvar and Blinvar",Nippon Konzoku Gakkai-Si, 11. (8), (I), 478-480, (77) Doroshek, S. I., "The Effect of Cobalt on the(II), 481-484 (1955). Mechanical, Electrical, and Elastic Properties

of Iron-Nickel Alloys", L7 (2), 317-320 (1964).(65) Masumoto, H., Saito, H., and Sugai, U., "In- in Russian.

fluence of Additiob of Copper on the Charac-teristics of an Elinvar Type Alloy 'Ca- •78) Gascoigne, H., Enns, J. H., Kessel, P., andElinvar'. I. Alloys Containing 5% of Copper", Ormondroyd, J., "Wide-Temperature-RangeSci Reat. Res, Inst., Tohoku University, A9, Spring", Report ASD-TR-61-566, The Universitypp 170-17.r(1957). of Michigan, Ann Arbor, Michigan, under Air

Force Contract AF 33(616)-6284 (May, 1962).(66) Masumotct N., Saito, H., and Goto, K., "In-

fluen.e of Addition of Nickel on the Therma.' (79) txmstrong, P. E., and Brown, H. L., "AnomalousExoansion, the Rigidity Modulus and Its Temperature Dependence of Elastic Moduli ofTe:.perature Coefficient of the Alloys of Niobium Metal", Trans. ASM Quarterly, pp 30-35Cobalt, Iron, and Vanadium", Sci. Rept. Res. (March, 1965).Inst., Tohoku University, h2, pp 159-169(1957). (80) Gray, D. E., American Institute of Physics

Handbook, McGraw-Hill Book Company, Inc.,(67) Masumoto, H., raito, H., and Sugai, Y., "New New York, New York, pp 4-154 (1957).

Elinvar Type Alloy 'Mangelinvar' in theTernary System of Cobalt, Iron, and Manganese", (81) Bullard, E. C., "The Effect of a MagneticJ. Japan Inst. Metals, 2& (2), 96-101 (1964), Field on Relative Gravity Determinations within Japanese. Invar Pendulums", Proc. Cambridge. Phil. Soc.,

229. pp 288-296 (May 10, 1933).(68) Masumoto, H., Saito, H., and Sugai, Y., "New

Elinvar-Type Alloy 'Tungelinvar' in the (82) Hibi, T., "On the Change of Torsional MedulusTenrary System of Cobalt t Iron, and Tungsten, of Some Ferromagnetic Substances With T pwra-and the Characteristics Dependent on the ture and with the Magnetisat'.on", Sci. Aept.Addition of Nickel", Res. Inst. Iron, Steel, Res. Inst., Tohoku University, First Series,Other Metals (July 24, 1963). 21, pp 435-449 (1939-1940).

(69) Masumoto, H., Saito, H., and Kobayashi, T., (83) Katayev, G. I., "Ferromagnetic Anomaly in"The Thermal Zp.znsion Coefficients and the Young's Modulus and the Shear Modulus inTemperature Coefficients of Young's Modulus Alloys fo the Invar Class", Fix. Metal. iof the Allo~s of Iron and Palladium", Trans. Matalloved., U1 (3), 375-381 (1961).Japan Inst. Metals, A (2), 114-117 (April,1963).

____, 6'

Page 18: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

11

(84) Kostc-,, Elastitityý.MXolusuand6l4ffect (9e) klov, K. P., "Ferromagnetic Nature of lnvaror-i•'e4 Alloys", z. ite•;•. 2 (10), 194-199 and Eliver T1 Alloys" i Iiv. Aid..tU-' S9SSR,(October, 1943), in Gikiai. Sar. Fi., U. p 649-653 (•947).

(85) Alers, G. A., Neighbours, J. R., and Sato, H.,, (99) Belov, K. P., 'and Shmiet, V. V., vMedgnto.-

"Otgnetic Contributions to the Elastic Con- striction and Thermal Expansion of Inverstants of Nickela a nl-s- Fi-3•%N5 at High Mag- Alloys- Near the Curie Pcnt", Zh. Tekhn. Fiz.,netic Fields", J. Apl.'Phys., a (4), 231S A, pp,44-49 (1953).(1959).

(100) Bellware, M. D., "How to Weld Invar", Welding(86) Yamoto, M., "The Change of Young's Modulus of Engr., A2 (11), 41 (1964).

Elasticity by Magnetization in Iron and CarbonSteels", Sci. Rept. Res. Inst., Tohoku Univer- (101) Belov, K. P., "Magnetostriction of Ferro-sity, 21, pp 115-136 (1938). magnetic Alloys in the Region of the Par&-

process", J. Exp. Theoret. Phys., USSR, 2,K(87) Engler, 0., "Modulus ifElasticity of Ferro- pp 54-61 (January, 1950), in Russian.

magnetic Substances in Dependence on the Tern-perature and on the Magnetic Field", Ann. (102) Beloy, K. P., Katayev, G. I., end Levitin,Physik, Uj (2), 145-163 (January, 1958). R. Z., "On Internal Friction Anomaly in

Ferromagnetics and Antiferromagnetics Near(88) Ke, T. E., and Chow, P. L., "A Study on the the Curie Point", J. Appl. Phys., 21, pp 153S-'

Acoustic Intcraial Friction of Iron Vibrating 156S (1960).Transversely in a Steady Magnetic Fiald byPiezo-Electric Crystal Plates", Sci. Sinica, (103) Belay, K. P., and Agasyan, 0. N., "The NatureI, pp 237-246 (1957). of the Elastic Anomalies in Alloys of the

Invar and Elinvar Typa", Dokl. Akad. Nauk(89) Maringer, R. E., "Magnetoelastic Damping in SSSR, IQ (6), 881-883 (1951), in Russian.

Zone-Melted Iron", J. Appl. Phys., 35, pp 2375-2381 (1964). (104) Belay, K. P., Ma netic Transformation, Moscow,

Fizmatgiz, 259 pp (195(90) Kekalo, I. B., and Livshits, B. G., "Magnetic

Diffusion Effect in Invar, Studied by the (105) Belay, K. P., Elastic; Thermal and ElasticDamping Capacity Method II", The Phys. Metals Phenomena in Ferromagnetic Metals, Moscow,Metallog., 12, pp 19-23 (1961). 2nd Edition, p 279 (1957).

(91) Kekalo, I. B., and Livshits, B. G., "A New (105) Blomqvist, E. A., "An Investigation of theMagnetodiffusion Effect in Invar, Studied by P71ysical Properties of Same Nickel-ron Alloysthe Damping Capacity Method I", The Phys. Met of the Invar Group", Engineering and ScienceMetals Metallog., 1&, pp 9-15 (1961). Series No. 13, Rensselear Polytechnic Institute,

Troy, New York (1926).(92) Masimoto, H., Saito, H., Kono, T., and Sugai,

Y., "Thermal Expansion Coefficient, Rigidity (107) Bouchard, J., "Effect of Reversible and Ir-Modulus and Its Temperature Coefficient of the reversible Changes of Magnetization on theAlloys of Iron, Nickel, Cobalt, and Chromium, Thermo-El'ctrtc Power of Ferromagnetics",and Relations of Super Invar to Stainless Compt. Rend. Acad. Sci., =, pp 1895-1897Invar and of Elinvar to Co-Elinvar", Sci. (June 7, 1948), in French.Rept. Res. Inst., Tohoku University, AS,pp 471-483 (1956). (108) Borodkina, M. M., "Investigation of Ageing of

Spring Alloys", Fiz. Metal. i Metalloved.,(4), 700-705 (198).

(93) Alers, G. A., Neighbours, J. R., and Sato, H., (109) Guilleume, C. E., "Chemical Equilibrium in"Temperature Dependent Magnetic Contributions Solids and in Nickel Steels", Rev. Gen. Sci.,to the High Field Elastic Constants of Nickel j, pp 282-286 (1898).and an FO-Ni Alloy", J. Phys. Chem. Solids,.1, pp 40-55 (1960). (110) Boulanger, C., "Internal Friction Due to

Ferromagnetisem", Physica, J1, pp 266-271(94) Ayu)rrzanayn, B. A., "Study of Magnetization and (April, 1949), in French.

Magnetostriction Saturation in Elinvar Alloys,Subject to Plastic Deformation", Akad. Nauk (111) Bozorth, R. M., and Walker, J. G., "M&.jneticSSSR - Ser. Fer. Fiz., 2& (1), 206-210 (1964). Crystal Anisotropy and Magnetostriction of

Iron-Nickel Alloys", Phys. Rev., 89, pp 624-(95) Bando, Y., "The Magnetization of the Face 628 (February 1, 1953).

Centered Cubic Iron-Nickel Alloys in theVicinity of Invar Region", J. Phys. Soc. Japan, (112) Broniewski, W., and Smolinski, J., "The19 (2), 237 (February, 1964). Structure of the Iron-Nickel Alloys", Compt.

Rend., M, pp 1793-1796 (1933).(96) Bates, L. F., and Weston, J. C., "Thermal

Expansion of Invar" , Nature, JIM (3675), (113) Chatillon, John L Sons, British Patent 495,562.550-551 (1940).

(114) Chevenard, P., "Anomaly of the Correlative(97) Belov, K. P., and Agasyan, 0. N., "Temperature Elasticity of the Magnetic Transformation of

Dvpendnce of the Magnetostriction of the Nickel and of Solid Solntions Rich in Nickel",Invar-Type Alloys", Izv. Akad, Nauk SSSR, Ser. Compt. Rend., 212, pp 535-537 (1941).Fix, 1, pp 655-659 (1947).

Page 19: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

12 '

(115) Chevenard, P., and Crussard, C., "Influence (131) Graf, L., and KussCan, A., "Composition andof Temperature on Poisson's Ratio in Fe Magnetic Characteristics of rt/le Alloys",Alloys. Anomaly of This RAtio Associated Phys. Zeit., _U, pp 544-551 (August 15, 1935),with the Magnetic Transformation of Reversible in Ger, an.Ferronickels", Compt. Rend., =, pp 58-61(1942). (132) Harris, J. E., "Alloy for Vibratory Devices

Such as Springs and Tuning Forks", Bell

(116) Chevenard, P., Hugenin; L., Wache. and Telephone Laboratories, U. S. PatentVillachon, A., "New Alloys of th2 Elinvar 2,251,356.Type Susceptible to Structural Hardening",Compt. Rend., 204, p. 1231 (1931). (133) Heidenreich, R. D., and Nesbitt, E. A.,

"Stacking Disorders in Nickel Base Magnetlc(117) Chevenard, P., et al., "New Alloy of the Alloys", Phys. Rev., JIQ9 (5), 1678 (March I,

Elinvar Type", Engineer, 163, Sup. [Metal- 1957).lurgist], pp 38-39 (June 25, 1937). (134) Herpin, A., "Hysteresis of Inverse Magnet"-

(118) Chino, Y., "Thermal Hysteresis in Irreversible striction", Comp t . Rend., 2,L7, pp 475-476Iron-Nickel Alloys", J. Phys. Soc. Japan, (1943).A ( 1-2) , 24-29 ( 1949) .

(135) Hibi, T., "Change of Damping Coefficient of

(119) Clark, C. A., "The Dynamic Magnetestriction Ferromagnetic Substonces Due to Magnetization",of Nickel-Cobalt Alloys", Brit. J. of Appl. Sci. Rept. Res. Inst., Tohoku University,

Phys., Z (10), 355-360 (October, 1956). 21, pp 450-457 (March, 1940).

(120) Davis, L. G., "Low-Expansion Co-Fe-Cr Alloys", (136) Hibnert, P., "Thermal Expansion of Some NickelIron & Steel, 2M, pp 396-397 (1956). Alloys', J. Res. Nat. Bur. Std., V (2),i~I 89-92 (1957).

(121) Davies, R. M., and Thomas, I. H., "DynamicalMethod for the Measurement of Young's Modulus (i37) Hidnert, P., and Kirby, R. K., "A New Methodfor Imperfectly Elastic Metals and the for Determining Linear Thermal Expansion ofApplication of the Method to Nickel and Invar Geodetic Surveying Tapes", J. Res. Nat.Some of Its Alloys", Phil. Meg., 2a, pp 361- Bur. Std., X0 (4), 179-185 (1953).397 (1937).

(138) Hiemenz, H., "The Thermal Expansion of Some(122) DeVinney, R. G.. "Thermoelastic and Thermal Alloys of the System Ni-Fe and tile Effect of

Expansion Properties of Iron-Nickel Alloys", the Heat-Treatment Thereon", Festschr. 70.Strain Gage Readings, . (4), 23-30 (October/ Geburtstag von W. Heraeus, pp 69-79 (1930).November, 1962).

(139) Hill, W. J., Shimmin, v. D., and Wilcox,(123) Doring, W., "Effect of Temperature on Elastic B. A., "Elevated-Temr -ature Dynemic Moduli

Modulus of Ferromagnetic Substances", Ann. of Metallic Materials, ASTM Preprint No. 74Physik, 32 (5), 465-470 (July, 1938). (1961).

(124) Eberly, W. S., "Temperature Compensator (140) Hoselitz, K., and Sucksmith, W., "A Magnetic(Nickel) Alloys", Machine Design, 2& (5), Study of the Two-Phase Iron-Nickel Alloys",152-156 (1954). Proc. Roy. Soc., A181, pp 303-313 (May 6,

1943).(125) Eberly, W. S., "Design Properties of

Controlled-Expansion Alloys", Machine Design, (141) Hunter, M. A., ":i Expansion Alloys", ASM(1)), 235-242 (1963). Metals Handbook Cleveland, Ohio, pp 601-606

(1948).(126) Fahlenbrach, H., and Meyer, H. H., "Materials

with Elasticity Modulus of Particular Tem- (142) Josso, S., "Interpretation of the Instabilityperature Characteristic", Z. Technische of Inver and the Reversible Ferronickels",Physik, 2 (2), 40-44 (1940), in German. Compt. Rend., =24 (17), 2148-2150 (1956).

(127) Fangemann, M. G., "Precision Springs", (143) Kekalo, I. B., and Livshlts, B. G., "De-Machine Design, 2A, pp 154-158 (November, 1952 pendence of the Damping Capacity and Shear1952). Modulus of Nickel on the Magnetizing Field",

Phys. Metals Metallog., a3 (4), 599-608(128) Fangemann, M. G., "Spring Alloys", Machine (1962).

Design, 21, pp 121-12.5 (May 31, 1956).(144) Kimura, R., "Elastic Moduli of Ferromagnetic

(129) Fine, M. E., and Ellis, W,. Co, "Young's Materials. I. Iron Crystals", Proc. Phys.Modulus and Its Temperature Dependence In Math. Soc. Japan, 2U, pp 686-706 (November,36 to 5Z% Nickel-Iron Alloys", Trans. IM~E, 1939).J. Metals, (9), 1120-1125 (1950)."On the Cause f the

Peculiarities in the Physical Properties ofTemperature on Magnetic Properties of Nickel- Invar Alloys", Soviet Physics, 3. Exp.Iron Alloys", Elec, Mfg.,,2 (5), 1,35-139 Theoret. Phys., 3 (6), 10 (1959).

(November, 1958).

Page 20: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

a. T -atko '-,V., 1 -~ ~fi o oiefi h

line~~~ Latl16..f w

Anomalie In Ine .- s - . ".,

-. ~~(147) IbmuwuakiJ A. Lopan W4uVoloviA.. ¶l311jUIJT nsI Tozmý j iboii ofial pp '144e- 1tre Sci. Raept. zes Ist.,Thk lavaty 219~e

h.6NW 1943).n~rPyscl rie" Alloy", J~.',J Phys. So .Jap n, jj, p1(')J. ~~~ ~ ~ i (Al.l .41(9O )-2(1964).

(149) Xoiald, W.- -*and Too lwN.e Iopwx"Het (1ofaie .,"feto geiainotheEastaentouluiwa -T^p7l Pure Mi )eti -Z a. (14)Ocgso Mold,.9"Teuspn of Pewa~~ic Subtkces',(4941)k.tj p 1-1 (194).,lloy", Z (Augstk,.L (93). 5-7 15)

(5)Kruger, V., "On erthve aapping ofNic-eair- (163) Ocsnekama, Y.t "Thep M., Sikaot no,~t Proer-J ro-Nckl llot"Meaes. of ppm Vos~ errStody of ic~vrTp Irn4lcil Alos"

22466'(1943). Z. Ally'k IQ Phys Soc J37 an (195p51)77

(149) K~oriste, E. ., "'Te.tmperature Dependence of (16OwnEA.Yae,2LadSul,.H,te Mastic VMsodsity-of $meiNa Foras", oi" "An (164) Ocs nfels. The Amping of Pr Iron-Nickel

Mzvtalka. Sau ppSR So-12 Piz48., p41 AlloysZ. PatSThesk Vaiaio (3) 35773 (955)(io)00ue, .(195t2). ~natd~a~r- (15 Excasionfed .withe om agnetio-stic. Pry ope.-

466'(~~~onon A9ll) P. Phsi3 (4) 937).91(95)(IM1) Kuritsyna, E. F., "Temperature Dependence of (6)OeB . aeB . n ulA .

the Magnetic Viscosity -of Scu PrromNclAllotis", (167 P -Ray B. L.ptRgative ofiPuensionaltaicktelDokv. Akad. Nauk SSSR, BAr (4), , 6- pp a71 A elloys. P ert e of The tartionleof-tool

(1952)9 In Russian. Declaeter Bars", 3 . Res. Nat. Blur. Std.,

(153) Kussawms, A., and Jessen, K., "IvrBe- Rsac ae 7Z13,192 15)haviour and Magnetic Moments of the Gamm- (168) Pawlek, F,., "Nickel and Nickel Alloys. II.Phase of Iron-Palladiu. Alloys", Physical Nickel Alloys", F.I.A.T. Rev. Caer. Sci.86ciety -of Japan, Proceedings - International (1939-1946): 1 gdrosMj1Vgj (1948),ýConference on Magnetism and Crystallography, pp c-"4, In Gemean.

.L p 13-139(192).(169) Pilling, N. B., and Talbot, A. M., "Dispersion-(154) Lobr, J. M., and Hopkins, C. H., "Thermal Hardening Alloys of Nickel and Iron-Nickel-

Expansion of Nickel-Iron Alloyes" Trans. Titanita", hEM, Symposium on Age 11ardeningAINE, I&. PP 535-541 (1939). of Metals, pp 231-256 (1939).

(155) Luerssenp G. V., "Iron-Nickel Alloys and (170) Pridantsov, A. V., and Shcherbakov, B. N.,

Their Chaacteristics", Elec. Mfg., 36 (1), "Ptoperties and Technology of Manufacturing

:1(157) MerePD. IoNek. Alloys", Chem. (372) Straumann, R., "Nickel- and Iron AlloysMet.cag, 2A, pp 375-378 (1921). Adaicted for Springs in Thermocompons'atad

Oscillating Systiems, U. S. Patent 2,466,285(158) Moortdianj, V. G., "Development of Improved (April1 59,9490).

Meta1il Materials for- Electronic ComponentsOperating at High Temperature", Bimonthly (7)Poastina, V. V.9. "Ont the Problem of theProressi Report No. 3, fro8 Engeihaid Effect of Heat Treatment on the Sheer ModulusInduistries, Tho'.,,H. A. Wilson DI~ision to and ,the Curie Point of the Elinvar Alloy.",jBureau of Ships, USM (August'1 - September 6, Fit. Motel. i Metalloved., A (6), ild~lo5-l

1954).(1956).

(159) Co ml Sjpikl, edited by? the Gentre (174) Raduebeugh, R. J., "Structural Propertyd'Information du Cobalt, Brussels, Belgium, Relationships in. 30 to 80% Nickel-Ironprepared In cooperation with the staff of Alloys", Metals Eng. Quart.,,&, pp 41-48Battelle liemorlal Institute, Columbos, Ohio (1960)

(196), 15 )~.(175) Maimer, L.9 "Irreversiblit Cheft,% 3f the-(160) Mulquin, P., "Las Ferronickels Reversiblies, Beme~nt Magnetization of Plastically Do-

Echo des mines at do lo Metallurgic, (3371), formed Nickel", Z. Physik, JZ pp 508-%4ppS4-55 (April, 1947); (3372), pp 70-71 (1954).(May, 1947); (3373), pp 86-87 (June, 1947).

Page 21: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

14

(176) Russell, H. F., "Low-Expansion Nickel Steel", (192) Tino, Y., "On Disappearance of tie HopkinsonEngineering, 12, pp 400-402 (1929). Effect", J. Sci. Res. Inst. (Tokyo), :,

pr) 97-102 (1955).(177) Scheil, E., and Reinacher, G., "Elastic

Modulus and Damping Characteristics of Ir- (193) VanNeste, A., and Dub;, A., "Effect oi Tem-reversible Iron-Nickel All•rys", Z. Metallk., perature on the Elastic Modulus of Ferro-3 (3), 63-69 (1944). magnetic Metals (Nickel)", Compt. Rend., M,

pp 1732-1734 (1962).(178) Scheil, E., and Thiele, W., "Change in Modu-

lus of Elasticity and Damping of Iron-Nickel (194) Vigoreux, P., and Booth, C. F., QarkAlloy with y-a Transformation", Arch. ;'ibrators and The;r A/nýications, His Majesty'sEisenhuttenw., 1& (2), 103-105 (August, 1938). Stationery Office (1950).

(179) Schulze, A., "Thermal Expansion of Cooalt- (195) Vlasov, A. Ya., Laptei,, D. A., Aurzanain,

Nickel, Cobalt-Iron, and Iron-Nickel Alloys", B. A., and Smolin, R. P., "Temperature De-Z. Physik., 28, pp 669-773 (1927). pendence on Magnetic Properties of ElinvaA",

Izv. Akad. Nauk SSSR, Ser. Fiz., 2&, pp 287-(180) Scott, H., "Expansion Characteristics of Low- 290 (1962).

"Expansion Nickel Steels", Trans. Am. Soc.Steel Treating, QJ, p. 829 (1928). (196; Watson, T. W., and Robinson, H. h., "Thermal

Conductivity of Some Commercial Iron-Nickel(181) Scott, H., "Iron-Nickel Alloys (Stable Alloys", Trans. ASKE, J. Heat Transfer,

Inver)", U. S. Patent 2,050,387, to Series C, 83, pp 403-408 (1961),Westinghouse Electric and ManufacturingCompany, (August 11, 1936).

Magnetization of Ternary Iron-Nicke.-Cobalt• (182) Yamamoto, M., -TheA E-Effect, Young's Modulus, Systems of Iron-Nickel Base and Iron-Cobalt

and Magnetic Properties in Ferromagnetic Base Alloys", Fiz. Metal. i Metalloved.,Nickel-Copper Alloys", Sci. kept. Res. Inst., (6), 1011-1016 (1958).Tohoku University, jk, pp 446-457 (1954).

(198) Williams, H. J., Bozorth, R. M., and(183) Shozi, Y., Takahashi, T., and Shibata, S., Christensen, H., "Magnetostriction, Young's

"Temperature Characteristics of Springs Modulus and Damping of 68 Permalloy asfor Scales", Central Inspection Institute of Dependent on Magnetization and Heat- Treatment",Weights and Measures, Report, Tokyo, 8 (1), Phys. Rev., 5, pp 1005-1012 (June 15, 1941).42-49 (1959).

(199) Wise, E. M., "Nickel Alloys for Controlled(184) Spretnak, J. N., "Development of New Mechan- Thermal Expansion", Product Engineering, 2&

isas for Obtaining Steels in the Ultrahigh pp 68-71 (October 28, 1957).Strength Range", Final Report, from TheOhio State University Research Foundation, (200) Yanaguchi, S., "Thermomagnetic Study of MetalsColumbus, Ohio, for WADC (August, 1956). by Electron Diffraction", Il Nuovo Cimento,

22 pp 447-493 (November 1, 1961).(185) Spinner, S., Reichardr T. W., and Tefft,

N. E., "A Comparison of Experimental end (201) "Thermal Expansion of Invar Tapes Tested byTheoretical Relations Between Young's Electrical Resis.tance", Civil Eng., 2, p. 568Modulus and the Flsxural and .ongitudinal (August, 1953).Resonance Frequencies of Uniform Bars", J.Res. Nat. Bur. Std., §M (2), 147 (1960). (202) "Expansion Proner,.es of Ni-Fe Alloys", Nickel

Bull., LO (11), 237 (1937).(186) Street, R., and Woolley, J. C., "A Note on

the AE Effect in Alnico", Proc. Phys. Soc., (203) "Nickel and Nickel Base Alloy Tubing", SuperiorAl, pp 391-392 (October, 1948). Tube Catalog 13, Norristown, Pennsylvania.

(187) Suds, P., and PRces, J., "The Influence of (204) "Preliminary Data on Ni-Span-C Tubing",Plastic Deformation on the Magnetostriction Special Analysis Memo 111, Superior TubeConstant of Iron-Nickel Alloys", Coech. J. Company, Norristown, Pennsylvania.Phys., U~, pp 602-608 (1961). (205) "Magnetostriction", Develorment and Research

(l1&) Sutoki, T., "On an Anomalous Thermal Expen- Division, The International Nickel Company,sion in Hardened Irreversible Nickel Steels", Inc., New York, Ne% York.qci. Rept. Res. Inst., Tohoku University,J&, pp 94-09 (1921). (206) "Nickel ind Nickel Alloy Tubing", Catalog 12,

Superior Tube Company, Nozristown, PennsylvaniaS(189. Talbot, A. M., "Age-Hardonable, Low-Expansion (1956).

Nickel-Iron-Titanium Alloys", U. S. Patent2,266,481, to International Nickel Company. (207) "The Milo Series of Controlled Expansion

Alloys", Publication 2098, Henry Wiggin and(190) Thompson, J. G., "Nickel and Its Alloys", Company, Ltd., Birmingham, England.

NBC Circular 592 (1958).(191) Tino, Y., "The Invar Problem", J. Soi. Res.

Inst. (Tokyo), _A, pp 141-146 (1952).

_-_-v- d|

Page 22: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

or -ar

I ' -- ~ -- T- - FIGURE 3. MAGNETOSTRICTION OF IRON-NICKEL ALyDYS ATVAicus FRACION Or SATURA(T_

0 020 30 40 50 6 7080 9 10

0 10 Per Cent Nickel

FIGUiRE 1lo AVERAGE COFFIC'IENTS OF EXPANSION OF IR~ON-NICKEL ALLOYS OVER TtifFHREM4ErT TEMPERA-TURE RPMGES -INDICATE

I.AID-010 - - - e

2m-

Nike Conte7tt pe-c-nt

FW=~~~ ~ ~ ~ ~ 2o -FC OF -O0iTO 011 -O -WW1U FIUE4*VRAINO NmwF1C~~~~ff OF OF -mc OF OF -R~CE -LO 3 1 -= aTM

Page 23: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

16

11111 JJ•'• * Jgm uI• -I~ L ! - -) • - -•:.; - - -

- -- . al" wiedltsw @Mien

do: ... o"

.h, S o"-- -

'I-

/ 40

*'00 I -

.1__ ti - ''

w R m

£-m... ii -Nickdp" e "*

FIGURE 5. ELONGAT ORESISTIVITY OF PURE FERCOO- FIGURE?. INFLUENCE OF CARBON V OING CT, DDNSON-

PERIODSTBIIT OFFMNH(17 RFE-U IRNN ICKE 36(21)l7

117

IWM

FCIG G-

M -M 10 -)

PEIO OF~ 3 ITS1)O RE-U NA 6M R

Page 24: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

17

fZ I

00

Z V &.4

m ~ ~ ~ 'Z Zs AS11 . J'S 14

AN JUJSM At 3 .05 A 1 4 .6AI 1 3 S9

Magnetizing Force (H), oersteds

FIGURE 9. D-C MAGNETIC PEFNEABILITY WJRVES9 FOR ANNEALED AND CO)LD-DRiAWN INVAR 36(21) ',

24M ~ ~

tin - - 12 to 15% Coldtoo 1~ - 0 e. Iductior, 0.750-in.

- 1/ Fia Bar

50~g -5 -W 20_w .0 M -0 o

TZPAPATURI ('F

FIGURE 10. TEMPERATURE CHARACTERISTICS OF CARPENTER FIG3URE 11. STRENGTH OF INVAR (22)FREE-CJT INVAR 36 IN THE A.NNEALED CONDI-

TION. (H =5 Oer~teds)(21)

Page 25: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

.48

4 18

V FF1 V12 to 15% Cold Reduction,-S~~0.750,-in. Dia Balr12 to 15% Cold 0.7 -i' iReduction, 0.750-in"

Dia Bar

FIUE ~ ELNAIN ~ I F-4 -300 .no -100 0 10

all__ FIGURE 15. MODULUS OF ELASTICITY OF INVAR t22 '

S"12 to 15% Cold ReU0 - .inBa

{o12 tc 15% Cold Reduction,

-. 750-in. Dia Bar C R eC p

2;.0.

.20n -100 0 0 TEMPERATURE (OF)

M TURE (0F) FIGURE 16. IMPACT STRENGTH OF INVAR(22)

FIGURE 13. REDUCTION OF AREA OF INVAR(22) too_ - 40- no AOLED FULL HAND

APPROX 5% fA|a - - -*7 -' -A*4LED FULL KAM, ANNEALED

AT IR00F OR 1i000F FOR I MR240----------------------------.IIA R.OLLa0FLL MA EJso__ -- IN DRY HM, O0 FREE, FURNACE

NOTE: 12 to 15% Cold -460*400 -300 -200 '100 0 00 200 30 400 MO

Reduction 0.750- TEMPERATURE, F 36(22)in. Dia Bar FIGURE 17. HARDNESS OF INVAR 36

200 I .

12 to 15% Cold Reduction,6.2 -. - - 0.750 in. Dia Bar

so ----------- F --

7\ 140

0 0.060 0.120 0.19C 0.24 0.3(

STOAWN (INCHM, PMR INCH) -400 -300 -200 .100 0 100

U TKIMITUIR (°F')SFIGURE 14. STRESS-STRAIN DIAGRAM FOR INVAR(22) FIGURE 18. MODULUS OF RIGIDITY OF INVAR (22)

Page 26: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

19

12 to 15% Cold Reduction.-, 715-ln. Die Ba7 - - - - - -

3w 0 -- - ?- - 04

-- I

-Io0, -

-4 . •o -aoo .,oo o ,too --rKMPKUAUrE ("F) 05 I0 15 20 25 30 35 40 45 SO 55 60 5D

FIGURE 19. THERMAL EXPANSION OF INVAR(22) Cold Reduction, % '11

FIGURE 21. WJRK- AR ENIIE RATE FOR COLD-ROLLED70 -

II II I Tin Tuiyrotu I

prepaed from t/2" 1o1 b1 1

5z0 2 -0 -

soo

,or I0 I .11.0i

15001

70--e s~(

> 10soI500

-4w - I0 -20 .0001 0

05 10 152753 54 55 5667

Cycles to Failure A-51714

• I I I IF -2G 0 -19. o To FIGURE 22. FATIG(E CHARACTERISTI S OF % .040-IN.-

l•mperatue, C A-5I702 THICK NILVAR SHE•_T. 2 5)

Tested at +80 and -100 F

Condition: rolled on pass hard (approxFIGURE 20. CHARPY IMPACT TESTS ON STANDARD SPECIMENS 5% 2 reduction in area

OF INVAR STEL, C)LD-4RAWN BAR ON AMSRS

IMPACT-TESTING MACHINE (110 FT-LB MAX5X23) SeinDsgato:AN - 17 to 36 (+800 F)

Cum hrouh ovAN - 37to72-100F

•i0 mm. x 10 mm x 50 mm, keyhole type, Tests made on Sonntag Universal Fatigue0.394 x 0.394 x 2 .) Machines (Model SF-2).

ii. 40o. N

Page 27: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

200 _ _ _ _ __ _ _ 20K

1a - ._-_ __

A Z 140 -Notch tesll* strength

1100

E After Removal40 102 )•d ••105t€ Lmitof Load -

20- Condition" 1500-30mn-AC I Cw, Material. 5/8 Sq Voged Bor,~~250 - Heot A14789 I

_"_O __ I .__ _

1 •S0a1 5 0

-c Elongation

"-I -- T FIGURE 25. EFFECT OF STRESS ON T'rE EXPANSION GO-TempFA-S7I5EFrICIENT OF AN INVARt(29)

E 10() Iempac F ne

FIGURE 23. MECHANICAL PROPERTIES OF UNILOY 36FORCED BA A TEMPERATURES FROM 75 FTO -300 Foa0)

I0 - z ? o - I .... I ,40 - -

,o | I I I{1 1_ C 0250

20 p O.l

o4,.~ o~- -- 0.-013_ • jSI 0.702-20 "00 35. I

FIGUE2.o MCAIA RPPESOUNLO 36

I TO -30I -,o-.0 -a 4 F

to.c -- 0_ 3 1

I:--O

IC- ~l, ~ -- ~.t-i20 pedu0.0a13

1.6 ...... 014 100o• oNo o 60 861o 35.900

(il) (b) c1-

OF i-i A -OGE -4 -I -KE-S-EL30

1. 0 -- 0

LI-------------~l -0 004 0 6008000 2 40

1. !IN RATE -1b3,0N

FIGURE 24. DUCTILITY VERSU S SRAIN RATE FOR VARIOUS1.4 - 0

Page 28: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

21

Sx1I0e Of x 105I A IAf)

III60. %Co

CA• (a) 10% Co A

to mo ao 41%.

(•)(9 70 % cC ..o LF FM A o

0 0 40 90 90 % A

S(b)20 % cola,. 0., 75-co

P.O 04[I

M A FA

0. F M,11

oe ~1 0 9)5%Co

I- e I d to% C P

o.,0 :0^,(o.3D• .•N 1,

.U 0 F: O.ALIO AS1 ) U O%

* I t-.j g)50O coI I .

12 - 1 (j) 95%Co

• , .E P.. F. . .

CSRAR I ANNCELC L ALLOYS ( k7) 9

-- ------ *e 0.6 NJVII U [X AN V40~~ ~ le 4go so 40 s0 o N 0 % 1 0 •oý GHCALL•

4.0, 0jOt .2 0. 04

6C ON 0TAN

0LC (I 0 % CD

I r00

"0 Bils -we MNM4S

si. _ _

1&_

-- - a 0D

CI - _T24

3200

20%A MEAN z MA

a MCKC1. AO VAF LAAM 6024002 . 04

20 -36 41 Si COO&CONMTANT36

COII'~ n F ARI 3 so ''-- -'- - k

Page 29: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

22

Cf Cr +.02 - --4 20 . ~20 1- j

isi55 +10

Co 5 10 15 20 25 3 * -. 05 -

FIGURE 30. MASUMOTO'S DETERIAINTION OF ISOTHERMAý-EXPANSION-COEFFICIENT CV.POSITIONSk34) +.02

• -. 02 f1

W+.02

4117 .1767 • ':1--- L -•H '

::..--7~" .!-!.i1

.0 1°. T.:LI±-0 '0 -40 -D-"+0 +4

-- I - - -- T MP--A-uAE--

0 +.0 *, . r -

o , • /o, Heating; *, Cooling

o i -FIGURE 32. LINEAR THlERMIAL EXPANSION OF NINE ANNEALED• z .• •l•4•,,•s%,,.o¢e%,r~m~% •COBALT-IF.UN-CHROM4IUM ALTOYS).(Fe 36•22 to036.92, Cr 9.09 to 9.87+)

Temp rotu-a1 IL1 1 was taken at about 20 C and is plotted

! -• -l• o -, o o • • "• •oon the zero ordinateo)

& FIGURE 31. THERMAL-EXPANSION CEFFICIENTS FOR VARIOUS

+.02

6e- to-C ALOS3.5

•o • ,-•.,... ..... ,•... .• .....i. ;•,• ,••-r... .. . 0 ,•.,•......... 7..... . .. T ... ... .. 9% o ''-<,"- 7.• <

~~~-0 .... .2 0 +. +4 +60' ' ., • .,! " :! " ' i ' '

Page 30: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

23

.26 . -r "---- -

.24

.22~.207 j SA.18 l .

A 0

•u.os - -- '

03. .06

-. 02 ..1OBA-- LOST -60 -40 -20 0 20 40 60TEVK(RATURE .-C

o, Heating; *, Cooling; -- * Initial Observation

FIGURE 33. PORTION OF TLrNARY DIAGRAM INDICATING THE FIGURE 34. LINEAR-THERMAL-EXPANSION CURVE OF ANIINEALEDEFFECTS OF COMPCSITION (PERCENTAGE BY COBALT-IRON-CHROC'IUM ALLOY (Fe 36.98,WEIGHT) ON THE COEFFICIENTS OF LINAR Cr 8 5 %) SH~JING y-.... > 7RANSFORMATION

EXPANSION (IN MILLIONTHS PER DECREE C) OF ON COOOINGJ3 oJ

A ;NEALED COBALT-IRON-CH OMIUM ALLOYS FORTHE RANGE 20 TO 60 C(38P

12 4)deg 0)06/jl

10

240

144

o eI000

-300%A20 t 00 400o Soo 600 700 50 900 40woo 0

FIGURE 35. VARIATION OF THERMAL-EXPANSION COEFFICIENT (a') AND THERMOELASTICCOEFFICIENT (y) AS A FUNCTION OF ANNEALING TEMPEPATURE (G) ANDDRAWING RATIO (SO/Si)(41)

Page 31: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

JZL-"" - o02 - - -•- 24

if

o'ooo8 -- -

0.0012--.- £A030 40 g0 6 0o 70 80 "0

Time (days).

FIGURE 36. CORROSION OF ItiVA AND STAINLESS-INVAR IN FIGURE 38. VARIATIONS IN THE TEMPERATURE COEFFICIENT0.1 MOLAR aCL •-5 OF MODULUS OF ELASTICITY UP NICKEL-STEtLSWIT£H NICKEL GONTrENT AT 20 C (68 F)

(Guillaume)

H IH --•Xl86

035 • IASq 0.460.41 l0 10.5 0J4o.2 I* 30. o.13 ]1.14 272 67.2 -Ok3.0 42? 12 -- 1.12&GO0 840 no90.1

21.4 an 220 -0.9748.4 NO 400 -0.077.9 am6 as78

137.8 706 217U19&3 710 1170 423 2/

725 716 11 2

974 726 x

1170 7281474 72-

9 -F

t Soltilon

.. L... . .. Treated and•.-10/ Aged (1200F/.• 5- - ,h• hr AC),

- - - -- - I -0.750-in. D(a

4W I 4~~I~

000=m - -,o -•oo too.• ,1 -40 -20 _too 0lJ (1

0 X wo0 am S OD W) 9W FIUE3. HRA EPNIN F(2

Mngnotizing Fore*(H).oerstd,3 EXPANSION OF NI-SPAN C(22)

FIGURE 31.. SOE MAGNETIC PROPERTIES OF AN ALLOY OF54%Co, 36.5%Fe At

-,t' 9.5%ir 4A1URED

AT 20 C (68 F) 34)

Page 32: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

- -- 25

Solution Treated anJ"Aged (120"F/5 hr. AC--Age), 0.750-in. Dia

r II I

2K"rmmMUC M TI 0 -- - -I

-400 -300 -0 -10 00 00

TEMPERATUIRE "F)

-~ - - - -FIGURE 42. REDUCTION OF AREA OF NI-SPAN C

EF

- - -1-

.-- - n----- --w-42mo F

VIEWUum *40 0 -100 -• 0 10o 300 300 400 000--

FIGURE 40. STRENiGTH OF NI-SPAN C(22)

40 _________________S/Solution Treated and Aged -(12c0F/5 hr. AC age), MIDOTE Solution Treated and Aged

0.750-in. Dia Bar I (1200F/5 hr. AC Age), 0.750-3 ...... in. Dia Bar

"U -. i:1-4m0 -300 -20 -S0o 0 100 0 0.090 0040 0.320 "mO

TEMPMRATURE (F-) STRAIN (INCHcs PER INCH)

FIGJRE 41. ELONGATION OF NI-SPAN C(22) FIGURE 43. STRESS-STRAIN DIAGRAM FOR NI-SPAN C(22)30

-•_ - .Solution Treated and Agedr -(1200F/5 hr. AC Age),

0 750-In. Dia Bar V-4w0 "a0 nZo -Irlo 1,00

TK4A7"URC (F)

"•. .. FIGURE 44. MODULUS OF ELASTICITY OF NI-SPAN C (22)

Page 33: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

77 71V4777 v 7

a an

FIGJRE 45. IMPACT STReOETH OF NJ-SPAN C(22 )- l-

0.750-4n. D1e ., /

Solution Trleated and AgedS:(1200F/5 hr. AC Age), & T

,I. .- I I ,EA

X-4t- I /'A

10t./ - -. - - -

- 8T-I0,t IS 01.91 AT -.-V-TI. - zsi -- -- -TV-0 ---

_- -o SITANSAUP ViATifip sme ON 40 TiSTSAT -nevtcaoF 10%1.~PSSTANDARD VIEVIATION MUDe ON W0 TEMT A? -425": ý01O i af

faeStN STAUAASDvATON m..~. W~tN -

S.a 0 p- Of TEOTS AND - WDOULUS OF OtAlS4TY.

,oo: i IA I" Tt I- -. F

S- --------- FIGURE 47. MODULUS OF RIGIDITY OF NY-SPAN C(22)_.• o 300 -O -00 0 100 ,G

TEMM"NTUNE (*F)A

FIGURE 46. I'XDULUS OF RIGIDITY OF NI-SPAN C(22)'4

n; xunI,, Oem mN Ul T, CaunOW: A• ENE,,m STar: Win0 PSI; R t-I, SO CPU AT

30 "m TEWM* D -110F

'I;1-0 707,•,.

40.

Ila

90--

FIGURE 48. FATIGUE BEHAVIOR OF NI-SPAN C(22)

Page 34: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

r PLEXIMDUi 0.=1 IN OHM, CONDITION: AK MWWED

TENILE SU: 51,000 M8I; **-I, OW0 CPU ATISO -3209F AND HI00 CPU AT -423OF

I!0

FATIGUE LIFE, cycle

FIGURE 49. FATIGUE BEHAVIOR OF NI-SPANCFLXR;01 .SET CONDITION Age Jin Vi',

-MANINE. OSK8 UTS. 8728 Also SOSO CPU,_ i41 - - 1 &MU

I~e 1 1-I. If -3.1. FATIGUE LIFE NOTED

-1 ISO -

06--

4muo*DIIO '100 0 loo m2300 400 m 04F040'r-l 1TEWBERATUME,*F TEAMPATURE. OF

FIGJPE 50. FATIGUE STRENGTH OF NI-SPAN CFIGURE 51. FATIGUE STRENGTH OF NI-SPAN C()

Page 35: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

28

FAT"aU ATFE Ufa.4'as.

Ito*

SS

PIGJRE~ ~ TGUR 52T OF A TIGU E I&IPE A TU!3OR o m AJIIEALE AND22)

40 Ojcr MAERAL 40)( N ote~ ~~~~~ t3th g e75pr t z~ s g v u h f s e h r e i g a e l a

high r sreng h. ardeing rate for inte medate of cold 3o 0or or pars avng aring de re s o c ld or ae btw en he twe~tefles how .W en equ rsen~ fo a pecfic modlus coefi 2enand

125O F~ ha d e s a e in c n l c0te0p i a de i g t m ntemperatere ~ ~ ~ ~ ~ ~ ~ Mý wFldpn nteseii plcto.

115O 27

100.2

Page 36: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

pa 29 il, ,--

C 21- l0- e , a - -0 r

__.__0 4___ -

SFIGURE 54, EFFECT OF ,RDENING.T RATURE ON THERMO-

ELASTIC COEFFICIENT( Torsional Stress in Ten Thousands, psi -s

(Curve shown is for a typical lot; position ofcurve to left or right along zero coefficient FIGURE 57. RELAXATION OF NX-SPAN C AT ELEVATEDline depends on composition. Precise heat- TEMPERATURES(42)treating conditions are specified for each lotof material.)

44

W ad.5o

ofm uwt, 0 F -iI1'1

FIGURE 55. THERMAL EXPANSION OF NI-SPAN C(4E)

(Thermal expansion of NI-Span C is moderately lo - - -

high; cold work prior to hardening has a slight 0affect on the expansion rate.)

3 0000zpsut r,,as0000,S

A-51722 Vaea" FA-I

FIGURE 56. EXPANSION CHARACTERISTICS AND INFLECTION 1TEMPERATURES OF LOW-EXPANSION ALLOYSCONTAINING THREE DIFFERENT AMUNTS OF FIGURE 58, EFFECT OF TEMPERATURE ON THE SHEARNICKL'45) MMOUJLS OF SEVERAL ENGINEERING ALLOYS(46)

- ~ - - - -- -~

Page 37: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

+10 30

8 ktonsl 8C~u~icilc -

10 3.....@ - - _____-

18.8o F

toptoue FIN

FIGREA9 PERCENT CHA( DN SHaA MOW VISU1EPR3hEO Irc E ALOY SHW IM35N

0it *0QO P200 A00 400 W00 o3w ~,~1O*£0-

Iolmaue

TEMPERATUFFA IUE LIHE ALOY SM N a

FIGURE 60,.TFATIGUETRENGAHIOF OF NI-SPANRIALS A

Page 38: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

A2 .....=3

4w .

-20

00 10 20 30 40 50 60 0 200 400 600 SO0 1000 IM03oid WorK % Temperature, F

FIGURE 62. COLD WORK AND 5-HOUR HEAT TREATMENT RE- FIGURE 63. EFFECT OF COLD WIORK AND 5-HOUR HEATQJIRED TO PRODUCE VARIOUS THERMCELASTIC TREATMENT AT TEMPERATURE SHOWN ONCOEFFICIENT LEVELS(1 2 ) THERMCELASTIC COEFFICIENT(12 '

70K.....................

.!j .. . ... ...

.... .. ......

.. !I .......

30. .

THERM~LASTS COEF

Page 39: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

32 I

CI . ....

0S

o~~ 6 dii;~ ~

3--r: 0

-..... 3 ... # g.

Frequency, cycles/second02

Temnperature, F

FIGURE 65. EFFECT OF OPERATING FREqJENCY ON THERMO- FIGURE 66. THERMAL-EXPANSION CHARACTERISTICS OF NI-ELASTIC COEFFICIENT OF NI-SPAN C(12) SPAN C(12)

(Free-free specimens heat treated at 1200 F (Hot-rolled material, heat treated at 1850 Ffor 5 hours, pendulum specimens at 1285 F for for 1 hour, water quenched an'j aged at 900 F3 hours. All specimens cold worked 50 per- for 5 hours, air cooled.)cent before heat treatment.)

0 :.: .........

14 +;+;:+006x 80_q

27

100 300 500 */00 9W01100 1M0Temp, F

FIGURE 67. EFFECT OF COLT) WORK AND HEATING FOR 5HOURS AT TEMPERATURE SHOWN ON THE ROOM-TEMPERADJBE tODULUS OF ELASTICITY IOR

Page 40: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

33

4'i

AI

leis.............2.. .2

2270

0 0t10 16 0 4.. praue F.ageicFel....st. ertds7

6G-4 -. .......... .. . ~ 4 .f-0 -. ..........

0F -

0~~~~. 40 ... 1200........ 60 00 24Maneo Fil rnteniy Oeses anti ildItnstOeMd

Teprtre anetic Field Intensity, iselsoknonda

(Magnetiing Foldwre 0prce () nd Maneicr Flx ea (Material cold ror~ed 40) percent arnd hreatt-DsiyaMantcIdcin())treatednt 3 t 1000 F for 5 hours.)

6= .. .. ...

Page 41: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

3.0___ __ 34 06

30/o MOLYBDENUM 5.3 MO AN WEAL S Cm* 2.5 -- 41.714i 4_

0 0- -- 40

2.0- L- - I ý4'101

Dw 111mOM food,

ww5- 0.20001DA1w 0.50AN2. 2.7

0 2.4

0

OF DIFEJRENT PEGRCENAES OENTICRAEL )

o~C 1.OM -1--

OF DIFERET PERENTAES F NCENT 50

3~0.6

2.0~C 42. %7ROM

- ~9 3OLB.6 U - 20 3~ 0675 10

* ~ ~ ~~ ,-0.5-- - -

I -i~e -EN -03 -1 -- - -FGR 5 ECNAETEMLCAGSI ON

a I I -00I TEMPERATURE( INDERES

-4-0-0t 00. 0 04 5 60 7 0

TE PE A T R INU R 7E5EE CENTIAEGR AM LDEA G E 1 N '

73.ODLU PLO OFECE BEYE4 ,)E AGAINSTO INPET1.R FORRE AF NUMBE OFR ANDD)RE INNON-NNIKE ALLMS (XTAI11U3 PECEN

4 40 -3 -20 -- -t 0 to 20 30 40 50 60 V 8

~~~~TR ORANMBRO C0OLD--------------------WORED ---N

-. LYBENMtOLYDEU

' '40

%wodR*to hw~o opstoCJ

m~w 0 V -306 P~i So- 3% nckel WoS

q- Ma MOLYBDENUM 0

FIUR 76. PECN1HNEI YUGSM0JU

FO DIFEEN CCIOA AXM9IINAU PECN -b)L sloerINS 2

Page 42: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

35

010,01 920 -7.5 1t -aoe

70 9 01oF 4E 8

61 % Pt xp

ýoa0- -0 .. ohe , o

0 0

~: '55% Ft 0(~ 4ictid I- N

ouw

700 0 00 400 600 800 9-04I ~ ~~Tem,n C k A'2 -IGURE 78. RELATION BETWEEN THERMOELASTIC ANDTHERMAAL-EXPANSION WXEFFIC'.IENffS INSOME MASUM('TO ALLOYS

IFIGURE 77. THERMAL EXPANSION OF PLATINUM-IRON

J ALWOYS( 70)

Sc al e Joosmg £g aAeia~usur. 40 .700 a#5 #X4 AV050J~05~

Annealing ter'~emI-e.%

FIGURE 79. CHANGE IN MICROHARDNESS ýNj ELATION FIGURE CO. RELATION OF SPECIFIC FLECTRICAL RE-

TO Y3PERAIURE OF ANNEAL' 7 2 SISTANCE OF A FERRO-N4ICKEL ALLOY

WITH COLUMBIUMA TO AMEALING TEMP-ERATURh( 72)

Page 43: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

700

60 60 /0,

Jo so

to /0

240

7 77

300

600? 60 10I' 220 / 0A

/06 10 (a1.

20 /0D O 0 74VII

12 70 7 0

-300

/0 30 -20

W e 30z 0 e 1 / 0 '0 06 o 78i 1%) 0 Aft (%0

NiC-rALY OfAN,31 ECN MODLU OF F -20C LLy(2

OFp ctro iu(2

Page 44: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

37

-~~4

00- -i M 1*

2 IR -0 so

iN M•f

FIGURE 85. TEMPERATURE COEFFICIENT OF RIGIDITY FIGURE 87. TEMPERATURE COEFF=ICIENT OF RIGIDITYIAODULUS OF Fei-N1Co-Cr MLIMS.O• NODULLGS OF F"-I-C6-Cr ALLOYS CON!-TAINING 5 PERCF~r OF= CHWMUM(921 TAINING. 15 PE.RCENTr OF OHKWMIl(92)

Via -vmJ

MODULUS OF fe-Ni-Co-C- ALLOYS C, ThE ALLOYE OF COBAI', IION, ANDTAINING 10 PER FC I O F C RHMIGIIYIR8 VARATR ItE55)

S.~ ~ ~..........N

Page 45: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

-- o,-""- 0" a' 1-- ._- "1 _

fo 30 -mO~ 29) 00-4-0 .. I 1) -

•6a 56 0 65 70 75 60 85 90

I _ _ I I I l_50 6 0 65 70 7s eO 65 go

%C, .

6/ 6 ;210O

_20 22

50 55 6W 65 70 04 so 6

-10 240

10 -0 227'o Co

FIGURE 89. RELATIONS BETWEEN THE THEIMAAL-EYPASION -O

CCEFFICIENT, THE RIGIDIT-l MODULUS AND 0 2TTS TEMPERATURE COEFFICIENT, AND THECONCENTRATION IN THE SEC-ION OPF 9 40 FV U()x al

PERCENT OF VANADL1D.( 55) FIUR50. \nAI~ S EOUU ORIT-50 16

50 55. 60 65 70

Co, %

F1GURE 90. RELA'fT.Or" BETWEEN YOUNG'S MODULUS OR ITS

TEMPERAIURE COEFFICIENT AND THE CON-CENTRATION OF Co-Fe-Cr ALLOYS54)

T _ I

40 | a, e , 7 .60, a - 7g 4 -7. p * 0arell. 4 1 ItL. ala-a, .z s. l e.) € a * it 8, 3/- c. v-'zMMt~ Rw I~, a.'~ 4 - WN, p Y- YXt* iiirr

Sa10p. a- a p

'e-i. 1,4 - Nx, p.1

gi~-------------

0."s

T1MKIRATUR• "F

FIGURE 91. NONDIMENSIONAL SPRING CONSIANT VERSUS TEMPERATURE FOR BIMETAL COIL SPRING SYSTEMS TESTED(78)

Page 46: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

I,- 39

fol- two210000-

lire10.35

Iwo 2DWO

100 ~~200 15-0 5 i

_________________ 0.2m

0 H n C~sted 2 Aire1-476f HI

FIGURE 92. THE TORSIONAL JAOJJLUS AT 0 C RELATIVE FIGURE 94.. THE SAME AS TN FIGURE 93 FOR ALLOY 2,TO THE TORSIONAL MODUJLUS AT THE TEUP- CONfAINIJI,3r .5% Co, 8.7% Cr, andERATURES AND MIC41ETIC F IELDlS INDICATED 37.8% Fe 83FOR Fe65% - N135%(8 2 )

E;,0 MaoMe'~*~~ 22 a 252__

______

22

N.570H1- 50

M 106,

Lz0o oo to

~U~~U~tSV C Tv n,

FIGRE 3. EMERAUREDEPNDNCEOF OUG'SFIGRE 5.THEDEPNDNCYOF OUN'SMO~L'J OlowLU E, THE0 SH AR M L*LU , N 4C E N M 3 EZ TO H I E S E~

POSO' RTOf\ORALY1\()-~! TMPEATR 87)

TAINNG 3~Ii,1~r and5~ F, ITEbv D1ANEIE %TA 1HO NDIFIELD OF220 3

of "g 041~ H a!

Page 47: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

40

.4 r4 4 ý4 ~4 4 -4 .4 -4 ý4 4 .44 ~4. 4-.-4 -4 44 .4 -4 -4 -ý4~-

-4

-4 N

to'

0

oa m- 0 0 0 14

0 0 0 0 0 0 0

wu ww03

K40 .3 0 '0 '.0 %0

0 t- 11 110

*C; 0 , C(', 0

x- x ;U 0 0 0 4

Cf4 0 10122220%0o

*00 000 0 00 0 00

if) 0' 0ý .

C.4 ("1 ('4 C1) (4 ('Al

0' C') ('4 (' (4

OD Uifla) 00 cl W

10 10 U) OD 00.3 -4-- %0 4 ) .0 o A 0 00 ('4 0' N- C' 0.

z C)C)m m c (3)0 m0 m0 (3) (') C.) . . . . . 1 CV) (3) ('4 e')

I3) LO C4 '4

04 O> C14 0' 4 T 3

> C 00 CY ('4 r ... I c z =E'4 m> >)0 4- . xf 3 4 0 0 0 0 -

... C 4.1 U) >-4 ' LU3 >- 44 C 0 4. j. k4 144

4J '.CI ý4 c k 40 c ý4) c 34 Gir 41 4 )-4 0 00M 000 cO Co (1C I C_ t -4

c4 M. CL 44U > C 44 - 0. 0. 0. ý 0. CL~ 4) . ) 0L 4)D 4 I W.4)(0.-1 0o C (D gn4 LU C 4 44 cl U) L?) ( U) U-' . 0. xg- 0. 0 I C->0 >2 .4 0 L (.0 I. .0 1 1 1 1 4< kt4kW U 64±404 Y0

41C + D 0-4 "3 '. -4 4 -.4 -4.4 0 40 0 0 U).4-- LU (1 U )C) ui 0 > > ~ Z C.) C.) 0 0

Page 48: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

44

TABLE 4. aECT OF HEAT TREATMENT ON 7HETABUZ 2. SW~ARY OF INVAR-TYPE ALLOYS COLTFICIENT OF EXPAN'SION OF- INVAR( 20)

Trade Name Ref-erences Mean Coefficient,

Invar 2#,3, 4,5, 6,79,8, 9, 11, 13,Tramn 4n ./14, 15, 16, 17, 18, 19, 20, 21, After forging 17 to 100 C 1.6622, 23, 24, 25, 26, 27, 28, 29, 17 to 250 C 3.1130, 31, 32, 33, 36, 39, 42, 71, Quenched from 830 C 18 to 100 C 0.6472, 73, 74, 75, 76, 79, 81, 84, 18 to 250 C 2.53909, 91, 95, 96, 97, 98, 99, 100,101, 102, 103, 104, 105, 106, Quenched irom 830 C, tempered 15 to 100 C 1.02107, 110, 115, 122, 125, 127, 15 to 250C 2.43128, 129, 137, 139, 141, 142, Cooled from 830 C to room 15 to 100 C 2.01145, 146, 152, 156, 157, 160,teprtein1h 5to20C .8164, 165, 166, 167, 169, 170, tmeauei 9h 5t WC 28171, 176, 180, 181, 184, 190,191, 196, 199, 200, 201, 202,

20nr11 3, 4 0 5 0 2 4 TABLE 5. EFFECT OF QUENCHING A.ID COLD DRAWING ONElinar 1, 1, 1, 20 25 30,42,64,THE EXPANSIVITY OF INVAR PER DEGREE

183, 92, 94, 97, 98, 103, 116, CNIRD(0117, 122, 141, 160, 173, 190, CNIRD(0195

Quenched and ColdStainless Invar 34, 38, 40, 41, 61, 64, 92, 120, Direct From Annealed and Drawn 0.125 to

159, 197 Hot Mill Quenched 0.250 In.Super Invar 15, 20, 22, 35, 3o, 37, 92, 97, 14 0-6 05x1- .4x1-

1, 17 ,1.4 x 10-6 0.8 x 10-6 0.3 x 106-Co-Elinvar 54, 61, 62, 63, 64, 65, 83, 92,

159, 183

Elinvar Extra 190 TABLE 6. SORE PHYSICAL AND MECHANICAL PROPERTIESVelinvar 55, 66, 159 OF INVAR(20)

*Vibralloy 50, 51, 52, 122Solidus Temperature 2600 F (1425 C)

Ni-Spans 11, 12, 22, 28, 42, 4Q, 44, 45, Density 8.0 9-/cu cm (50047, 48, 49, 122, 141, 158, 189, l b.cu f t)

19, 96 23, ~Tensile Strength 65,000 to 85,000 psi

Carpenter Alloys 13, 21 Yield Point 40,000 to 60,000 psiElastic Limit 20,000 to 30,000 psiISO-Elastic 11, 42, 44, 46, 47, 53, 78, 113, LCongation 30 to 45 percent

122, 10 4Reduction in Area 55 to 70 percent

Sceroscope Hardness 19Brinell Hardness 160Modulus of Elasticity in 21,400,000 psi

TensionThermoelastic Coefficient 500 x 10- 6ICSpecific heat (25 to 100 C) 0.123 cal/g/CThermal Conductivity (20 0.0262 cgs units

to 100 C)Thermoelectric Potential 9.2 microvolts/C

(Against Copper) (-96 C)

TABLE 3. THERMAL EXPANSION OF IRON-NICKEL ALLOYS( 20)

_______________________________________ TABLE 7. ANNEALING( a) INSTRUCTION FOR CARPENTER

Mean Coefficient,(a Mean Coefficient, INVAR 1-36"(21)Ni pin./in./C Ni ý±in./in./C

31.4 3.39500.00885 t 43.6 7.992-0.00273 t Temperatere Ro Hardness

34.6 1.373+0.00237 t 44.4 8.508-0.00251 t 1200 F (650 C), air treat B-87/88

35.6 0.877+0.001272t 48.7 9.901-0.00067 t 1500 F (815 C), air treat B-77/7837.3 3.457-0.00647 50.7 9.984+0.00243 t 1800 F (980 C), air treat B-70/7139.4 5.357-0.00448 t 53.2 10.0451-0.00031 t 1900 F (1040 C), air treat B-66/681

S(a) Annealing Heat to 1450 F (790 C) and hold at,heat 1/2 hour per inch of thickness, air cool.

Heating to temperatures above 1000 F (540 C)relieves the presence of cold-work stresses.The higher the temperature, the lower theannealed hardness as shown here.

Specimen held 5 minutes at heat.

Page 49: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

42110ý CF A!ýk•-AID S W M~.O ~ L

-~ Iswar Ufvar Ma snuap~shoflo Ixp1woden?z te ' 36 36 42 49

""-"n 0.12 0.12 0.08 0.10 0.10.bee *35 o90 0.40 0.50 0.50

Silicvos 0.30 0.35 0.25 0.25 0.40

NiCkel 36.00 36.00 39.00 42.00 49.00other lammets ?aebel Feobal Pisbal F* bal Fe bal

Physical Vcanstanta

Specific Gravity 8.05 8.05 8.08 8.12 o 8.25Density, lb/cu in. 0.291 0.291 0.292 0.293 0.298The• m Conductivity (RangZe 20/100 C)

cal/m,3/seq/C 0.0250 0.0250 0.0253 0.0257 0.030Btu/Vr/sq ft//itn. 72.6 72.6 73.5 74.5 90.0

Electrical ResistivitysOah-cm 82 82 - 72 48ohs/cCi ail ft 495 495 - 430 290

Curie Tei~erature, C 280 280 34C 380 500melting Point, C 1425 1425 1425 1425 1425Specific Heat 0.123 0.123 0.121 0.12: 0.12D

Coefice -o -Meial Expansion

in~l./ x 10-6)

(As Annealed)?a~eratire Rang.,

25 - 100 C 1.18 1.60 2.20 4.63 8.6725 - 250 1.72 2.91 2.66 4.76 9.3825 - 300 4.92 5.99 3.39 4.88 9.3025-350 6.60 7.56 4.68 5.02 9.2525 - 400 7.82 8.88 6.00 5.65 9.1425 - -4 8.82 9.80 7.22 6.90 9.6525 - 500 9.72 10.66 8.17 7.78 9.7225 - 600 11.35 12.00 9.60 9.90 10.8025-700 12.7m, 12.90 11.00 11.00 11.7125 - 800 13.45 13.60 11.95 11.99 12.5725-900 13.85 14.60 12.78 12.78 13.2925- )WOO - 13.42 - -

Values in both coluMs for cold-worked condition

77 - 212 F 0.655 0.89 1.22 2.57 4.8077 - 392 0.956 1.62 1.48 2.54 5.2077 - 572 2.73 3.3Z 1.88 2.71 5.1777 - 61.2 3.67 4.20 2.,'0 2.78 5.1477 - 752 4.34 4.93 3.34 3.14 5.0777 - 842 4.90 5.45 4.01 3.83 5.3677 - 932 5.40 5.92 4.54 4.32 5.4077 - 1112 6.31 6.67 5.33 5.50 6.0077 - 1292 7.06 7.17 6.11 6.12 6.5177 - 1472 7.48 7.56 6.64 6.66 7.0677 - 1652 7.7C 8.12 7.10 7.10 7.3877 - 1832 - - 7.45 - -

Mechanical Promerties (As Annealed)

Tensile Strength, psi 65,000 65,000 75,000 82,000 85,000Yield Strength, psi 40,000 40,000 38,000 40,000 40,000Elongation in 2 in., % 35 35 30 30 35Hardness, Rockwell 1-70 B-70 B-76 5-76 B-70Elastic Modulus, psi x 106 20.5 20.5 21.0 21.0 24.0

StripCold Rolled X - X X XAnnealed x - x x xAnnealed for Deep Drawing X -x X X

WireCold Drawn X X x x xAnnealed x X x x X

Bars

Hot Rolled X X X XCold Drawn X X X X XCenteorless Ground X X X X XAnnealed X X X X yFlats, square X X X X X

Blesx x x x xBilletsX X X

S. . .. .. . . . . .•• "•• ' ""• . '• :' ''- .-.. -... . .-- "-"" '• ' "" '• " '*• " ••:'" " •-'t•• ... "!• , ,•"•' , ," . ' '_ . .. . .

Page 50: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

43

TABLE 9. EXPANSION GMAACTERISTICS(a) OF INVM(27) TABLE . PS2A) AND MECHANICAL PROPERTIES OF

Testing Coefficient of Testing Coefficient of Annealed condition unless notedotherwise.

Temperature Expansion, temperature Expansion,Range, F in./in./F Range, F in./in./F Avarag Coefficient

of EXpwnsion,

-2Do to 0 1.10 x 10-6 800 to 1000 9.50 x 10-6

in./tn./o Tem. F

0 to 200 0.70 x 10-6 1000 tox200 9.90x10 6 lo-6 -200 to o2,0 to 400 1.50 x 10- 6 12D0 to 1400 10.20 x 10- 6 .7 x 1o-6 o to 20o400 to 600 6.40 x 10- 6 1400 to 1600 10.50 x 10: 6 1.5 x 10-6 200 to 400600 to 800 8.60 x 10-6 6.4 x 10-6 400 to 600

S8.6 x 10-6

600pto 8009.5 x 10-6 800 to 1000

(a) The above data show the low expansion ofInvar up to a temperature of approximately CWur ofEarature 2X1 F

400 F. Above this, it expand. at an Modulus of Elasticity 21 x 10-6 Pi

UpTqAmture Coefficient of +270 x 10-increasingly rapid rate, and ah-ve 525 F, it the Modu.us of Elasticity

expands at a rate more rapid than ordinary per F

steel. Modulus of Rigidity 81 x i0 6 psi

Temperature Coefficient oll +300 x 10-6the Modulus of Rigidityper F

Poissons Ratio 0.290Elcc trical Resistancet

Ohm$/Mi ft 490.ohm-cm 81

Temperature Coefficient of 0.67 x 10-3

Electrical Resistanceper F

Specific Hist Between 77-212 F:Btu/•b/, or cal/q/C .123

Thermal Conductivity Between

68-212 F:TABLE 10. TYPICAL PROPERTIES OF I'VAR(27) Btx/hr/sq ft/5n. thickness/F 93

Col/sec/sq ca/ca thickne s/C 0.0323

Melting Points

Condition Temp, F 2600

Cold Cold Cold T , C 1425Cold Dnsity%

Worked Worked Worked u,/cu ft 508Annealed 15% 25% 30% G/c&3 8.13

"insile Strength, 71,400 93,000 100,000 106,000 Tenslle Properties

psi Cold Cold Cold

Worked Worked Worked:.eld !irength 40,000 65,000 89,500 95,000 Annea ._ed 1% 2% -2&

(0.2% Offset), Tensile Strength, 71.4 93.0 100.0 106.0

psi 103 psiElongation in 41 14 9 8 Yield Strength 52.5 65.0 89.5 95.0

2 in., % (0.2% Offset),Reduction of Area, 72 64 62 59 103 psi

Elongation in 41 14 9 82 in., %

Hardness, Bhn 131 187 207 217 Reduc•to- of 72 64 62 59

Modulus of 21,000,000 - - - Area, %Elasticity, Dsi Hardness, Brinell 131 187 207 217

Foisson's Ratio 0.290 .. .. ..

Density, lb/cu ft 507 .. Magnetic ProoertiesField Strength,* Normal Induction, Permea-

H. oersteds a. Gauss

0.! 200 10000.4 9500 22000.8 3100 37001.2 4400 35001.3 4450 3400

2 300 1754 1500 4006 4000 700a 5600 710

10 6500 650

.V.jl•i~of PgMebllitv With Te~merature -

Field Sz.rengh of 5 OerstedsTmeaueF Permeabilit•

0 180050 171-5

100 1630150 1545200 1450240 1360

Initial Permeability 1000 180(approx)

4aximum Permeability 3500 600(approx)

•Also known as Mag9netizing Force (H).

Page 51: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

44

TAMW 12. S(UI PHYSICAL AND IMCAL PROPEYIffOF PPFE-JTT•J INVA06)

Recoiended Uses For 1• '. oefficient of linear*',Ansion, good elastic limit,and stability.

DImnsiognal StabilityDimensional

,"len,,tum. Tiiw, Cmanges,NOD iots n./in.

FI 6 10160 6 0

-100 to +200 (a)

Heat treatment fort Maximu stability

Procedure: Initial Condition: Cold Drawn(1) 1200 F, 1 hr, furnace (2) 152.5 7, 1/2 hr,

cool; 200 F, 20 hr. water quench;1200 F, 1 hr, aircool; 200 F, 48hr, air cool.

Physical Procerties

"Density 8. 13 cm3

Thermal Conductivity 0.025 cal/g/cm2/cm/g/secResistivit/ pOjm-cmSpecific Heat cal/gPermeability (max) 3800Thermal-Expansion 2.0 in./in./C

Coefficient

' .... Mechanical Properties(b)

S Hardness 90 Rockwell B

UTS 90 x 103 psIYP (0.2% Offsot) 70 x 103 psiElongation (2 in.) 20%Modulus of Elasticity 22 x 106 psiElrstic Limit 47 x 103 psiElastic Limit/density 5.85 x 103 psi/g/cm3

Modulus/density 2.71 x 106 psi/g/cm3

Ta) After 10 cyc.les between -100 and +900 F(b) Mechanical properties for Heat Treatment 1

(stress relief).

TABLE 13. EFFECI OF STRESS ON EXPANSION COE•FICIENI(29)

•- 10-i i/yslc

dX/.a d&/do,E at 20 C, dE/dT, -1/E 2(dE/dT), experi-

Steel 106 psi 104 psi/C calculated mental

lo20(a) 30.5 -1.1 L.2 0.630.4 -0.7 0.8 1.0

10 40 (b) ^;.9 -1.4 1.5 1.529.6 -1.6 1.8 2.2

1080(b) 29.4 -1.2 1.4 1.730.2 -1.3 1.4 2.1

Regular Invar(c) 19.8 1.7 -4.3 -2.920.3 2.3 -5.6 -5.3

Free-Cut Invar(c) 20.3 1.5 -3.7 -4.320.6 1.6 -4.6 -5.8

"(a) 1675F (30 min), water quench; 600 F (1 hr), air cool.(b) 1550 F (30 m•,n), oil quench; 700 F (1 hr), air cool.(c) 1200 F (1 hr), furnace cool.

Page 52: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

i i: ............ .... .

45

TABLE 14. VARIATION IN SOME PHYSICAL PROPERTIES WITH NICKEL CONTENT OF IRON-NICKEL ALLOYS CONTAININGFROM 20 TO 60 PERCENT NICKEL

Tensile Propepties

Tensile Elastic Elonga- ReductionNickel, Manganese, Carbon, Strength, Limit, tion, of Area,S% % Treatment 103 psi 103 psi %

26.0 1.50 0.20 As rolled 78.5 12.0 50.0 70.7Quenched 76.0 15.0 49.5 70.5

30.0 1.50 0.15 As rolled 90.0 27.0 39.5 69.7Annealed 84.5 28.0 46.5 68.5Quenched 81.5 23.0 44.2 70.5

30.0 2.00 0.40 As rolled 105.0 45.0 47.0 66.6Annealed 101.5 35.0 46.5 66.4Quenched 91.0 25.0 45.7 69.3

32.3 2.30 0.12 As rolled 82.0 30.0 37.5 65.6Annealed 77.5 22.0 43.0 66.2Quenched 73.0 18.6 39.5 64.7

35.1 1.50 0.22 As rolled 89.0 30.0 40.6 67.5Anneald 85.0 30.0 42.0 67.3Quenched 82.0 27.5 41.0 65.0

36.0 0.50 0.08 As rolled 76.5 36.5 36.3 65.6Annealed 72.5 24.0 39.2 67.5Quenched 70.5 20.0 38.0 58.3

43.0 1.50 0.35 Cold drawn 100.0 52.3 16.2 46.045.0 1.50 0.37 As rolled IC7.0 40.0 40.0 51.1

Annealed 94.5 -5.0 43.7 51.1Quenched 73.0 19.5 38.0 46.3

50.7 1.25 0.17 As rolled 99.0 48.5 38.5 67.7Steels from The Midvale Company; annealed from above 790 C (1450 F); quenched from above

760 C (1400 F).

Elastic Modulus(Guillaume) Density

Modulus ofNickel, Elasticity, Nickel, Density, q/cc

106 opsi % He.g Guillaume24.1 27.5 20.0 8.02 --26.2 26.4 24.1 -- 8.11127.9 25.8 26.2 -- 8.09630.4 22.8 30.0 8.C6 -31.4 22.0 30.4 -- 8.04934.6 21.9 31.4 -- 8.00835.2 21.2 34.6 -- 8.06637.2 20.8 37.2 -- 8.00539.4 21.5 39.4 -- 8.07644.3 23.2 44.3 -- 8.12070.0 28.2 50.0 8.05 --

63.0 8.29

Electrical and Thermal Properties

Temperature Thermoelectric ThermalCoefficient Power (Against Conductivity Specific Heat

Nickel, of Resistance, Copper), 0 - 96 C, 20 - 100 C, 25 - 100 C,S0 - 100 C microvolts/C cOs units cal/o

21.0 0.0018 23.5 -- --

22.1 0,0018 21.0 0.0490 0.116325.2 -- -- 0.0320 O. 18!26.4 0.0016 16.7 -- --

28.4 -- -- 0.0278 0.119135.1 0.0011 9.8 0.0262 0.122840.0 0.0022 22.4 -- --45.0 -- 29.0 -- --47.1 0.0036 31.9 0.0367 0.119675.1 -- -- 0.0691 0.1181

Page 53: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

"0. 46

TABLE 15. PROPERTIES C LOW-EXPANSION NICKEL ALLOy(31)(a)

Ni 36 Ni 42 Ni 47-50_.• i o % Fe-Ba, Fe-Dpl , e-Bal

Physical Prooezties

Density, lb/cu in. 0.292 0.292 0.296Melting Point, F 2600 2606 2600Thermal Conductivity, 6.05 6.21 6.91

Btu/hr/sq ft/ft4,68-212 F

Coefficient of Ex-pansion per F:

-200 to 0 F 1.10 x 10-6 3.42 x 10- 6 5.37 x0 to 200 F 0.70 x 10-6 3.18 x 10-6 5.55 x 10-6

200 to 400 F 1.50 x 10- 6 2.97 x 10-6 5.55 x 10-6400 to 600 F 6.35 x 10-6 3.15 x 10-6 5.55 x 10-6600 to 800 F 8.61 x 10-6 5.50 x 10-6 5.60 x 10-6830 to 1000 F 9 ;8 x 10- 6 8.55 x 10- 6 7.26 x 10-6

Specific Heat, 0.123 0.121 0.120Btu/lb/F, 77-212 F

Electrical Resistivity, 81 70 48 /microhm-cm at 68 F

Mechanical PropertiesModulus of Elasticity 21 x 106 22 x 106 24 x 106 TABLE 16. ME.HANICA. PROPERTIES OF MINVAR(C1)

in Tension, psiTensile Strength,

103 psi: Tensile Strength, 103 psi 20 to 30Annealed 70 76 82 Compressive Strength, 103 psi 80 to 100Cold worked 90 120 140 Torsional Strength, 103 psi 30 to 35

Yield Point, 103 psiTAnnealed 24 28 31 Torsional Modulus, 106 psi -.5Cold worked 70 .... Modulus of Elasticity i0.5

Elongation in 2 In., %: (Stiffness) at 25 PercentAnnealed 36 38 41 Tensile Strength, 106 psiCold worked 20 -- -

Reduction of Area, %: Transverse a)Annealed 68 70 72 Load, lb 1,800 to 2,000Cold worked 60 .... DefLection, in. 0.6 to 0.9

Hardness:Anbnealed (Bhn) 143 156 170 Resistnce to Galling High (similar toCold worked (Rockwell) -- B100 B103 and Wear gray iron)

Modulus of Rigidity, 8.1 x 106 8.5 x 106 9.3 x 106 Vibration Damping Capacity High (similar topsi gray iron)

Poisson's Ratio 0.290 0.290 0.290 Endurance Limit, 103 ps= 9.9Harziness, Brinell 100 to 125

Thermal TreatmentAnnealing Temperature, Soften progressively in range Toughness by Impact, ft-lb(b) /16(c)

F 1000 to 2300 F. Pattern Shrinkage, in./ft 3/16Machinability Excellent

Fabricating PropertiesHot-Working Temp to 2300 F to 2300 F to 2300 F (a) Standard ASTM Type B bar.

Range, F (W) Arbitration bar unnotched, struck 3 in. aboveMachinability Index Machine best at a hardness of about supports.

Rockwell C 2U. (c) 25 to 35 ft-lb for gray iron.Weldability Can be welded by acetylene torch, metal

arc, carbon arc, resistance methods.

Corro.,ion Resistance Resistant to atmospheric corrosion

and to fresh and salt water.

Available Forms Bars, plate, sheet, strip, wire,tubing, forgings, castings.t

Uses Length standards. instruments, hypo-dermic syringes, textile machiningparts, thermostatic bimetal (to 400 F400 F).

Higher temperature thermostatir bimetal,instruments, glass sealing (to 650 F).

Higher temperature low-expansion ap-plications (to 1000 F).

(a) Alloys which have become most widely used are -'% nickel(Invar) for low expansivity up to about 400 F, 42 nickelfor temperatures up to 550 F, and 47 to 50% nickel forStemperatures up to 1030 F.

,, V I• i I - • . .- - - •• . . .. ' •,p : • i i I = - i = • - -- . .. .. " -- J•••',l+•,••••• +

Page 54: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

47 TABLE 18. SOME PROPERTIES OF NILVAR(32)

Nickel 35.00-36.00Carbon 0. 10 maxManganese 0.30 maxSilicon 0.50 maxIron Balance

Physical a[d Electrical Properties (Annealed)

Specific Gravity 8.08Density, lb/ýu in. 0.2921hermal Emf Copper (0-100 C) 9.72

microvolts/CSpecific Resistance, ohms/cir. 500

Temperature Coefficient of 1.354 x 10-3Electrical Resistance,

ohms/oh=/CSpecific Heat, Btu/lb/A (77-212 F) 0,123Thermal Conductivity, 72.6Btu/ftý/in./F/hr (68-212 F),Melting Point, C 1425

Curi3 Temperature, C 277Inflection Temperature, C 190Typical Thermal Coefficient Expansion, in./in./F

(Reference 70 F)

-200 to 0 F 0.00000110 to 200 F 0.0000007

200 to 400 F 0.0000015400 to 600 F 0.0000064

TABLE 17. PHYSICAL PROP:P-!Eq OF MINVAR(31) 603 to 800 F 0.0000086800 to 1000 F 0.0000095

Poisson's Ratio 0.290Specific Gravit, 7.6 Modulus of Elasticity, V06 psi 21Density, ib/cu in. 0.275 Modulus of Rigidity, 10 psi 8

Melting Point 2,250 F Total Exoansion Versus Temperature

Expansion,Mean Coefficient of Expanjon -_i Temperature, F Ensin,Minvar Having 35 Percent " zkel -100 0.0000

Temperature Mi. ,- ths 0 O.=o1Range, F r 100 0.0002

200 6.0002550-125 2.18 300 0.0003550-200 2.24 400 ....50- 300 2.40 0oo .oo5500 0.0018

50-400 2.75 700 0.0026800 0.0035

Thermal Conductivic', 0.094 900 0.0045cal //cm'?/sec/C 1000 0.0055

Electrical Resistivity, 11'-i0 Typical Tensile Properties/cm

Magnetic Response Al,out 70 percent Annealed Cold Drawn

of gray Iron Tensile Strength, 103 psi 70 90Yield Point, 103 psi 24 70Elongation, % in 2 in. 36 20Reduction of Area, % 68 60Brinell Hardness 143 185

rIAtionf Permeability with Temoerature(for a field staength of 5 oersteds)

Temperature, Permeability,F

0 180050 1715i00 1630150 1545200 1450240 1360

lbeamomaonetic Properties (Hard Crawn)

Field Strength,* Normal Induction, Permeability,-H . o e r s t e d s g a u s s qU s

2 300 17004 1600 29006 4000 44008 5600 4500

10 6500 4300ITEjromaonetic Properties (Aanealed)

0.1 200 1000

0.4 9500 2200

0.8 3100 37001.2 4400 3500S1.3 4450 3400

SAlso known as Magnetizin0 Force (H).

Page 55: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

TBE1. ELTV A L 4

S~~48 ..STABLE 19. RELATIVE MA;HINABILYTY OF CARPENTER FREE-CUT INVAR 36(21)

Reaular Invar (Non-Free-MhhiL ng) Caxrenter Free-Cut Irv•r 36Per toon _ Sped Remarks Speed Remarks

29 Machint.ng satisfactory

sur ft/min

49 Tool failed after cutting about

R hsur ft/min 1" along barRoughing

(Bar 1" round) 82 tool failed after onl; a few 82 Mcchaning satisfactory; no effect onCut: 3/32" sur ft/mtn revolutions. sur ft/min toolFeed: 0.005Y" 137 Top speed for the lathe used; no Indi-

sur ft/lmn cation of failure; at this speed feedwas increased from 0.0055" to 0.0125"'vith results still satisfactory

Finishing 23 Indications were that this speed U.12 This speed gavo a very good finish;Cut: 0.050" sur ft/man pro,.ided the best possible sur ft/mmn with feed increased to 0.^'27" theFeed: 0.0055" tinisn finish was still good

NOTE: This test made to determine highest speed possible for satisfactory finish

Drilling 665 rpm, Drill failed completely when 665 rpm Drill went through entire 2-3/16" test

7/'lo" rough high-speed 15 fpm hole was only 1-1/16" deep block with ease; after test, drilldrills, test block 2- still in good condition3/16" thick. Feed:0.004" per revolution

Threading 60 rpm Two rough cuts resulted ;-; 188 rpm Same number of rough and finish cutsSingle-point tool. "torn" thread-; two finish made; threads greatly superior toTen threads per in. cuts failed to provide qatis- those on regular Invir sampleTwo rough:ng cuts, factory threads0.04". Two finishcuts, 0.004"

NOTE: This test mace to determine highest speed ^or best possible threads.

TABLE 20. SCtE PROPERTIES OF INVAR(21)

Physical ConstantsThermal Conductivity:

In British thermal units - 72.6(B:u hr/sq ft/in. thickness/F from +70 F to 212 F)

In 03S Units 0.025(Cal/sec/sq cm/cm thickness/C from 21 C to 100 C)

Specific Heat (77 F to 212 F) = 0.123

Thermoelastic Coefficient:60 F to 122 F = +27 x 10-5/F!6 C to 50 C +50 x 10-5/C

Specific Electrical Resistance:

Carpenter Inver 36 --Arnealed: 530 ohms/cir. mil ft (E8 Microhms per :c)Cold drawn: 490 oins/cir. mil ft (81 microhms per cc)

Carpenter Free-Cut invar 36 --Annealed: D70 ohms/cir. mil ft (95 microhms per cc)Cold draw : 510 ohms/cir. mil ft (85 microhms per cc)

Te;,sile Prooerties, Hpruness, etc..fgor I" Round Soecimen

ElasticTensile Liqit-- ElasticStrength Yield joint, Reduction Elongation niardnes, Mudulus,103 psi 103 psi ' of Area, in 2", 9 Brlnell Rockwell osi

(Anneaied)

65 40 65 35 125 B-70 20.

(Cold Drawn)

90 70 60 20 185 B-90 21.

!zed Impract at B-90 Rockwel) = 90 ft-lbsShearing Strength at B-90 Rockwell = 45 x 103 psiTorsional MAcduluo = *7,100,000

endur ance lLmit)Endurance Ra (tensile strength) = approximately O.4"

(tensile5, stegh

Page 56: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

49

TABLE 21. DIMENSIONAL STABILITY OF "ARIOUS YNVAR-TYPE ALLOYS AFTERHEAT TREATM__NT(33)

Length Change inRock- Time z"d Cyclic Stability Tests, Thermalwell in./in. Cycled ExpansionHard- A t 70 W Aq t 167F- IOX, Coefficient,

Aly Secimen Treatment( a) ness "i mo 3 mo 12 on_1 m"- 3 mo 12 mo to -95 F 10- 6 /C

Ni-Span 60-IA Cold rolled (as received) ;.63 5 -10 -10(b) - -

Lo 45 Solutionize 1800 F, 1-1/4 hr, WO - -. .

60-1,2,3 Age 1250 F, 21 hr, AC C34 -10 -15 - 1 5(b), -15 -15 -20(b) -10

42Ni- 77-IA Quench- 1525 F, 1/2 hr, WQ B72 0 0 0 -10 - - 1.5Anneal

58 Fe 77-2,3 .

":.-Sppn-C 51-1 Cold urawn (as received) A60 - 5 - 5 - 5(b) - - -

Solutionize 1800 F, 1-1/4 hr, lWQ .-

61-1.2,3 Age 1250 F, 21 hr, AC C29 -10 -10 -10(b) -15 -15 - 1 5 (b), -30 7.2

Cupez Cold drawn (as received) B96 - - - - - - - -

Nilvar 9-1,2,3 Anneal 1525 F, 1 hr, FC B97 -10 - - -5 - - +25Stress 1200 F, I hr, FC .-Relieve

9-:1 Stabilize 200 F, 24 hr, AC . .. . .. 0.8

32 Ni- 75-1,2,3 Quench- 1525 F, 1/2 nr, WQ B93 0 + 5 5 + 5 -55 3.4Anneal

6b% re ...

Ni-Span- 62-i Coid drawn (as receied) A62 0 -10 -15(b) 0

Hi Sclu'onize 1800 F, 1-1/4 hr, WQ .. . ...

62-1,2,3 Ag( 1250 F, 20 hr, AC-(R) C30 - 5 - 5 - 5(b) -10 -10 -i 0 (b) -10 15.5

(a) (R)-r-n•menued treatment; WQ - water quenched; FC - furnace cooled; AG - air cooled.

(b) 6 months of aging

TABLE 22. COIMPOSITIONS OF ALLOYS REFERRED TO IN TABLE )9(33) C

Specimen INi c~keI CompositionNo. A110ov Mn Si S P Ni Fe Cr Cu Al Ti

60 Ni--S$pan-Lo 45 0.02 0.55 0ý39 0.007 - 44.88 51.03 0 31 3.05 0.65 2.1177 42N!-50Fe 0.08 0.52 0.21 0.008 0.009 40.87 Sal . . . .-

61 Ni-Span C 0.04 0.577 0.55 0.007 - 41.60 48.11 6.01 0.05 0.61 2.10Reg. Invar 0.07 0..3 0.39 0.018 0.010 35.80 8a1 .-

50 Reg Inv"sr 0.10 0.16 0.28 0.013 0.008 35.13 Bal - - - -

521 Free-WCut _Xg S__e

inviz 0.07 0.88 0.32 0.005 0.009 35.37 Bal 0.08 0.16 - 0.4465 Free-Cut Mo Se

Invar 0.0t 0.85 0.34 0.016 0.006 26.37 Bal 0.00 0.13 - 0.40

C•9 Supe: Niivar 0.'8 0.15 0.12 0.013 0.008 31.20 Bal - 5.37 - -

76 32Ni-68Fe 0.10 0.76 0.27 0.008 0.OOb 32.56 Bal - - - -

62 N1-S0an-hi 2 .04 0.58 0.53 0.007 - 28.82 58.39 8.62 0.04 0.12 2.23

62 ....... 28.82 58... 8.62

Page 57: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

----------- ,-~

30TALLE 23. DIWiES!ONAL STABILITY OF INVAR APTEIý VARIOUS HEAT TRIEAIMEUTrS(33)

Length "ange in Time and CyclicRock- S~ab'lity Tests. uin./in. Therm4al•well Cycled ExpansionHard- Aged at 70 F AQod at 160 F lOX, Coefficient,Alloy Specimen No. Treatsent(a) ness I Mo. 3 Mo. 12 Mo. I 11o. 3 ko. 12 Mo. to-15 F 0" 6

/CFree-Cut 52-1,2,3 Cold drawn, as received B98 0 0 0 -'15 0 + 50 (b) 2 --Ilvar 52-42,42 Stabilize, 200 F, 20 hr, AC B98 - 5 - 5 - -5 -5 . ..

Cold drawn, as received 9b -. .. . .. ....52-4,5,6 Stress relieve, 1200 F, 895 -15 -20 -25 0 -- -1o(b) - 5

I hr, FC52-31 Stress relieve, 200 F, I hr, B95 -15 -20 -20(b) . .. .. ..

AL b

52-q2,33,34 Stress relieve, 200 F, 20 hr, B95 - 5 - 5 - 5(b) 0 5 - 5 (b) -10 1.5AC-(R)

52--,8,9 Stress relieve, 300 F, 1 hr, 895 -15 -20 -30 -20 -20 -35 -15 --FC

52-30 Stress relieve, 400 F, 1 hr, B9:) - 5 - 5 - 5(b) .. .. .. ..AC52-10;1o0;2 O._Je-ch-e-..Ox]; 1525 F, B78 - 3 -10 -10 -40 .- 101/2 hr, WQ

52-19 Stabilize, 158 F, i mo, WQ B78 0 0 0 .. .. .. ....53-36,37,38 Stabilize, 200 F, 20 hr, AC B78 -35 -35 -30(b) - 5 - 5 -- 0 --52-15 Stabilize, 200 F, I mo, WQ B78 0 0 - 5 -.. .. .. ....52-Il Stabilize, 250 F, I hr, FC B78 - 5 -10 -10 .. .. .. ....52-18C Stabilize, 300 F, I mo, WQ B78 -10 -10 -15 .. .. .. ....52-17 Stabilize, 400 F, 1 mo, WQ B78 0 - 5 - 5 .. .. .. ....52-21 Stabilize, 600 r, I mo, WQ 878 - 5 - 5 -10 . .. .. ...52-27,28,29 Anneal, 1525 F, 1/2 hr, FC B78 -10 - 5 -20(b) - 5 - 5 - 5 (b5 -/ 5 --52-39,40 Stabilize, 200 F, 20 hr, AC B77 - 5 - 5 - - 5 -5 .. ...Free-Cut 66-I0,i1,l2 Cold drawn, as received B87 .. .. .. .. .. . ....Invar Stress relieve, 1200 F,

1 hr, FCStabilize, 200 F, 48 hr, B69 -10 -10 _I0(b, - 5 - 5 O(b) -35 2.0

AC-(R)66-7,8,9 Quench-anneal, 1525 F, ... .. .. . .. .. ....

1/2 hr, WCStress relieve, 1200 F, .. .. .. .. .. .. ....

1 hr, ACStabl~ize, 200 F, 48 hr, 879 - 5 - 5 _10 (b) - 5 0 0 (b) -10 --

AC(R)66-1,2,3 Quench-anneal, 1525 F, B78 -20 -20 -25(b) -20 -20 - 2 0o(b) -2b --1/2 hr, WQ

66-4,5,6 Stress relieve, 600 F, .. .. .. .. .. .. ....I hr, AC

S4abilize, 200 r, 8 4r, AC B78 -10 -10 - 15(b) -10 -10 _15 (b) -10 --

Regular SOL-1,2,3 Quench-anneal, 1525 F, B77 -15 -20 -20 -40 + 5 -70 -75 --Invar 1/2 hr, WQ

50T-1,2,3 Quench-anneal, 1525 F, E7"t -45 -40 -35(b), -10 -20 -30(b) +20 --1/2 hr, WQ

R(.,ular 51-17,18,19 Anneal, 1525 F, I hr, FC 877 -25 -25 -- 5 5 + 5 -- -15 --Invar 51-1,2,3 Quench-annealý 1525 F, B77 - 5 - 5 -- 25 +25 . 151/2 hr, WQ

51-2C,D Stress reliev., 158 F., B77 0 - 5 - 5 .. .. .. ....1 no, WQ51-4,5,6 Stress relieve, 250 F, B77 -10 - 5 0 -10 0 -- -10 --1 hr, FC

5-Il0 Stress relieve, 300 F, B77 + 5 + 5 + 5 .. .. .. ....1 tMo, WQ

:51-9 Stres-, relieve, 400 F, B77 +10 -10 -10 .. .. .. ....I mo, WQ51-8 Stress relieve, 600 F, B77 + 5 + 5 .. .. +30 .. ....I Mo, WQ51-20 Stress relieve, 600 F, B77 .. .. .. +25 +25 + 2 5 (b) - __I hr, WQ

Stress relieve, 1200 F,1 hr, AC

51-22,23,24 Stabilize, 200 F, 48 hr, AC - 5 - - 5(b) - 0 o(b) -10 --Minover 4,-1,2,3 As cast, as received B59 0 + 5 +20 -425 +25 +30(b) - 5 4.2CastIron

a)- (R) - recommended treatment; WQ - water quenched; FC - furnace cooled; AC - air cooled.(b) 6 months of aging.

/%

Page 58: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

A'-".,.51

41?.TABLE 24. SOM4E OF THE ALLOYS STUDIED BY HIE*NERT AND KIRBy( 38)

Sample Cob Fe _C n St Treatmrent Test Phase

1762 53.88 36.98 8.56 0.13 0.01 0.44 Hydrogen-annealed at 1000 C for 1 1Hhr and furnace-cooled in 20 hr 1C

2C2H a*V3Hx Q41

17dl 54.24 36.56 9.06 - - 0.14 Hy6rogen-annealed at 1000 C for 1 18hr and furnace-cooled in 2) hr iC

2C2F3H y3C y4H y

17,3 53.81 36.65 9.09 0.07 0.07 0.31 11 y•__•2H y2C3C y3H4H y40 y

6H

1783 54.09 36.61 9.15 - - 0.15 1H2c2C y2H3H3C y4H

1782 5432 3i.33 9.23 0 0 0.15 H1 8H2C y

17 Y2H y3H83C4H y

1767 53.40 36.92 9.30 0.06 0.08 0.24 Hydrogern-annealed at 1000 C for 1 18 'hr and furnace-cooled in 20 hr iC y

2C y2H3H y3C y4H

1770 53.5, 36.70 9.36 0.03 0.07 0.29 1H y1772 53.53 36.61 9.43 0.08 0.07 0.28 lH 18

2C y2H3H3C y4H 8 Y

1769 535 30-D3 9.5 0.06 0.07 0.22 18H1C

28H -

3H/ 3C4H .-Y

Page 59: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

S52

TABLE 24. (ContinueJ)

Chemical Comnositon. %Sawle Cob Fe Cr C MO Si TreajMent Test Phcse

1764 53.30 36.1'3 9.57 .09 .08 .33 " 1H Y2H Y

1765A 53.17 36.78 9.57 - - lH Y

2C Y2H Y3H y3C

1773 53.92 36.22 9.67 .07 .07 .05 1H Y1C *2C Y

3H3C Y4H y

1765 5:3-14 36.51 9.87 .11 .10 .27 lH y1C y2C y2H y3H Y3C4H y

TABLE 25. t-HISICAL AND 9:MARCP" PPOPERTIES OFELIxVAR ALLoYS(4)

Chemical Compositiorn (VariesWith Di ferent "Elinvas

Nickel 33 to 35 percentIron 61 to 53 per:centChromin 21 to 5 percentTungsten 1 to 3 percentManganese 0.5 to 2 percentSilicon 0.5 to 2 percentCarbon 0.5 to 2 zercent

Mechlnical Properties (Elinvar)

Elastic Limit, psi 45,000Coefficient of Modulus -6.6 x 10-5

of Elasticity(-50 to 4-50 C)

Coefficient of Modulus -7.2 x 10-5

of Ridigity(-50 to +50 C)

Mechanical Properties (Modelvar)

Coefficienx of Modulus +46.2 x 10-5of Elasticity(-50 to +50 C)

Thermal Properties (Elinvar)

Coefficient of Thermal 0.6 x 10- 6/CExpansion

Thermal Prooertie,. (N..olyar)

Coefficient of Thermal 0.0 x 10- 6/CExpansion

Page 60: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

53

TABLE 26. NOMINAL. MECHANICAL PROPERTIES OF Ni-SPAII ALLOYS

Condition Mechanical PcooertiesYield

Propor- Strength Elonga- Tensile TorsionalCold tional 0.2% Tensile tion in Hardness Modulus of Modulus of

Solution Working, L it, ')ffset, S ength, 2 in., Brinell, Elasticity, Elasticity,Alloy Treated % Aging 10 psi psi 10° psi 1 (3000 Kg) 10-6 psi 10-6 psi

Ni-Spen Yes No No 20 40 90 32.0 lA0 21.0Lo 42 Yes No Yes 65 120 165 14.0 330 22.0

Yes 50 No 70 115 130 3.3 240 22.5Yes 50 Yes 110 165 195 5.0 385 23.0

Ni-Span Yes No No Slightly lower than Ni-Span Lo 42.Lo 45 Yes No Yes

Yes 50 NoYes 50 Yes

Ni-Span Yes No No 15 35 85 27.0 125 - -

Lo 52 Yes No Yes 55 95 120 17.0 305 22.0 -Ni-Span Yes No No 20 35 80 30.0 140 --

Hi Yes No Yes 60 95 150 20.0 305 25.0 -

Yes 50 No 60 120 140 4.0 250 24.5 -Yes 50 Yes 80 130 180 8.0 370 26.0 -

Ni-Span Yes No No 15 35 90 40.0 145 24.0C Yes 0o Yes 65 115 180 18.0 345 26.5 10.0

Yes 50 No 55 130 135 6.0 275 25.5Yes 50 Yes 105 180 200 7.0 395 27.0 10.0

TABLE 28. RECOMENDED AGING CONDITIONS FORTABLE 27. EFFECT OF NICKEL CONTENT ON ICING TEMPERA- MAXIMUM HARDNESS

TURE FOR MAXIMUN HARDNESS IN Ni-SPAN LoALLOYSALLOYS__

Hours at Taemperature forSolution-Treated Solution-,Treat d and

Optimum Hardness, Temp, F Material Cold-Worked Material

Nickel, Aging BrinellAlloy .p, F (3000 Kg) 1100 48 3 to 4

1200 24 3 to 4Ni-Span Lo 42 42 1225 330 1250 24 3 t- 4Ni-Span Lo 45 45 1250 320 1300 9 to 12 1Ni-Span 1o 52 52 1300 305 1350 3 1

it

Page 61: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

4-I54

TABLE 29. C3WPOSITION AND PROPERTIES OF Ni-SPAN C(44)

CoMoosition Saecification

Nickel 41 to 43 percentChromium 4.9 to 5.5 percentTitanium 2.2 to 2.6 percentCarbon 0.06 maxManganese 0.80 maxSilicon 1.00 maxAluminum 0.30 to 0 30 percentSulfur 0.04 maxPhosphorus 0.04 maxIron Balance

Physical Properties of Constant-Modulus Alloy

Melting R.ng: 2650 to 2700 FDensity 0.294 lb/cu in.Specific Gravity 8.15 g/ccSpecific Heat, 32 to 212 F 0.12 Btu/lb/FThermal-Expansion 4.5 x 10-6 F

Coefficient -50 to +150 FThermal Conductivity, 90 Btu/sq ft/F/in./hr

32 to 212 F

Soft Full

Thermal Coefficient of 0.00025 0.00031Resistivity, per F

Electrical Resistivity, 580 480ohms/sq mil/ft at 68 F

Electrical Conductivity, 1.4 1.7% IACS at 68 F

YMcdu!'js of Elas+icity, 24 27.5b 106' psi

Modulus of Rigidity, 9.4 9.8106 psi

"Thermoelastic Coefficient, -35 to -15 -10 to +10x 10- 6 /F

Tensile Strength, 103 psi 90 200Yield Strength (0.2 offset), 35 180

103 psiProportional Limit, 103 psi 15 110Elongation, % in 2 in. 40 7Brinell Hardness 125 395Rockwell Hardness 70B 42C

With No Cold Work With 50 Percent Cold WorkAfter Heat Treatment After Heat Treatment

Before . at Temnerat"ure Before - at TemperatureHerdening 1109 F 1250 F 1350 N- Hardenina 1100 F 1250 F 1350 F

Tyoical Mechanical Properties

Tensile Strength, I10 psi 90 150 180 175 135 185 200 200Yield Strength (0.2% Offset), 35 95 115 115 130 160 180 180

103 psiProportional Limit, l00 psi 15 70 6[ 65 55 105 110 105Elongation, % in 2 in. 40 30 18 17 6 8 7 7Rockwell Hardness 70B 23C 33C 320 28C 39C 420 42CBrinell Hardness 125 245 305 300 270 360 395 395Modulus of Elasticity, 24 27 26.5 26.5 25.5 27.5 27 27,

x 106 psi

(a) For strip 50 percent cold wo-ked before- aging. Values for wire are higher.

Page 62: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

55

TABLE 30. PROPERIIES OF NI-SPAN c(45)

(Nominal Composition: 42 Percent Nickel, 2.5 Titanium, 5.5 Chromiua, 0.06 Carbon)

SolutionAnnealed Plus

Solution Heat-Treating Temperature 50 Percent Heat-Treatina TemperatureAnnealed 1100 F 1250 F 1350 F Cold Vtrked 1100 F 1250 F 1350 F

Tensile Strength, 103 psi 90 150 180 175 135 185 200 200Yield Strength (0.2 35 95 115 115 130 160 180 180

Offset), 103 psiProportional Limit, 103 psi 15 70 65 65 55 105 110 105Elongation in 2 Inches, % 40 30 18 17 6 8 7 7Rockwell Hardness 78B 32C 37C 37C 29C 39C 42C 42CBrinell Hardnes-. 145 300 345 340 275 365 395 395Modulus of Elasticity, 24 27 26.5 26.5 25.5 27 27.5 27

106 psiModulus of Rigidity. 10 i0 10 10 10 10 10 10

106 psiApproximate Thermoelastic -15 -10 - 5 0 -10 - 5 0 +10

Coefficient x 106/FThermal-Expansi on

Coefficient x 10-6/F 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5(-50 to 150 F)

Thermal Conductivity, 90 90 90 90 90 90 90 90Btu/sq f tF/in.

Electrical Resistivity, 480 to UO(a)ohms/sq mil ft at 68 F

Electrical Conductivity 1.4 to 1.7 percent(a)(at 68 F)

(a) Depending on amount of cold working and precipitation heat treatment.

TABLE 31. MECHANICAL PROPERTIES OF LOW-EPANSICN ALLOYS(45)

Ni-Span Lo 42 Ni-Span Lo 45 Ni-Span Lo 52Ni-4Z C-0 .06% Ni-45% C-0.06% Ni-52% C-0 .6%

Composition: TI-2.z Bal - Fe TI-2.4% Be - Fe f_-2.4% Bal - Fe50% 50% 50%Cold Cold Cold

Worked Worked WorkedCondition: and and and

Annealed Hardened Hardened Annealed Hardened Hardened Annealed Hardened Hardened

Proportional 20 65 110 19 61 103 15 55 100Limit, 103 psi

Yield Strength, 40 120 165 37 113 155 35 95 140Offset, 103 psi

Tensile Strength, 90 165 195 85 155 183 85 120 175103 psi

Elongation, % 32 14 5 30 13 5 27 17 5Rockwell Hardness 78B 34C 40C 74B 33C 37C 71B 32C 36CModulus of 21.0 22.0 22.5 21.0 22.0 22.5 21.0 22.0 22.3

Elgstlcity,i0p psiI

Page 63: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

56TABLE 32. CHEMICAL COMPOSITION AND PROPERTIES OF NL-SPAN C SPRING MATERIAL(42)

Chemical Composition

Nickel 41 to 45 percentChromium 4.9 to 5.5 percentTitanium 2.2 to 2.6 percentCarbon 0.06 mnxManganese 0.80 ma.,Silicon 1.00 maxAluminum 0.30 to 0.80 percentSulfur 0.04 miaxPhosphorus 0.04 maxIron Balance

Physical Properties

Density, lb/cu in. 0.294

Specific Gravity, g/cc 8.

Mechanical Properties

Modulus of Elasticity at Room Temperature, psiSolution Annealed 24 x 106

Modulus of Elasticity at Room Temperature,106ps

0psi After Heat Treatmeat at TemperatureUnaed 1100 F 1250 F 1350 F

Solution Annealed 24 27 26.5 26.5Solution Annealed -- %

Cold Worked 25.5 27.5 27 27

Temperature Coefficient of Modulus of Elasticity, psi F -10 to +10 x 10-6Thermoelastic Coefficient, (x 10-6/F)

Solution Annealed -35 to -1bFully Aged -10 to +10

Modulus of Rigidity at Room Temperature, psi x 10-6Solution Annealed 9.4Fully Aged 9.8

(values are for strip 50% cold wcrked, values for wire are higher)

Tensile Strength (Typicil) at Room Temperature, psi

After Heat Treatment at TemperatureUnAed 1250 F 1350 F

Solution Annealed 90,000 150,000 180,000 175,000Solution Annealed +50%

Cold Work 135,000 185,000 200,000 200,000

Tensile Strength at Elevated Tmperaturcs (for 1/8" diam. wire, 50%cold work, heat treated 1250 F for 4-1/2 hr, fast cool in vacuum):

500 F 177,000 psi600 F 171,000 psi

Yield Strength (Typical) at Room Temperature, psi

After Heat Treatment at Temnperature

Unaged 1100 F .1250 F 1350 F

Solution Annealed 35,000 95,000 115,000 115,000So3lution Annealed +50%

Cold Work 130,000 16U,000 180,000 180,000

Yield Strength at Elevated Temperatures ( for 1/8" diam wire, 50%cold work, heat treated 1250 F for 4-1/2 hr, fast cool in vacuum):

500 F 140,000 psi

600 F 135,000 psi

Proportional Limit (Typical) at Room Temperature, psi

After Heat Treatment at Temperatu--eUnaged 1100 F 1250.F 1350 F

Solution Annealed 15,000 70,000 65,000 65,000Solution Annealed + 50%

Cold Work 55,000 105,000 110,000 105,000

Page 64: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

57

TABLE 32 (CONTINUED)

P.roportional Limit at Elevated Temperatures (for 1/8" diam wire, 50%cold worked, heat treated 1250 F for 4-1/2 hr, fast cool in vacuum):

500 F 71,000 psi600 F 44,000 psi

Hardness (Typical) at Room Temperature, Rockwell

After Heat Treatment at Temperature-niged 10 1250 F 1350 F

Solution Annealed 70 B 23C 33C 32CSolution Annealed +50%

Cold Work 28C 39C 42C 42C

Safe Working Stresses for Cold-Coiled Compression Springs

Light Service 62,000 psiI A.verage Service 54,000 psiSevere Service 44,000 psi

Relaxation at Elevated Temperatures (Load Loss) kUnder Steady Load of50,000 psi)

600 F 2.0%710O F 3.0%Boo F 9%

Hysteresia Error (percent of def]ection) 0.05 max

Creep Error (percent of deflection in 5 min) 0.02 max

Thermal Treatment

Hardening Temperature, (in nonoxidizing atmospheredepends on degrees of cold work) 1100-1350

Thermal Properties

Linear Coefficient of Thermal Expansion (-50 to +150 F),in./in./F 4.5 x 10-6

Specific Heat (32-212 F), Btu/lb/F 0.12Thermal Conductivitv (32-212 F), Btu/sq ft/F/in./hr 90

Electrical Properties

Electrical Resistivity, 68 F, ohms/sq wil/ft

Soft Annealed Condition 580Fully Aged, 50% cold work before aging

(wise values are higher) 480

Thermal Coefficient of Resistivity/F

Soft Annealed Condition 0.00025Fully Aged, 50% cold work before aging

(wire values are higher) 0.00031

Electrical Conductivity, 68 F (Copper = 100%)

Soft Annealed Condition 1.4

Fully Aged Condition 1.7

4 I'

-7-- Aj.~,,C. .. A nt . a.faA~jta-

Page 65: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

TO T58

TABLE 33. TENSILE PROPERTIES OF Ni-SPAN C (I/8-In.-Diameter Wire)(42)

Fty, Appraximate Approximate ApproximateTest 103 psi Elongation, Modulus of Tensile Torsional Modulus ofTemp, Ftu, (O.2% in 6 In., Elasticity, Proportional Proportional Rigigity,

Specimen F 103 psi Offset) % 106 psi Limit, 103 psi Limit, 103 psi 10 psi

IA-12 -40 196.8 157.6 3.3 24.2 75.7 41.6 3-9.71B-23 -40 .. .... 26.1 70.8 38.9 10.0-10.4IB-24 -40 .. .... 24.7 71.6 39.4 9.5-9.9IC-12A -40 .. .... 24.j - -- 9.3-9.7lC-12B -40 ...... 24.7 9.5-9.9

1A-13 RT 200.0 153.9 10.0 28.0 53.8 29.6 10.8-11.2IB-25 RT .. .... 25.0 55.4 30.5 9.6-10.01B-26 RT .. .... 24.9 54.6 30.0 9.6-10.0LC-13A RT ..... 24.8 .... 9.5-9.9

IA-14 165 195.4 150.4 9.2 26.3 71.6 39.4 10.1-10.51B-27 165 --- 25.7 64.1 35.3 9.9-10.31B-28 165 .. .... 23.5 54.7 30.1 9.0-9.4IC-14A 165 ..... 24.0 .... 9.2-9.8

lA-15 300 192.9 146.5 7.0 26.7 62.) 34.1 10.3-10.71B-29 300 .. .... 25.6 53.5 29.4 9.8-10.21B-30 300 .. .... 25.1 50.5 27.8 9.7-10.01C-15A 300 .. .... 24.4 .... 9.4-9.8

IA-16 800 178.0 132.1 1.3 24.2 60.0 33.0 9.3-9.71B-31 800 ..... 24.0 58.0 31.9 9.2-9.61B-32 800 ...... 24.0 56.6 31.1 9.2-9.6lC-16A 900 .. .... 22.9 .... 8.8-9.2

TABLE 34. PROPERTIE; OF Ni-SPAN C(28)

Recormmended Use

High physical properties; age hardenable, can replace BeCu particilarly where brazing is necessary;zero temperature ¢oefficien-.. of modulus

Dimensional Stability

Dimensional Changes,Temperature, F Time, months 4in./In.

160 6 10-100 to +200 30(a)

Procedure

Initial Condition% Cold drawn, 1800 F, 1-1/4 hr water quench, age 1250 F,21 hr, air cool

Physical Properties Mechanical PropertiesHardness 29 Rockw11 C

Density 8.15 9/cm3 WT 0 sSc•glcgl-cle`/ i.viUTS 100 x 101 psiThermal Conductivity 0.0202 cal g,'cm2/cm/C/secResistivity ';.7 o0/c YP (0.2% offset) 115 x 103 psiResisiviety 9.12 ohm Elongition (2 in.) 18%Specific Heat 0.12 calg mModulus of Elasticity 26.5 x i06 psiMagnetic Properties Ferro magnetic Elastic Limit 57 x 103 x psiThermal-Expansion 7.2 in./in./C Elastic Limit/Density 7.06 x 103 psi/g/cm3

Coefficient Modulus/Density 3.25 x 106 psi/g/cm3

q) After 10 cycles between -100 and +200 F.

41- Atr 0

Page 66: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

59

TABLE 35. MECHANICAL PROPERTIES OF WILCO Ni-SPAN C CONSTANT-MODULUS ALLOY(a)(49)

(Nominal Composition: 42.2% Nickel, 2.5% rntanium, 5.3% Chromium, 0.03% Carbon)

SolutionAnnealed

After Heat Treatment Plus 50% After Heat TreatmentSolution at Temperature Cold at TemperatureAnnealed 1100 F 1250 F 1350 F Worked 1100 F 1250 F 1350 F

Tensile Strength, 103 psi 90 150 180 175 135 185 200 200Yield Strength (0.2% Offs.et), 35 95 115 115 130 160 180 180

103 psiProportional Limi4t, 103 psi 15 70 65 65 55 105 110 105

Elongation in 2 In., % 40 30 18 17 6 8 7 7Rockwell Hardness 70B 23C 33C 32C 28C 39C 42C 42CBrinell Hardness 125 245 305 300 270 360 395 395

Modu',,s of Elasticity, 24 27 26.5 26.5 25.5 27.5 27 27106 lb/sq in.

(a) The values lizted are typical and are for general engineering use. They .nould not be used forspecification purposes.

TABLE 36. SUMMARY OF PHYSICAL AND MECHANICAL TABLE 37. YOUNG'S MODULI' AND HARDNESS FOR VARIOUSPROPERTIES OF WILCO Ni-SPAN C CCMPOSITIONS ,^ND AMOUNTS CF OOLD RE-CONSTANT-MODULUS ALLOY(a)(49) DUCTION(52)

Melting Range 2650 to 2700 F Nickel Cold Young'sDensity .294 lb/cu in. Content, Reduction, Modulus Hardness,Specific Gravity 8.15 g/cc percent percent dynes/cm2 RBSpecific Heat (32 to 212 F) .12 Btu/ib/FThermal Expansion 4.5 x iO- 6/F 38 30.6 1.72 x 1012 )2

Coefficient 38 49.0 1.74 x 1012 94

(-50 to +150 F) 38 60.9 1.26 x 1012 96Thermal Conductivity 90 Btu/sq ft/F/in./hr 41.5 30.6 1.72 x 1012 92

(32 to 212 F) 41.5 49.0 1.77 x 1012 9541.5 60.9 1.54 x 1012 98

Solution FullyAnnealed Aged

Thermal Coefficient .00025 .00031of Resistivity (/F) TABLE 38. PHYSICAL AND MECHANIAL PROPERTIES OF

Ele-trical Resistivity 580 480 ISO-ELASTIC ALLOY' I

(ohms/sq mil ft at 68 F)Electrical Conductivity 1.4 1.7(% IACS at 68 F) Composition 36% nickel, 8% chromium,

Modulus of Elasticity, 24 x 106 27.5 x 106 0.5% molybdenum, balancepsi iron and other small

Modulus of Rigidity, 9.4 x 106 ,., x 106 constituentspsi Thermal Coefficient -20 x 10- 6/F to -15 x

Thermoelastic -35 to -15 -10 to +in of the Modulus 10- 6/F (spring steel isCoefficient /x I0<I'//) -190 X 10-6/F)

Tensile Strength, 103 psi 90 200(a) Hysteresis Error Less tnan O)5% of deflec-Yield Strength (0.2 35 180(a) ticn

Offset), 103 psi Creep Error Nct more than .02 % 3fProportional Limit, 15 110(a) deflection in 5 minutes

103 psi Tensile Strength 170,000 psiElongation in 2 In.. % 40 7 Young's Modulus 26 x 106

Brinell Hardness 125 395 Torsion Modulus 9.2 x 106 psi

Rockwell Hardness 70B 42C Practical Working 90,000 to 100,000 psiStress in Bending

Practical Working 40,000 to 60,000 psi* (a) These properties are for strip 50% cold Stress in Torsion

Sworked before aging. Values for wire are Hardness Rockwell C 30 to C 36* somewhat higher. Electrical Resistance Approximately 528 ohr.s/

mil ft (at 20C)Coefficient of Linear Approximately +4 x 106

Expansion

* r

Page 67: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

e 60

TABLE 39. PHYSICAL AND MECHANICAL PROPERTIES OP ISO-ELASTIC ALLOy(42)

Chemical Compesition

Chromium 8 percentNickel 36 percontMolybdenum 0.5 percentIron Balance

2L.*_sical ProperLies

Density, lb/in. 3 0.292

Mechanical Properties

Modulus of Elasticity, psi 26 x 106Temperature Coefficient of Modulus of Elasticity -20 x 10-6 to +15 x 10- 6/FModulus of Rigidity, psi 9.2 x 106Tensile Strength, Maximum, 103 psi 170Elastic Limit in Tension 60 percent of tensile strengthElastic Limit in Torsion 35 percent of tensile s -engthMaximum Working Stress (Torsion), 103 psi 40 to 60Maximum Working Stress (Bending), 103 psi 90 to 100Rockwell Hardness C-30 to 36Hystertsis Error (percent of deflection) 0.05 maximumCreep Error (percent of deflection in 5 minutes) 0.02 maximum

Chermal Properties

Linear Coefficient of Expansion, in./in./F 4 x 10-6

Thermal Treatment

Internal Stress Relief Tempera.-re, F 750 (fur 0.5 hour)

Electrical Properties

Electrical Resistivity, iohm/in. 0.8 (?)Electrical Resistance, ohms/mil ft (68 F) -528

Magnetic Properties

Slightly magnetic

TABLE 40. RIGIDITY MODULUS (G), THERMAL-EXPANSION COEFFICIENT (Ca), AND THERMOET-ASTIC COEFFICIENT (g),FOR Co-Fe-Cr-Ji ALLOYS (Ni is 10% of Gross Composition)(63)

G, GCompos tior. _ kg/cm2 a g Composition, % kg/cm2 a g

Co Fa Cr +Ni (20) (10-50 C) (20-S) C) Co Fe Cr +Ni (20) (10-50 C) (20--O C)

x 105 x 10-6 x 1j-5 x 105 x 10-6 x 10-532 &3 0 10 8.70 10.53 -25.3 45 45 10 10 6.80 3.24 +29.742 58 0 10 8.20 10.51 -20.8 46.5 43.5 10 10 6.91 4.39 +14.348 52 0 10 7.98 11.05 -21.6 48 42 10 10 6.83 4.95 +13.856 44 0 10 7.59 11.06 -25.4 52 38 10 10 6.74 7.78 + 0.260 40 0 10 7.02 10.92 -27.9 56 34 10 10 6.83 8.78 -12.964 36 0 10 7.02 9.91 -24.7 60 30 i0 10 7.39 9.96 -22.470 30 0 10 6.35 11.78 -33.6 65 25 10 10 6.88 10.61 -26.275 25 0 10 6.28 12.55 -33.4 70 20 10 10 6.76 11.78 -29.2

32 64 4 Io 8.37 11.07 -34 3 43.5 45.5 11 10 7.05 3.71 +22.936 60 4 10 8.19 10.71 -34.1 .. .. .. .. .. ....39 57 4 10 8.07 1, .42 -26.6 36 51 13 10 7.71 17.01 -41.242 54 4 10 7.76 10.75 -25.8 39 48 13 10 8.08 16.01 -27.745 51 4 10 7.91 10.83 -25.4 42 45 13 10 7.89 10.51 - 8.148 48 4 10 8.07 10.76 -29.0 45 42 13 10 7.76 8.08 + 4.452 44 4 10 6.79 11.02 -27.8 48 39 13 10 7.14 6.37 + 5.356 40 4 IC -- 11.16 -- 50 37 13 10 6.96 6.78 + i.160 36 4 L0 6.48 10.76 -19.6 52 35 13 10 7.00 7.27 - 4.766 30 4 10 6.58 11.58 -30.3 56 31 13 10 7.25 8.36 -18.871 25 4 10 6.00 12.22 -26.4 60 27 13 10 7.23 9.84 -18.9

-• • . .... ..

Page 68: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

61

TABLE 40. (Continued)

G, G,Composition, % kg/cm2 a g Composition, % kg/cm2 a 9

Co Fe Cr +Ni (20) (10-50 C) (2D0-5 C) Co Fe Cr +Ni '20) (10-50 C) (20-5 C)

65 22 13 10 8.09 14.39 -30.048 46.5 5.5 10 7.22 10.95 -32.7

,'8 38 14 10 7.08 7.35 036 57 7 10 7.06 10.89 -34.039 54 7 10 7 60 10.69 -31.1 32 52 16 10 7.90 16.95 -4/.942 51 7 10 6.97 10.89 -31.6 36 48 16 10 8.05 17.73 -41.745 48 7 10 6.59 11.07 -33.5 39 45 16 10 8.00 16.91 -39.248 45 7 10 6.06 10.92 + 7.4 42 42 16 10 8.16 15.64 -29.852 41 7 10 6.57 8.16 - 0.3 48 36 16 10 7.87 13.64 -27.956 37 7 10 6.89 9.24 -13.4 52 32 16 10 7.47 9.07 - 6.063 30 7 10 6.50 11.10 -25.1 54 30 16 10 7.36 9.46 - 6.268 25 7 10 6.47 11.74 -28.5 59 25 16 10 7.74 10.37 - 2.3i•67 17 16 10 8.33 ]4.63 - 9.0•

42.5 48.5 9 10 6.70 4.06 +32.344.5 46.5 9 10 6.48 3.66 -1 18.5 58 25 17 10 7.44 10.90 - 9.5

43.5 47 9.5 10 6.89 2.20 +46.7 52 30 18 10 7.86 13.52 -29.444 46.5 9.5 10 6.71 2.36 +29.944 , 46 9.5 10 6.58 2.65 +35.5 32 48 20 10 7.54 17.25 -43.145 45.5 9.5 10 6.83 2.90 +29.7 36 44 20 10 7.76 16.89 -35.1

42 38 20 10 7.98 16.54 -42.132 58 10 10 6.81 12.40 -44.2 48 32 20 10 7.90 16.01 -43.236 54 10 10 7.03 12.05 -39.2 52 28 20 10 8.57 13.81 -29.739 51 10 10 7.76 8.86 - 5.8 57.5 22.5 20 10 8.74 18.06 -36.742 48 10 10 7.21 3.03 +28.2 65 15 20 10 9.10 17.84 -30.243 47 10 10 6.83 2.42 +40.643.5 46.5 10 10 6.83 2.47 +34.9

TAELE 41. RIGIDITY MODULUS (G), 1•ERMAL-EXPAdSION COEFFICIENT (a), AND THERMOELASTIC COEFFICIENT (g)FOR Co-Fe-Cr-Ni ALLOY (Ni IS 30 PERCENT OF GROSS O06.PSITION)162)

G, G,Composition, % - kg/cm2 g ,Composicion. . kg/cm2 ai g

Co Fe Cr +Ni. (20) (10-50 C) '20--50 C) Co Fe Cr +Ni (20) (10-50 C) (20-50 C)

x 10 5 x 10- 6 x 10- 5 x 10 5 x 10 6 x 10-510 90 0 30 6.16 10.58 -22.2 11 79 10 30 6.88 15.15 -23.220 80 0 30 6.06 10.93 -28.0 15 75 10 30 6.64 10.65 - 9.824 76 0 30 6.16 11.12 -19.9 19 71 10 30 6.69 5.31 +22.630 70 0 30 6.16 11.82 -24.6 25 65 10 30 6.37 4.90 +27.435 65 0 30 5.93 11.92 -25.3 30 60 10 30 6.41 6.47 r-16.1"40 60 0 30 4.79 12.38 +10.0 34 56 10 30 6.14 7.50 + 5.844 56 0 30 5.37 10.54 + 8.7 40 50 10 30 6.32 9.26 -6.350 50 0 30 6.14 11.64 -19.5 45 45 10 30 6.35 9.96 -14.155 45 0 30 5.83 11.90 -21.3 50 40 10 30 6.29 11.39 -21.6

15 82 3 30 5.75 10.83 -25.3 36 51 13 30 6.61 8.10 - 0.320 77 3 30 5.72 10.59 -25.325 72 3 30 5.55 10.08 -22.1 13 73 14 30 6.98 13.70 -29.832 65 3 30 5.40 8.25 -'18.1 17 69 14 30 6.94 11.12 -14.037 60 3 30 4.55 9.12 +10.2 21 65 14 30 ".12 8.20 + 5.941 56 3 30 5.20 9.78 +12.1 26 60 14 30 6.97 6.40 +14ý544 53 3 30 5.48 10.65 - 3.2 30 56 14 00 6.59 7.19 ' 4.8

41 45 14 30 6.37 9.04 -3.510 84 6 30 6.98 15.52 -32.5 45 41 14 30 6.89 9.08 -13.0"13 81 6 30 6.67 12.56 -10.6 48 38 14 30 6.81 9.11 -16.817 77 6 30 6.57 3.83 +39.820 74 6 30 6.28 2.54 +62.7 33 50 17 30 7.11 9.33 - 5.021 73 6 30 5.88 1.87 '-76.4 38 45 17 30 6.94 9.10 - 6.(-25 69 6 30 5.26 3.63 f61.729 65 6 30 5.39 4.75 +46.6 10 70 20 30 7.23 16.60 -38.634 60 6 30 5.65 6.14 +28.4 14 66 20 30 7.39 15.39 -36.938 56 6 30 5.84 8.77 "10.5 20 60 20 30 7.84 15.20 -37.644 50 6 30 6.08 10.40 - 6.8 24 56 20 30 7.36 14.01 -34.4

49 45 6 30 6.52 11.02 -22.8 30 50 20 30 7.48 il.57 -21.035 45 20 30 7.19 10.32 - 8.0

18 74 8 30 6.37 4.18 139.9 45 35 zu 30 7.44 10.52 - 6.7

Page 69: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

62

TABLE 42. RIGIDITY MODULUS (G),IHErAL-EXPANSION COEFFICIENT (a), THERiWOELASTIC COEFFICIENT (g)FOR Co-Fe-Cr-Ni ALLOYS

6 2 )

G, G,Comnosition. % kg/cm2 cg Composition, % kg/cm2 (Y 9

Co Fe Cr +Ni (20 C) (10-50 C) (20-50 C) Co Fe Cr +Ni (20 C) (10-50 C) (20"-5O C)

x 105 x 10-6 x 10-5 x 105 x 10-6 x 10- 5

0 100 0 40 6.32 13.61 -20.8 3 89 8 40 7.81 11.32 -14.64 96 0 40 6.40 9.11 - 4.6 9 83 8 40 6.49 6.14 +25.9

11 89 0 40 5.83 8.02 1]0.8 11 81 8 40 6.60 4.69 +29.215 85 0 40 5.62 8.36 +14.9 13 79 8 40 6.28 4.03 +29.420 80 0 40 4.82 4.47 +50.3 15 77 8 40 6 29 4.21 +32.325 75 0 40 4.69 6.60 +28.8 17 75 8 40 6.29 4.12 +36.930 70 0 40 5.05 8.'4 + 5.4 20 72 '3 40 5.A8 5.50 +28.535 65 0 40 5.08 9.97 -6.5-;0 60 0 40 5.52 10.84 -- 8.1 0 90 10 40 8.22 14.88 -30.345 55 0 40 5.83 12.22 -14.3 3 87 10 40 7.00 12.81 + 2.565 35 0 40 6.11 12.07 -27.6 7 83 10 40 6.68 7.55 +16.2

9 81 10 40 7.15 6.09 -23.50 98 2 40 7.97 14.55 -23.3 11 79 10 40 6.02 4.97 +26.8

96 2 40 8.09 9.32 +14.9 13 77 10 40 7.19 5.47 +25.07 91 2 40 6.72 3.05 +55.6 15 75 ]0 40 7.07 4.58 +23.39 89 2 40 5.98 1.56 +63.7 20 70 10 40 6.18 5.35 +21.3

11 87 2 40 5.92 0.54 +78.3 25 65 10 40 6.40 7.01 + 9ý713 85 2 40 5.01 1.04 +81.0 30 60 10 40 6.26 9.00 - 2.915 83 2 40 5.03 1.37 +77.4 4C 50 10 40 6.14 10.83 -16.917 81 2 40 4.82 2.53 +55.4

4 8K 11 40 7.39 9.67 + 9.60 95 4 40 8.96 13.77 -18.33 93 4 40 7.93 9.70 + 7.3 0 87 13 40 8.20 15.21 -33.97 89 4 40 7.26 4.00 +4..' 7 80 13 40 7.54 9.53 + 5.4

11 85 4 40 6.78 1.84 +51.4 10 77 13 40 7.80 8.86 + 7.513 83 4 40 6.77 1.58 +56.6 12 75 13 40 7.80 7.64 + 9.315 81 4 40 5.92 2.26 +62.317 79 4 40 5.74 2.92 +59.4 2 83 15 40 8.19 14.30 -34.220 76 4 40 5.50 4.29 +39.8 4 81 15 40 7.99 13.12 -27.423 73 4 40 5.39 5.98 +24.1 8 77 15 40 8.14 12.94 -21.626 70 1 40 5.32 7.53 + 7.5 15 70 15 40 7.03 7.62 +10.031 65 4 40 5.75 8.91 - 0.9 20 65 15 40 6.77 8.09 + 4.336 60 4 4i- 5.92 10.09 - 7.6 25 60 15 40 6.87 8.31 + 0.943 53 4 40 5.74 11.34 -17.2 30 55 15 40 6.60 8.97 -. 6

35 50 15 40 6.59 10.44 -8.75 89 6 40 6.34 7.18 + 4.98 86 6 40 6.49 5.22 +31.7 0 80 20 40 7.60 16.57 -40.0

11 83 6 40 6.96 2.79 +41.5 5 75 20 40 7.29 15.75 -35.913 81 6 40 6.78 2.98 +39.1 10 70 20 40 7.37 13.i9 -29.315 79 6 40 6.54 3.08 +49.1 15 65 20 40 6.82 11,78 -19.517 77 6 40 6.18 3.49 -t-45.4 20 60 20 40 6.82 10.66 - 9,7

25 55 20 40 6.76 9.96 - 8.30 93 7 4C 7.41 14.23 -27.0 30 50 20 40 6.52 10.08 - 6.9

35 45 20 40 6.76 9.63 - 5.9

MO

Page 70: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

- .|

63IABLE 43. RIGIDITY MODULUS (G), THERMAL-EXPANSION ODEFFICIENT (a), AND THERMOELASTIC COEFFICIENT (g)

FOR Cu-Fe-Cr-Ni ALLOYS(62)

oC.-jnosition. % G, kg/cm2 a gSpecimen co Fe Cr +Ni (20 C) (10-50 C) (20- 50 C)

x 105 x 1O-6 x 10-5316 44(33.8)(a) 53(40.8) 3( 2.3) 30(23.1) 5.48 10.65 - 3.2338 36(27.7) 51(39.2) 13(10.0) 30(23.1) 6.61 8.10 - 0.3343 30'23.0) 56(43.1) 14(10.8) 30k 23.1) 6.59 7.19 + 4.8344 41(31.5) 45(34.6) 14(20.8) 40(23.1) 6.37 9.04 - 3.5347 33(25.3) 50(38.5) 17(13.1) :;0(23. i) 7.11 9.3i - 5.0

321 21(16.1) 73(56.2) 6( 4.6' 40(23.6) 5.08 1.8- +76.4

402 4( 2.8) 96(68.6) O( 0.01 40(28.6) 6 40 9.11 - 4.6430 31(22.1) 65(416.At) 4( 2.9) 40(28.6) 5.75 8.9i, - 0.9

• 433 5( 3.6) 89(63.5) 6( 4.3) 40(28.6) 6.34 7.18 + 41.9

P448 3( 2.1) 67(62.2) i0( 7.1) 40(28.6) 7.00 12. E! + 2.5

456 30(21.5) 60(42.8) I0( 7.1) 40(28.6) 6.26 9.00 - 2.9467 20(14.3) 65(45.4) 15(10.7) 40(2,3.6) 6.77 8.09 + 4.3468 25(17.-,) 60(42.8) 15(10.7) 40(28.6) 6.81 8.31 + 0.9-416 i .. 9) 87(62.1) 2( 1.4) 4u(,28.6) 5.92 0.54 +78.3

(a•) The compositions in parentheses show those in the quaternary s/stem.

t

TABLE 44. !ý]G.DITY MOD•JLUS (G) THERMAL-EXPANSION COEFFICIENT [a), AND THERMOELAS IC CCLF.FFICIENT (g)OF 3OME Co-Fec-Cr-Cu ALLOYS(62)

G, G,ComC osition, % kg/cmn a g Compositior, X kg,/cm2 g

Co Fe Cz Cu (20 C) (10-$0 C) (20"-0 C') Co Fe Cr Cu (20 C) 10"-50 C) (2&-5 C'

x 105 x !-96 x 10-5 x 105 x 10-6 x 10-550 45 0 5 6.82 1.4 49 7.5 52.5 33 9.5 5 6.24 5.87 + 4.252.5 42.5 0 5 - 10.18 --55 40 0 5 -- 10.17 -- 40 45 10 5 7.72 10.50 -35.870 25 0 5 6.77 11.59 -35.6 45 40 10 5 7.48 10.60 -45.2

50 35 10 5 6.91 6.40 + 3.040 53 2 5 -- 10.09 -- 52.5 32.5 10 5 6.57 5.55 +10.045 48 2 5 - 9.71 - 55 3() 10 5 6.5& 6.38 + 3.847.5 45.5 2 5 -- 1.00 --- 56 29 10 5 6-8 7.66 - 6850 43 2 5 -- i0.12 -- 60 25 10 5 5.97 10.23 -23.052.5 40." 2 5 - 10.305. 38 2 5 - 10.19 -- 52.5 31.5 11 5 8.26 7.23 1 L.4

33 2 5 7.82 10.51 -22.045 37.5 12.5 " 8.(, '6.72 -40.o

45 45 5 5 8.88 10.32 -24.5 50 12.5 12.5 s 9.20 12.27 -18.,50 40 5 5 7.36 10.30 -25.4 ý5 27.5 12.5 5 7.76 9.i5 -10.055 35 5 5 7.21 10.86 -32.965 25 5 5 6.97 11.62 -25.5 40 40 15 5 8.33 11.18 -46.?

45 15 5 8.69 16.72 -37.952.5 35 7.5 5 7.18 9.93 -42.3 50 15 5 8.29 15.76 -39.3

55 15 5 8.43 14.42 -•p.3

Page 71: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

64

TABLE 45. RIGIDITY MODULUS (G), THERMAL-EXPANSION O'EFFICIENT (a), AND THERMOELASTIC COEFFCIENT (1)FOR SOME o.o-2e-Cr-CL ALLOYS(65)

G,Composition. % kg/cm2 0? 9

Co Fe Cr Cu (20 C) (1O05O C) (20-50 C,

x 105 x 10-6 x 10-5

52.5 33 9.5 5 6.24 5.87 + 4.2

50 35 10 5 6.91 6.40 - 3.055 30 i0 5 6.58 6.38 + 3.8

52.5 31.5 11 5 8.26 7.23 - 1.4

52.5 32.5 10 5 6.57 5.55 +10.0

TABLE 46. RIGIDITY MODULUS (G), THERMAL-EXPANSION COEFFICIENT (f), AND THERMOELASTIC COEFFICIENT {g)OF SOME Co-Fe-V-Ni ALLOYS(65)

Co2position. % kg/cm2 of g Composition. X kg/cil 2 a g

Co Fe v N _20C) (1O- C) (2o-5 C) Co Fe v Ni (20cC) 10 C) (2-50 C)

x 105 x 10- 6 x 10-5 x 105 x 10-6 x 10-6

30.0 48.0 2 20 4.62 13.69 -35.532.5 45.5 2 20 5.43 13.09 +16.1 27.5 44.5 8 20 6.29 6.74 +28.135.0 4-4.0 2 20 5.13 12.11 +14.5 32.5 39.5 8 20 6.72 8.64 +13.0

35.0 37.0 8 20 6.92 10.01 + 5.620.0 56.0 4 20 6.15 13.81 -34.3 37.5 34.5 8 20 6.96 11.07 - 3.525.0 251.0 4 5.84 13.58 -20.6 42.5 29.5 8 20 7.11 12.41 -15.027.5 48.5 4 20 5.24 6.99 +44.230.0 46.0 4 20 4.99 8.23 +46.6 22.5 48.5 9 20 5.77 6.76 +22.635.0 41.0 4 20 5.34 11.56 + 4.0 30.0 41.. 9 20 6.99 8.33 +20.340.0 36.0 4 20 5.28 13.08 -11.2 35.0 36.0 9 20 7.04 10.18 + 2.845.0 31.0 4 20 6.07 13.64 -31.9 40.0 31.0 9 20 7.22 11.79 - 9.751.0 25.0 4 20 7,04 13.5-1 -40.5 45.0 26.0 9 20 7.69 13.55 -21.;

15.0 60,0 5 20 6.39 13.61 -31.1 15.0 55.0 10 20 7.20 20.3"7 -42.9-2,5 52.5 5 20 7.64 12.04 + 6.4 2O.O 50.0 10 20 7.50 14.3K -11.8

25.0 45.0 10 20 7.39 '5.76 -16.427.5 46.5 6 20 5.48 5.44 +33.1 32.5 37.5 10 20 7.32 10.P5 - 0.932.5 41.5 6 20 5.75 9.70 +26.4 37.5 32.5 10 20 7.34 11.34 - 9.11-.5 36.5 6 2"0 5.00 11.60 - 3.8 42.t 27.5 10 20 7.73 12.94 -18.2

42.5 31.5 6 20 6.62 13.90 -20.3 45.0 25.0 10 20 7.83 13.20 -30.347.5 26.5 6 20 7.57 14.63 -29,7

27.5 40.5 12 20 8.19 14.41 -14.715.0 58.G 7 20 6.80 20.13 -38.7 30.0 38.0 12 20 7.32 10.09 - 1.120.0 53.0 '1 20 6.26 7.17 +28.5 35.0 33.0 12 20 7.88 11.97 - 9.422.5 50.5 7 20 6.01 5.52 +50.525.0 48.0 7 K) 6.11 6.24 +31.8 20.0 47.0 13 20 7.64 19.61 -43.230.0 43.0 7 20 6.10 7.52 +23.8 25.0 42.0 13 Z0 7.62 19.75 -29.032.5 A0.5 7 20 6.12 9.10 + 6.4 30.0 37.0 13 20 7.80 18.63 -30.635.0 38.0 7 20 6.39 10.73 + 2.9 35.0 32.0 13 20 8.16 13.50 -16.437.5 35.5 7 20 6.58 11.05 - 0.6 4n.O 27.0 13 90 7.Q5 14.07 -23.840.0 33.0 7 20 6.70 11.78 - 8.945.0 28.0 7 20 7.40 13.1i -17.4 15.0 50.0 15 20 7.74 18.41 -46.648.0 25.0 7 20 7.24 11.14 -25.3

/,

Page 72: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

65TABLE 47. RIGIDITY MODULUS (G), THEiJAAL-EXPANSION COEFFICIENT (t), AND THERAOELASTIC COEFFICIENT (g)

OF SOME Co-Fe-V-Ni ALLOYS(66)

C, G,Compositton, % kg/cm2 Ce g Composition. , kg/cm2 of g"••Co Fe V Ni (20 C) (10-.50 C) (20.50 C) Co Fe V Ni (20 C) ( 10-.50 C) 2D-6, C)

x 105 x I0- 6 x 10-5 x 105 x 10- 6 x 10-50 68.0 2 30 6.89 = 17.b6 -16.5 34.0 30.0 6 30 6.83 15.93 -22.92.5 65.5 2 30 6.54 9.25 +25.35.0 63.0 2 30 5.97 5.11 +50.6 2.5 59.5 8 30 6.82 18.70 -29.77.5 60.5 2 30 5.46 1.86 +78.2 7.5 54.5 8 30 7.04 16.69 -10.5

10.0 58.0 2 30 5.32 2.57 +71.7 12.5 49.5 8 30 6.50 9.98 + 5.615.0 53.0 2 30 5.20 7.30 +36.5 15.0 47.0 8 30 6.21 9.75 +13.317.5 50.5 2 30 5.38 9.98 +17.6 17.5 44.5 8 30 6.67 11.08 +12.222 5 45.5 2 30 5.50 12.38 + 1.1 20.0 42.0 8 30 6.79 9.61 + 8.625.(, 43.0 2 30 5.73 L3 .47 - 5.6 22.5 39.5 8 30 6.84 11.29 - 1.4

30.0 38.0 2 30 6.08 13.94 -15.1 25.0 37.0 8 30 6.86 12.02 - 1.735.0 33.0 2 30 6.22 15.54 -19.5 27.5 34.5 8 30 6.10 11.92 + 0.7

: 3:c.D 30.0 8 30 6.11 15.25 - 9.3S2.5 63.5 4 ,J) 5.24 2.11 +72.5S5.0 61.0 4 30 6.14 6.44 +27.2 0 60.0 10 30 7.37 22.63 -34.0

7.5 58.5 4 30 5.68 5.57 +41.5 5.0 55.0 10 30 8.00 18.60 -23.6* 10.0 56.0 4 30 5.69 4.36 +53.5 15.0 45.0 10 30 6.85 12.43 + 1.4

12.5 53.5 4 30 5.84 6.17 +56.9 20.0 40.0 10 30 7.08 11.63 - 0.717.5 48.5 4 30 5.65 8.61 +25.5 25.0 35.0 10 30 7.25 12.28 - 6.720.0 46.0 4 30 5.84 12.03 + 2.8 30.0 30.0 10 30 7.36 16.84 -22.522.5 43.5 4 30 5.77 12.27 - 0.325.0 41.0 4 30 6.00 12.01 - 4.4 2.5 55.5 12 30 7.18 20.22 -30.627.5 38.5 4 30 6.12 12.05 -13.7 7.5 50.5 12 30 7.38 18.45 -23.330.0 36.0 4 30 6.44 13.26 -17.6 12.5 45.5 12 30 7.70 13.25 -17.6

17.5 40.5 12 30 7.37 16.77 -18.60 64.0 6 30 7.04 23.20 -35.8 22.5 35.5 12 30 7.88 13.22 -10.15.0 59.0 6 30 6.6L 14.82 -24.3 28.0 30.0 12 30 7.97 12.94 -18.17.5 56.5 6 30 6.54 9.06 + 4.3 35.0 23.0 12 30 - 10.95 -

12.5 51.5 6 30 5.8" 7.13 +33.0

"15.0 49.0 6 30 6.20 7.60 + 8.9 0 55.0 15 30 - 21.03 -17.5 46.5 6 30 6.12 9.58 +17.6 5.0 50.0 15 30 7.11 20.70 -32.220.0 44.0 6 30 6.24 9.82 + 8.025.X 39.0 6 30 6.60 11.86 - 7.8

TABLE 48. RIGIDITY MODULUS (G). THEEWAAL-EXPANSION COEFFICIENT (a), AND THEFMOELASTIC COEFFICIENT (g)OF "MOELINVARS", Co-Fe-Mo-Ni ALLOYS(55)

G,Composition. % kg/cm2 9 g

Co Fe Mo Ni (20 C) (20-60 C) (20-50C)

x 105 x 10-6 x 10- 5

57.5 27.5 15.0 0.0 6.99 +7.54 -2.350.0 32.5 17.5 0.0 7.50 +9.57 -0.245.0 35.0 10.0 10.0 6.27 +8.47 '-0.740.0 35.0 15.0 10.0 6.14(a) +7.06 +3.320.0 55.0 5.0 20.0 7.75 +7.00 +4.235.0 35.0 10.0 20.0 6.81 -.Q.58 -3.725.0 40.0 15.0 20.0 7.53 +7.49 +4.730l.o 35.0 15.0 20.0 7.34 +8.74 +3.020.0 40.0 20.0 20.0 7.85 +8.40 +0ý920.0 45.0 5.0 30.0 5.98 +8.68 40.9

5.0 50.0 15.0 30.0 7.59 +8.88 -1.210.0 45.0 15.0 30.0 8.O0(8) -9.78 -0.415.G 40.0 15.0 30.0 7.20 +8.55 -2.65.0 45.0 20.0 30.0 7.41 +9.11 -2.7

(a) Small temperatu-e coefficients of modulus and large rigidity modulus.

Page 73: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

66TABLE 49. RIGIDITY MODULUS (G), 1HEMAL-EXPANSION O)EF•ICIE ) AND THE!ELASMIC COEFFICIENT (g)

OF Co-Fe-Cr ALLOYS WITH AN ADDITION OF 20 PEWSK OF NIa•( 63)

G, G,Cgomositin. % kg/cm2 of g C) osti5n.C kq/5 2 0

Co Fe Cr +N! (20 C) ( 10- C) (20-.60 C)Co F e Cr +Ni. (20 C) (10-50 C) (2050C)

x 105 x 10-6 x 10-5 x 105 x 10-6 x 10-520 80 0 20 6.86 10.46 -27.1 43 47 10 20 7.39 7.81 + 3.530 70 0 20 7.86 10.87 -26.9 45.5 44.5 10 20 7.53 7.77 - 6.243 57 0 20 6.09 11.08 -24.7 m 40 i0 20 6.44 9.41 -13.655 45 0 20 5.51 11.52 -16.5 55 35 10 20 6.48 10.57 -18.860 40 0 20 5.99 12.05 -24.7 60 30 10 20 6-60 12.00 -24.965 35 0 20 6.14 12.37 -26.9

20 67 13 20 7.64 17.62 -43.7

28 68 4 20 6.84 11.66 -29.0 23.5 63.5 13 20 7.44 16.23 -37.133.5 62.5 4 20 6.85 11.35 -31.0 26.5 60.5 13 20 7.00 13.40 -22.636 60 4 20 6.20 10.65 -23.3 29 b8 13 20 6.82 10.47 + 4.141 55 4 20 6.36 9.22 -25.4 31.5 55.5 13 20 6.96 7.66 +11.643.5 52.5 4 20 5.94 8.61 +15.1 34 53 13 20 7.26 6.88 + 8.346 50 4 20 6.04 8.21 + 7.8 36.5 50.5 13 20 6.90 5.95 +20.448.5 47.5 4 20 5.88 8.87 - 4.1 39 48 13 20 7.42 6.17 + 9.753 43 4 20 6.27 --.2! -18.8 41.5 45.5 13 20 7.78 7.72 + 0.858 38 4 20 6.29 11.95 -22.1 44 43 13 20 6.82 7.79 - 2.860.5 35.5 4 20 6.11 11.75 -25.4 46.b 40.5 13 20 6.89 8.34 - 8.7

52 35 13 20 7-02 9.64 -16.624 69 7 20 6.04 11.02 -33.1 56 31 13 20 7.06 10,o. -23.029.5 63.5 7 20 5.15 9.25 -i0.432 61 7 20 5.09 7.75 + 0,3 25 59 16 20 8.09 i6.40 -38.434.5 58.5 7 20 5.80 3.23 +o6,0 27.5 56.5 16 20 7.85 16.20 -36.537 56 7 20 6.15 5.79 +37.4 30 54 16 20 7.86 14.68 -35.039.5 53.5 7 20 6.69 6.82 -25.1 32.5 51.5 16 20 7.96 13.41 -23.644.5 48.5 7 2C 6.79 9.48 + 2.9 35 49 16 20 7.91 9.64 -3.647 6 " 20 5.76 9.18 - 9.3 37e5 46.5 16 20 7.42 9.61 - 7.149.5 43.5 7 20 7.04 9.76 - 9.4 40 44 ]6 20 7.12 9.39 - 4.753 40 7 20 6.02 10.77 -11.5 42.5 41.5 16 20 7,36 8.92 - 0.659 34 7 20 6.29 11.03 -24.8 45 39 16 20 7.44 8.93 + 1.3

47 37 '6 20 7.03 9.09 - 4,230 61.5 13.5 20 6.16 2.04 134.0 el 35 16 20 7.33 9.68 -ii.231.3 60.2 8.5 20 6-09 1.69 +35.3 54.5 29.5 16 20 7.36 10.54 -14,5

31 tO 9 20 6.24 2.88 +39.0 20 61 19 20 8.04 16.84 -50.826 55 19 20 8.32 35.98 -44,2

20 70 10 20 7.39 17.91 -43.4 28.5 52.5 19 20 8,18 15.70 -40.722.5 67.5 10 20 7.20 16.18 -26.0 31 50 19 20 7.88 15.31 -35.625 65 10 20 7.30 12,01 -19.6 36 45 19 20 7.87 14.61 -39.528 52 10 20 7.03 5.57 +19.6 41 40 19 20 8.36 14.09 -41.830.5 59.5 10 20 6.70 3.73 +36.2 43.5 37.5 19 20 7.58 12.22 -22.633 57 i0 20 7.02 3.88 +31.6 46 35 19 20 7.62 12.33 -21.135.5 54.5 10 20 6.70 4.91 +24.0 t,).5 30.5 19 20 7.16 10.86 - 4.738 52 10 20 6.98 5.98 + 9.3 t5.5 25.5 19 20 7.73 12.39 -14.4i40.5 49.5 10 20 6.81 6.4. + 9.9

I

Page 74: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

67TABLE 50. RIGIDITY MODULUS (G), THEMAL-EXPANSION COFFICIENT ((Y, AND THEM•OELASTIC COEFFICIENT (g)

OF rERNARY Co-Fe-Cr ALLOYS(61)

G,Comoosi tion. kg/cm2 a g

Co Fe Cr (20 C) (20D-W C) (20-W0 C)

x 10-5 x 10-5 x 10-560 40 0 7.00 9.6 -18.965 35 0 7.66 9.6 -23.075 25 0 7.19 10.5 -34.380 2C' 0 60.71 11.7 -37.090 I1c 0 6.52 11.7 -22.2

50 45 5 9.34 9.3 -22.155 40 5 9.09 9.5 -25.765 30 5 7.01 9.6 -29.870 25 5 6.48 9.7 -33.775 20' 5 6.67 10.7 -33.480 15 5 6.77 10.5 -39.385 10 5 7.58 11.4 -39.2

55 37 8 7.28 6.0 +23.457 35 8 7.20 3.1 +17.960 32 8 6.55 6.6 - 2.565 27 8 5.92 8.0 -.17.5

54 36.5 9.5 7.35 0.1 +35.9

50 40 10 7.03 12.0 -44.851.5 38.5 10 7.70 8.7 -31.553 37 10 7.V, 0.2 +11.455 35 10 7.24 1.4 +28.957 33 10 6.98 3.8 +17.657.5 32.5 10 6.94 .3.5 +10.158.5 31.5 10 7.11 5.4 •- 5.160 30 10 7 04 5.1 -0.2( 25 i0 ',.97 7.5 -17.270 20 10 7,14 8.3 -26.175 15 IC 7.34 9.5 -28.980 10 10 7.53 13.5 -31.9

51 37 12 8.41 13.1 -42.955 33 12 8.30 12,0 -23.057 31 12 8.09 6.0 + 6.558.5 29.5 12 7.74 6.0 + 1.060 28 12 7.44 7.6 - 4.363 25 12 7.39 7.8 -12.365 23 12 7.78 8.0 -16.0

50 35 15 8.57 16.0 -49.852.5 32.5 15 8.31 15.6 -42.7;• •55 30 15 8.42 15.4 -34.8

;-• •60 2 5 15 8.16 14.0 - 0.9S t65 20 15 8.09 9.5 -30.1

S70 15 15 8.21 10.2 -37.0

50 30 20 9.12 16.3 -45.460 20 20 8.75 14.8 -44,7

-----/=====• , . _ •_ I

Page 75: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

68TABL-z 51. RIGIDITY moI3uI•Is (G), TH MAL-.VANSION ODEFFICIENT (V6, AND THEWELASTIC OOEFFICIENT (g)

FOR Cc-*e-V-Ni ALLOYS CONTAINING 9.1 PERr.INT OF NIMal( 66)

G, G,Cc. w[sition. % kg/cm2 2 g Com. ion. % kg/cM2 (x g

Co Fe V Ni (20 C) (10-W C) (20-W C) Co Fe V Ni (23 C) (10.-0 C) (20,,O C)

x 105 x 10-6 x 10-5 x 1,;5 x 10-6 x 10-529.1 61.8 0 9.1 8.70 10.53 -25.3 40.9 42.7 7.3 9.1 5.84 4.38 +42.938.2 52.7 0 9.1 8.4.J 10.57 -20.8 42.7 40.9 7.3 9.1 5.72 7.59 +30.343.6 47.3 0 9.1 7.98 11.05 -21.6 45.4 38.2 7.3 9.1 5.61 8.59 +20.550.9 40.0 0 9.1 7.58 11.06 -25.4 47.3 3b.3 7.3 9.1 5.84 8.55 +16.054.6 36.3 0 9.1 7.02 10.92 -27.9 50.0 33.6 7.3 9.1 6.20 10.80 + 4.858.2 32.7 0 9.1 7.02 9.91 -24.7 54.5 29.1 7.3 9.1 7.13 12.61 -22.163.6 27.3 0 9.1 6,35 11.78 -33.668.2 22.7 0 9.1 6.28 12.55 -33.4 40.9 41.8 8.2 9.1 6.63 7.72 +15.3

43.6 39.1 8.2 9.1 6.49 6.89 +19.152.7 35.5 2.7 9.1 7.00 13.16 -35.6 45.5 37.2 8.2 9.1 6.21 7.48 +22.0

47.3 J5.4 8.2 9.1 6.22 8.50 +16.531.3 54.6 4.5 9.1 7.50 10.94 -30.4 49.1 33.6 8.2 9.1 6.02 9.88 -:- 8.1

* 36.4 50.0 4.5 9.1 7.32 10.87 -33.3 50.9 31.8 8.2 9.1 6.83 10.98 + 1.040.9 45.5 4.5 9.1 7.10 13.60 -36.445.5 40.9 4.5 9.1 6.80 14.00 -37.7 31.8 50.0 9.1 9.1 6.63 19.79 -48.650.0 36.4 4.5 9.1 5.29 12.19 - 2.1 36.3 45.5 9.1 9.1 6.85 19.27 -41.0

51.8 34.6 4.5 9.1 5.50 11.92 -10.1 40.9 'J.9 9.1 9.1 6.85 14.30 -15.054.6 31.8 4.5 9.1 5.80 11.49 -10.3 43.6 38.2 9.1 9.1 6.89 7.81 +16.359.1 27.3 4.9 9.1 6.61 14.07 -26.1 45.5 36.3 9.1 9.1 7.21 10.27 +13.0

50.0 31.8 9.1 9.1 7.08 10.57 - 4.436.3 48.2 6.4 9.1 7.00 14.28 -38.3 54.5 27.3 9.1 9.1 7.60 13.45 -15.639.1 15.4 6.4 9.1 6.79 13.97 -36.940.9 43.6 6.4 9.1 6.66 10.48 -33.3 45.5 34.5 10.9 9.1 8.37 17.33 -27.343.6 40.9 6.4 9.1 5.74 4.23 +36.445.4 39.1 6.4 9.1 5.62 7.38 +22.9 31.8 46.4 12.7 9.1 7.93 20.43 -36.3

* 48.2 36.3 6.4 9.1 6.04 7.48 +11.4 36.4 41.8 12.7 9.1 8.44 19.05 -43.450.0 34.5 6.4 911 5.91 10.93 + 2.5 40.9 37.3 12.7 9.1 8.40 20.25 -39.352.7 31.8 6.4 9.1 6.25 10.85 - 9.3

45.5 31.8 13.6 9.1 7.96 19.78 -39.438.2 45.4 7.3 9.1 6.C3 13.88 -36.9 50.0 27.3 13.6 9.1 8.35 11.60 -25.1

TABLE 52. RIGIDITY MODULUS 0G) THET&AL-EXPANSION COEFFICIENT (a), AND THERMOELASTIC COEFH!CIEHT (g)OF V ALLYS 5

Compcsitionla ) G, G,% kg/cm2 a g £c'wition, % kg/cm2 c g

Co V (20 C) (10-0 C) (20-, C) Co V (20 C) (10-50 C) (20-5 C)

x 105 x I0- 6 x 10-5 x 105 x 10-6 x I0-560 0 7.00 9.57 -i8.9 65 8(7.9) 6.81 9.95 -12.365 0 7.66 9.72 -23.0 70 8(7.7) 7.05 11.36 -24.875 0 7.19 10.72 -34.380 0 6.71 11.75 -37.0 54 9(9.2) 6.53 9.98 -11.4

56 9(8.7) 6.32 3.94 +31.555 5(5.0) 8.08 9.8i -27.1 58 9(8,7) 6.22 3.96 +26.960 5(5.1) 7.63 10.18 -28.6 60 9(8.8) 6.14 6.12 +11.565 5(4.7) 7.03 10.48 -38.2 62 9(8.7) 6.46 8.74 - 4.370 5(5.1) 5.76 10.64 -24.475 5(5.0) 6.71 11.02 -32.3 50 10(9.9) 6.96 11.36 -37.4

55 10(10.0) 7.06 13.06 -27.155 7(6.8) 7.18 10.06 -34.1 56 10(10.1) 7.27 14.29 -35.958 7(6.9) 6.94 10.30 -36.5 58 10(10.0) 6.42 5.34 +15.860 7(7.0) 6.77 10.10 -38.P 60 10(10.2) 6.66 8.07 - 0.062 7(6.4) 5.94 9.39 - 1.1 65 10(9.9) 6.72 9.84 -14.963 7(7.0) 5.40 8.52 - 6.7 70 10(10.1) 7.70 11.63 -25.865 '(7.0) 6.06 9.24 -13.868 7(7.1) 6.09 9.9f -20.4 56 11(11.3) 6.64 15.60 -45.4

58 11(11.3) 7.26 12.55 -21.052 8(8.1) 7.51 9.98 -34.2 60 11(11.1) 7,77 10.70 -15.855 8(7.9) 6.94 9.82 -33.157 8(7.8) 5.93 9.11 -32.7 65 12(12.2) 7.99 11.20 -28.959 8(8.0) 5.94 6.06 -15.161 8(7.9) 5.78 7.77 + 0.5 55 13(13.1) 8.46 14.62 -43.463 8(7.9) 6.77 8.56 - 1.6 60 13(13.2) 7.68 12.80 -30.0

(a) Balance iron.

Page 76: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

69

TABLE 53. YOUNG*S MODULUS (E), THERMAL-EXPANSIONCOEFFICIENT (t), AND THEROE&LASTICCOEFFICIENT (e) OF SCkE Co-Fe-CrALLOyS(54)

Speci- Composition, % E, o, OAmen Co Fe Cr kg/cm2 20-,60 C 0,50 C

x 105 x 10-6 x 10-51 60 40 0 - 9.6 -22.52 65 35 0 19.5 9.6 -19.53 75 25 0 18.3 10.5 -22.24 80 20 0 16.7 11.7 -29.55 90 10 0 19.9 11.7 -35.1

6 50 45 5 21.6 9.3 -21.07 55 40 5 23.1 9.5 -23.18 65 30 5 19.6 9.6 -26.79 70 25 5 17.4 9.7 -28.7

10 75 20 5 18.3 10.7 -33.011 80 15 5 19.7 10.5 -33.412 85 10 5 19.7 11.4 -34.6

13 55 37 8 18.0 6.0 + 5.514 57 35 8 16.0 3.1 + 1.7 TABLE 54. RIGIDITY MODULUS (G), THERMAL-EXPANSION15 60 32 8 14.9 6.6 -12.4 COEFFICIENT ('), AND THERMOELASTIC16 65 27 8 17.4 8.0 -21.7 COEFFICIENT (g) FOR VELINVARS(55)

17 54 36.5 9.5 16.4 0.1 +28.3

18 50 40 10 22.4 12.0 -31.8 G,

19 51.5 38.5 10 19.2 8.7 - 1.0 Speci- kg/m 2 ct g

20 53 37 10 17.1 0.2 "+32.0 men Co, % V, % (20 C) I0--00 C 20-50 C

21 55 35 10 - 1.4 +29.2 x 105 x 10-6 x 10-522 57 33 10 17.5 3.8 + 9.6 14 63 7(7.0) 5.40 9.52 - 6.723 57.5 32.5 10 16.7 3.5 + 1.2 21 61 8(7.9) 5.78 7.77 + 0.524 58.5 31.5 10 17.6 5.4 + 4.1 22 63 8(7.9) 6 77 8.56 - 1.625 60 30 10 17.4 5.1 -15.5 29 62 9(8.7) 6.46 8.74 - 4.326 65 25 10 id.5 7.5 -19.8 34 60 10( 10.2) 6.66 8.07 - 0.0327 70 20 10 18.1 8.8 -26.4 26 56 9(8.7) 6.32 3.94 +31.528 75 15 10 18.4 9.5 -27.9

29 80 10 10 -- 13.5 -31.9

30 51 37 12 -- 13.1 - 5.131 51.5 36.5 12 20.8 12.0 +60.432 55 33 12 18.6 12.0 +37.033 57 31 12 19.5 6.0 +25.834 58.5 29.5 12 .9.6 6.0 + 4.435 60 28 12 -- 7.6 - 2.436 63 25 12 19.4 7.8 - 9.937 65 23 12 19.8 8.0 -16.2

38 52.5 35 12.5 18.7 13.0 +30.3

39 50 35 35 21.3 16.0 -36.440 52.5 32.5 15 -- 15.6 -34.141 55 30 15 19.9 15.4 -29.9

42 60 25 15 22.3 14.0 -19.643 65 20 15 22.2 9 5 - 8.544 70 15 15 22.6 10.2 -17.745 75 10 15 24.4 10.3 -21.5

46 50 30 20 18.5 16.3 -53.247 60 20 20 16.7 14.8 -36.848 70 0 20 16.7 10.5 --33.4

__ _ _ _ _ _ _ __ _ _ _ _ _ _

Page 77: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

70

TABLE- 55. COEFFICIENTS OF LINEAR(a) THERMAL EXPANSION OF JiEMICAL ELEMENTS (CRYSTALS) (80)

*Temperature or Coefficient of-Linear Thermal Expansion per CElement Temperature Range, C Parallel to A.-,Is Perpendicular to Axis

* Thermal ExoansionOsmium + 50 X 10-6 x 10-6

250 5.8 /1.0500 6.6 4.6

Rhenium 20 to 1917 8.3 5.8

Ruthenium 50 1.250 8.8 5.9550 9.8 6.4

Selenium 15 to 55 11.7 7.620 to 60 -17.9

Tellurium 20 -- 74.120 to 6C - 1.6 27.2

Thallium 32 to 91 - 1.7 27.0

Tin -195 to 20 +72 90 to 20 25.9 14.1

+ 14 to 25 29.0 15.8:34 to 194 32.2 16.8

Zinc -190 to 18 45.8 25.7

+- 20 to '100 49.5 11.30 to 250 64.0 14.1

20 to 400 56 15Zirconium 0 to 100 59 16

4 13Anrcimony -215 to 4-2J 16.0 7.0

+ 15 to 2515.6

20 to 200 -8.420 to 400 8.1

Arsenic 30 to 75 3.2 to 6.8Beryllium -150 1.6 2.8

+ 10 8.6 11.718 to 220 10.4 15.018 to 454 13.1 15.7

Bismuth -140 15.9 10.5+ 4 30 16.2 11.6

20 to 260 16.5 --20 to 240 [ 2.0

Cd.1-190 to 18 48.2 18.5120 to 100 50.4 18.9

"-h, -1q5 to 0 -- 4.80 to 40 -- 6.60 to 'ý00 17.2 1.3(0 to 1wuj 18.C 1.80 1500 20.7 2.0

t- 300 23.1 2.420 t, 26.7 --

3- 'ot 10f, 16.1 12.6indium -. 56 13

Mawr In . tu 100 26.4 25.620 t,, 27.7 26.6

*Mercury .'-0 to -1jA>0 42.o 33.4i, to -79 47.0 37'.5 A

49.6 3.

Tý feýrp is ran-t. ation of -rxstais in a polycry-ctali~no elewrnt such is anti-* '.~or .adrd.u-, the f-lnt of ''-ar expansion of . co>l'ciysta~llne elevient rmai

be .omj. til from the .,, win'q -uatior; a r l3(aII 4 2fy;;, -N ere all is the coefficientof linear -xp.ansion of u., -r~gt para, t its axis, !.-.d al is the coefficient ofJlinear exj.3rision of trip cry4.tal in 'he dir' tion perpendiculjay to its axins.

Page 78: UNCLASSIFIED AD NUMBER - DTIC · repo e.g., interim, progress, summary, antual, or final. If the report has been furnished to tht Office of Technical Give the inclusive dates when

..- • , - . . . " -•

LIST OF ID4IC '[EM0CRANDA ISSUEDDEFENSE !"PTALS INFORMATION CENTER

Battelle Memorial Institute505 King Avenue

Columbus, Ohio 432D1

Copies of the memoranda listed below may be oktained, %wile the supply lasts, from DMIC at no:ost by Government agencies, and by Government contractors, subcoitractors, and their suppliers. Quali-fled requestcrs may also order copies of these memoranda from the Defense Documentation Center (DDC),Cameron Stat on, Bulloing 5, 5010 Duke Street, Alexandria, Virgi-ia 22314. A complete listing of

*i, previously issued DMIC memoranda may be obtained by writing DMIG.

NImber _Title

203 Recent Information on Long-Time Creep Data for Columbium Alloys, April 26, 1965204 SVmmary of the Tenth Meeting of the Refractory Composites Working Group, May t, 1965 (AD 465260)205 Corrosion Protection of Mdlnesium and Magnesium Alloys, June 1, 196D206 Beryllium Ingot Sheet, AugLSt 10, 1965

* k

JI