ultra-fast silicon...

22
Ultra-Fast Silicon Detector 1 The “4D” challenge A parameterization of time resolution LGAD sensors for timing measurements First results with laser and MIPs Future directions Nicolo Cartiglia, INFN, Torino - UFSD - IEEE 2014 Nicolo Cartiglia With LGAD group of RD50, FBK and Trento University, Micro-Electronics Turin group Rome2 - INFN.

Upload: others

Post on 15-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ultra-Fast Silicon Detectorpersonalpages.to.infn.it/~cartigli/NC_site/Seminars_files/IEEE14_UFSD_Cartiglia.pdf2 sensors C Det R Bias i R S N_Det i N_Amp e N_Amp e N_S i N_Bias Detector

Ultra-Fast Silicon Detector

1

•  The “4D” challenge

•  A parameterization of time resolution

•  LGAD sensors for timing measurements

•  First results with laser and MIPs

•  Future directions

Nic

olo

Ca

rtig

lia, I

NFN

, To

rino

- U

FSD

- IE

EE 2

014

Nicolo Cartiglia

With LGAD group of RD50, FBK and Trento University, Micro-Electronics Turin group

Rome2 - INFN.

Page 2: Ultra-Fast Silicon Detectorpersonalpages.to.infn.it/~cartigli/NC_site/Seminars_files/IEEE14_UFSD_Cartiglia.pdf2 sensors C Det R Bias i R S N_Det i N_Amp e N_Amp e N_S i N_Bias Detector

The 4D challenge

2 Nic

olo

Ca

rtig

lia, I

NFN

, To

rino

- U

FSD

- IE

EE 2

014

Is it possible to build a detector with concurrent excellent time and position resolution?

Can we provide in the same detector and readout chain:

•  Ultra-fast timing resolution [ ~ 10 ps] •  Precision location information [10’s of µm]

Page 3: Ultra-Fast Silicon Detectorpersonalpages.to.infn.it/~cartigli/NC_site/Seminars_files/IEEE14_UFSD_Cartiglia.pdf2 sensors C Det R Bias i R S N_Det i N_Amp e N_Amp e N_S i N_Bias Detector

3

Time Resolution

Assuming constant noise, to minimize time resolution we need to maximize the S/tr term

(i.e. the slew rate dV/dt of the signal)

è We need large and short signals ç

with S/tr = dV/dt = slew rate, N = system noise , Vth = 10 N

Nic

olo

Ca

rtig

lia, I

NFN

, To

rino

- U

FSD

- IE

EE 2

014

σ t2 = ([

Vth

S/tr

]RMS )2 + ( NS/tr

)2 + (TDCbin

12)2

Time Walk Jitter TDC Binning

Time is set when the signal crosses the comparator threshold

Page 4: Ultra-Fast Silicon Detectorpersonalpages.to.infn.it/~cartigli/NC_site/Seminars_files/IEEE14_UFSD_Cartiglia.pdf2 sensors C Det R Bias i R S N_Det i N_Amp e N_Amp e N_S i N_Bias Detector

The “Low-Gain Avalanche Detector” project

4 Nic

olo

Ca

rtig

lia, I

NFN

, To

rino

- U

FSD

- IE

EE 2

014

Is it possible to manufacture a silicon detector that looks like a normal pixel

or strip sensor, but

with a much larger signal (RD50)?

Poster Session N26-13

You can still see it!! J

-  730 e/h pair per micron instead of 73 e/h

-  Finely segmented

-  Radiation hard

-  No dead time

-  Very low noise (low shot noise)

-  No cross talk

Page 5: Ultra-Fast Silicon Detectorpersonalpages.to.infn.it/~cartigli/NC_site/Seminars_files/IEEE14_UFSD_Cartiglia.pdf2 sensors C Det R Bias i R S N_Det i N_Amp e N_Amp e N_S i N_Bias Detector

LGADs Detectors

5

The LGAD sensors, as proposed and manufactured by CNM

(National Center for Micro-electronics, Barcelona)

High field obtained by adding an extra p+ doping layer below the n+

implant: E ~ 300 kV/cm, closed to breakdown voltage

Gain layer High field

Nic

olo

Ca

rtig

lia, I

NFN

, To

rino

- U

FSD

- IE

EE 2

014

LGAD

Page 6: Ultra-Fast Silicon Detectorpersonalpages.to.infn.it/~cartigli/NC_site/Seminars_files/IEEE14_UFSD_Cartiglia.pdf2 sensors C Det R Bias i R S N_Det i N_Amp e N_Amp e N_S i N_Bias Detector

6

Signals in no-gain diode and LGAD sensors (Simplified model for pad detectors)

Nic

olo

Ca

rtig

lia, I

NFN

, To

rino

- U

FSD

- IE

EE 2

014

d

+ -+ -

+ -+ -

+ -

i(t)

thin thick S

tr

d

dVdt

~ Str

~ const

No-gain diode: fix slew rate

LGAD: slew rate proportional to G/d

dVdt

∝Gd

i(t)

thin

medium

t t1 t2 t3

thick

+ - ++

--

Page 7: Ultra-Fast Silicon Detectorpersonalpages.to.infn.it/~cartigli/NC_site/Seminars_files/IEEE14_UFSD_Cartiglia.pdf2 sensors C Det R Bias i R S N_Det i N_Amp e N_Amp e N_S i N_Bias Detector

How can we progress? Need simulation

7 Nic

olo

Ca

rtig

lia, I

NFN

, To

rino

- U

FSD

- IE

EE 2

014

We developed a full simulation

program to optimize the

sensor design, WeightField2,

(http://cern.ch/weightfield2 )

It includes: •  Custom Geometry •  Calculation of drift field and

weighting field •  Currents signal via Ramo’s

Theorem •  Gain •  Diffusion •  Temperature effect •  Non-uniform deposition •  Electronics

Poster Session N11-8

You can still see it J

Page 8: Ultra-Fast Silicon Detectorpersonalpages.to.infn.it/~cartigli/NC_site/Seminars_files/IEEE14_UFSD_Cartiglia.pdf2 sensors C Det R Bias i R S N_Det i N_Amp e N_Amp e N_S i N_Bias Detector

8

Slew rate as a function of sensor thickness

Weightfield2

simulation

Nic

olo

Ca

rtig

lia, I

NFN

, To

rino

- U

FSD

- IE

EE 2

014

300 micron: ~ 2-3 improvement

with gain = 20

Significant improvements in time resolution require thin detectors

Large slew rate, good time resolutions

Page 9: Ultra-Fast Silicon Detectorpersonalpages.to.infn.it/~cartigli/NC_site/Seminars_files/IEEE14_UFSD_Cartiglia.pdf2 sensors C Det R Bias i R S N_Det i N_Amp e N_Amp e N_S i N_Bias Detector

9 Nic

olo

Ca

rtig

lia, I

NFN

, To

rino

- U

FSD

- IE

EE 2

014

First Measurements and future plans

LGAD laboratory measurements

•  Gain

•  Time resolution measured with laser signals

LGAD Testbeam measurements

•  Landau shape at different gains

•  Time resolution measured with MIPs

Page 10: Ultra-Fast Silicon Detectorpersonalpages.to.infn.it/~cartigli/NC_site/Seminars_files/IEEE14_UFSD_Cartiglia.pdf2 sensors C Det R Bias i R S N_Det i N_Amp e N_Amp e N_S i N_Bias Detector

10 Nic

olo

Ca

rtig

lia, I

NFN

, To

rino

- U

FSD

- IE

EE 2

014

Signal amplitude

Reference sensor

Gain ~ 10

Using laser signals we are able to measure the responses of

several LGAD and no-gain sensors

Spread due to

different doping

Page 11: Ultra-Fast Silicon Detectorpersonalpages.to.infn.it/~cartigli/NC_site/Seminars_files/IEEE14_UFSD_Cartiglia.pdf2 sensors C Det R Bias i R S N_Det i N_Amp e N_Amp e N_S i N_Bias Detector

11

Laser Measurements on CNM LGAD We use a 1064 nm picosecond laser to emulate the signal of a MIP particle (without Landau Fluctuations)

The signal output is read out by either a Charge sensitive amplifier or a Current Amplifier (Cividec)

Nic

olo

Ca

rtig

lia, I

NFN

, To

rino

- U

FSD

- IE

EE 2

014

σt ~ 140 ps @ 800 Volts

Page 12: Ultra-Fast Silicon Detectorpersonalpages.to.infn.it/~cartigli/NC_site/Seminars_files/IEEE14_UFSD_Cartiglia.pdf2 sensors C Det R Bias i R S N_Det i N_Amp e N_Amp e N_S i N_Bias Detector

12

Testbeam Measurements on CNM LGAD

In collaboration with Roma2, we went to Frascati for a testbeam using 500 MeV electrons

Nic

olo

Ca

rtig

lia, I

NFN

, To

rino

- U

FSD

- IE

EE 2

014

300 micron thick, 5 x5 mm pads

Gain @ 800VGain @ 400V

~ 11.26.5

~ 1.7

The gain mechanism

preserves the Landau

amplitude distribution of

the output signals

As measured in the lab, the gain ~

doubles going from 400 -> 800 Volt.

Page 13: Ultra-Fast Silicon Detectorpersonalpages.to.infn.it/~cartigli/NC_site/Seminars_files/IEEE14_UFSD_Cartiglia.pdf2 sensors C Det R Bias i R S N_Det i N_Amp e N_Amp e N_S i N_Bias Detector

13

Testbeam Measurements on CNM LGAD

Time difference between two LGAD detectors crossed by a MIP

Nic

olo

Ca

rtig

lia, I

NFN

, To

rino

- U

FSD

- IE

EE 2

014

σt ~ 190 ps @ 800 Volts

Tested different types of electronics (Rome2 SiGe, Cividec), Not yet optimized for these detectors

Page 14: Ultra-Fast Silicon Detectorpersonalpages.to.infn.it/~cartigli/NC_site/Seminars_files/IEEE14_UFSD_Cartiglia.pdf2 sensors C Det R Bias i R S N_Det i N_Amp e N_Amp e N_S i N_Bias Detector

14

Present results and future productions N

ico

lo C

art

iglia

, IN

FN, T

orin

o -

UFS

D -

IEEE

201

4

With WF2, we can reproduce very well the laser and testbeam results. Assuming the same electronics, and 1 mm2 LGAD pad with gain 10, we can predict the timing capabilities of the next sets of sensors.

Current Test beam results and simulations

Next prototypes

Effect of

Landau

fluctuations

Page 15: Ultra-Fast Silicon Detectorpersonalpages.to.infn.it/~cartigli/NC_site/Seminars_files/IEEE14_UFSD_Cartiglia.pdf2 sensors C Det R Bias i R S N_Det i N_Amp e N_Amp e N_S i N_Bias Detector

15

Splitting gain and position measurements N

ico

lo C

art

iglia

, IN

FN, T

orin

o -

UFS

D -

IEEE

201

4

The ultimate time resolution will be obtained with a custom ASIC.

However we might split the position and the time measurements

Page 16: Ultra-Fast Silicon Detectorpersonalpages.to.infn.it/~cartigli/NC_site/Seminars_files/IEEE14_UFSD_Cartiglia.pdf2 sensors C Det R Bias i R S N_Det i N_Amp e N_Amp e N_S i N_Bias Detector

UFSD – Summary

16 Nic

olo

Ca

rtig

lia, I

NFN

, To

rino

- U

FSD

- IE

EE 2

014

•  Low-gain avalanche diodes offer silicon sensors with an enhanced

signal amplitude

•  The internal gain makes them ideal for accurate timing studies

•  We measured 140 ps resolution with laser and 190 ps with MIPS

(300 µm sensors)

•  We are manufacturing thin LGAD optimized for time resolution.

With non-optimized electronics we predict <50 ps resolution for a

50 µm thick, 1 mm2 pad.

•  Ultimate time resolution (~10-20 ps) requires custom ASIC design.

Timescale:

300- and 200- micron sensors: Winter 2014

100- and 50- micron sensors: Summer 2015

Page 17: Ultra-Fast Silicon Detectorpersonalpages.to.infn.it/~cartigli/NC_site/Seminars_files/IEEE14_UFSD_Cartiglia.pdf2 sensors C Det R Bias i R S N_Det i N_Amp e N_Amp e N_S i N_Bias Detector

17

This work was developed in the framework of the CERN RD50 collaboration and partially financed by the Spanish Ministry of Education and Science through the Particle Physics National Program (F P A2010−22060−C 02−02 and FPA2010 − 22163 − C02 − 02). The work at SCIPP was partially supported by the United States Department of Energy, grant DE-FG02-04ER41286.

Acknowledgement N

ico

lo C

art

iglia

, IN

FN, T

orin

o -

UFS

D -

IEEE

201

4

This research was carried out with the contribution of the Ministero degli Affari Esteri, “Direzione Generale per la Promozione del Sistema Paese” of Italy.

Page 18: Ultra-Fast Silicon Detectorpersonalpages.to.infn.it/~cartigli/NC_site/Seminars_files/IEEE14_UFSD_Cartiglia.pdf2 sensors C Det R Bias i R S N_Det i N_Amp e N_Amp e N_S i N_Bias Detector

18 Nic

olo

Ca

rtig

lia, I

NFN

, To

rino

- U

FSD

- IE

EE 2

014

Backup

Page 19: Ultra-Fast Silicon Detectorpersonalpages.to.infn.it/~cartigli/NC_site/Seminars_files/IEEE14_UFSD_Cartiglia.pdf2 sensors C Det R Bias i R S N_Det i N_Amp e N_Amp e N_S i N_Bias Detector

19

Laser split into 2

Noise N

ico

lo C

art

iglia

, IN

FN, T

orin

o -

UFS

D -

IEEE

201

4

Detector Bias

Bias Resistor

Detector Cdet

CBias

RBias

CC RS

Digitizer

2 sensors

CDet

RBias

RS iN_Det

iN_Amp

eN_Amp

eN_S

iN_Bias

Detector

Bias

Resistor

Series

Resistor Amplifier

Real life Noise Model

Qn2 = (2eIDet +

4kTRBias

+ i2N _ Amp )FiTs + (4kTRs + e2

N _ Amp )FvC 2Det

TS+ Fvf AfC

2Det

This term, the detector current shot noise, depends on the gain

This term dominates for

short shaping time 2eIDet* Gain Shot noise:

low gain

ENF = kG + (2− 1G)(1− k)

k = ratio h/e gain

Excess noise factor:

low gain, very small k

Page 20: Ultra-Fast Silicon Detectorpersonalpages.to.infn.it/~cartigli/NC_site/Seminars_files/IEEE14_UFSD_Cartiglia.pdf2 sensors C Det R Bias i R S N_Det i N_Amp e N_Amp e N_S i N_Bias Detector

Time walk and Time jitter

Time walk: the voltage value Vth is reached at different times by signals of different amplitude

Jitter: the noise is summed to the signal, causing amplitude

variations

Due to the physics of signal formation Due to Landau fluctuations

Mostly due to electronic noise Sum of noise sources

σ tTW =

t rVthS

!

"#

$

%&RMS

σ tJ =

NS/tr

20 Nic

olo

Ca

rtig

lia, I

NFN

, To

rino

- U

FSD

- IE

EE 2

014

Page 21: Ultra-Fast Silicon Detectorpersonalpages.to.infn.it/~cartigli/NC_site/Seminars_files/IEEE14_UFSD_Cartiglia.pdf2 sensors C Det R Bias i R S N_Det i N_Amp e N_Amp e N_S i N_Bias Detector

21 Nic

olo

Ca

rtig

lia, I

NFN

, To

rino

- U

FSD

- IE

EE 2

014

How to make a good signal

Signal shape is determined by Ramo’s Theorem:

i∝qvEw

Drift velocity Weighting field

A key to good timing is the uniformity of signals:

Drift velocity and Weighting field need to be as uniform as possible

Page 22: Ultra-Fast Silicon Detectorpersonalpages.to.infn.it/~cartigli/NC_site/Seminars_files/IEEE14_UFSD_Cartiglia.pdf2 sensors C Det R Bias i R S N_Det i N_Amp e N_Amp e N_S i N_Bias Detector

Non-Uniform Energy deposition

22 Nic

olo

Ca

rtig

lia, I

NFN

, To

rino

- U

FSD

- IE

EE 2

014

Landau Fluctuations cause two major effects:

-  Amplitude variations, that can be corrected with time walk

compensation

-  For a given amplitude, the charge deposition is non uniform.

These are 3 examples of this effect: