two-magnon raman scattering in the two-dimensional antiferromagnet k2fef4

3

Click here to load reader

Upload: mph-thurlings

Post on 15-Jun-2016

219 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Two-magnon Raman scattering in the two-dimensional antiferromagnet K2FeF4

Solid StateCommunications,Vol. 24,pp.829—831,1977. PergamonPress Printedin GreatBritain

TWO-MAGNON RAMAN SCATTERING IN THE TWO-DIMENSIONAL ANTIFERROMAGNET K2FeF4

M.P.H. Thurlings,A. van derPol and H.W. deWijn

FysischLaboratorium,Rijksuniversiteit,Utrecht,The Netherlands

(Received2 July 1977by A.R. Miedema)

Two-magnonRamanscatteringin theplanarquadraticantiferromagnetK2FeF4 is investigated.Thetemperaturedependenceof the energyshiftis in goodagreementwith second-orderGreen-functiontheory,as is thelinewidthat low temperature.Numerical results,includingrenormalization,arethe HeisenbergexchangeJ/kB = —14.5±0.7K andthe anisotropy~.(T=O)=gpBHA/4jJ~s=o,I8±o.o5,butwithJ[1+~(r=o)]/k~=r— 17.06±0.10K,

THE COMPOUNDK2FeF4is a newexampleof two- thereforeexpectsafairly strong single-ionarusotropy,atdimensional(2D) quadraticlayerantiferromagnetism. leaststrongerthan in the caseof K2NiF4, of the generalThe magneticpropertieshavenotbeenstudiedpre- spinHamiltonianform D[S~— ~S(S+ 1)]. As saidbefore,viously,but, asexpected,appearto be similar to those thespinsorderin the(x,y) planesothatD >0. Theof the isomorphRb2FeF4,whichhasbeeninvestigated directionof the orderedspinswithin the planewill thenby MOssbauer[1] andneutron-scattering[2] techniques. bedeterminedby themuchweakerfourth-orderani-themagneticmomentsin K2FeF4orderbelowTN sotropyterm.TheHamiltoniancanthusbewritten as60K with the axisof magnetizationin the(x,y) plane[3]. K2FeF4thereforepresentsan interestingcontrastto ,j ~ s~Sm —gpBH~(S~’—S~) (1)K2MnF4 andK2NiF4, whichare 2D antiferromagnets o,m)with uniaxial ratherthanbasal-planeanisotropy.In thiscommunicationwe reporttwo-magnonRamanscattering wherein thesemi-classicalapproachHA = D(2S— l)/gp~as a functionof temperaturewith the objectiveto obtain is ananisotropyfield alongthex axis,andthe indices1quantitativeinformationon the magneticinteractions, andm run over the “up” and “down” sublattices,respect-theanisotropy,andthemagnondamping. ively. Anisotropyof the exchangeparameterJ, which

The specimenusedwasa singlecrystalwith dimen- will existbecauseof orbital contributions,hasbeensions3 x 3 x 6mm

3grownby a horizontalzonemelting ignoredin theHamiltonian,sinceitsprecisestrengthistechnique.Thecrystallographicstructureis tetragonal, unknownandits effectsarelargely incorporatedin anidenticalto K

2MnF4 andK2NiF4, with latticeparameters effectiveanisotropyHA.a = 4.14A andc = 12.98A at 300K [4]. In theRaman- At low temperatures(T< 4.2K) theexperimentalscatteringexperimentsthe primarylight, providedby ~ peakpositionis 184.2±0.5cm~”.Applying first-orderargon laseroperatingat 4880A, wasincident alongthe Green-functiontheorywith anOguchi-renormalized[5]z axisandpolarizedalongthex axis. Thex-polarized spin-waveHamiltonianderivedfrom equation(1) andacomponentof the light scatteredat 90°wasanalyzedby Ft-symmetryscatteringoperator,ina wayanalogoustouseof a doublemonochromatoranddetectedby photon- thatusedfor the2D uniaxialantiferromagnets[6], we findcountingtechniques.The two-magnonRamanspectrum from the T = OK positionJ[ 1 + ~(0)] /k~= — 17.06±is observedto consistof a broadasymmetricalline, 0.10K.Thisparticularcombinationof Jand~(0) maywhich with increasingtemperaturebroadensandshifts readilybeinferredfrom theJ and~(0) dependenceoftowardslowerenergies. thedispersionrelationnearthe zoneboundary,andex-

Thepeakpositionof the two-magnonline ispre- pressesa strongcorrelationof thesequantitiesasderived

sentedin Fig.1, andisseento dropby 10%overa from thelow temperaturedata.To arriveat separaterangeof 40K. In calculatingthe peakposition,we valuesforJ and~(0) it is howevermandatoryto includenotice thata preciseanalysisof thecrystal-fieldeffects thetemperaturedependenceof thepeakposition.on Fe

2+ in,K2FeF4cannotyetbedevelopedbecauseof In calculatingthe temperaturedependenceof the

lack of spectroscopicdata.However,it generallyappears peakposition(Fig. 1),wehavetakenthetemperaturevan-that thegroundstateof theFe

2” ion at a tetragonalsite ationof theanisotropy~(T)/~(0), which hasnotbeenis closelydescribedby aneffectivespinS = 2 with sig- measuredin K

2FeF4,from theisomorphRb2FeF4(TN =

nificant orbital contributionsto themoment.One 563 ±0.2K [2]) by scalingsuchasto havevanishing

829

Page 2: Two-magnon Raman scattering in the two-dimensional antiferromagnet K2FeF4

830 RAMAN SCATTERING IN THE ANTIFERROMAGNETK2FeF4 Vol. 24,No. 12

I I I I

185— - 40- -

0

0

0o

- 30- -

E

~0~0

165 I I I I I I I I

0 10 20 30 40 50 0 10 20 30 40 50TEMPERATURE (K) TEMPERATURE (K)

Fig. 1. Peakpositionof the two-magnonRaman- Fig. 2. Full width at halfheight of the two-magnonscatteringline vs temperature.The full curve represents Raman-scatteringline vs temperature.The full curveisthe adjustedresultof Green-functiontheory. theresultof Green-functiontheorywith the parameters

deducedfrom Fig. 1.

anisotropyat TN. In Rb2FeF4,in turn, ~T) is takento treatmentof the relevantsummationsover theBrilouinvarywith thesquare[7] of the sublatticemagnetization, zonein theexpressionfor theone-magnondamping.which hasbeenmeasuredby Mössbauertechniques[1] - Theseare treatedby useof a 2D versionof a zone-Then,adjustingof the resultsof Green-functiontheory boundaryapproximation[9], which is notlikely to beincludingrenormalizationleadsto the solid curvein Fig. effectivewhen,becauseof therelatively largeamsotropy,1, correspondingtoI/k8 = — 14.5 ±0.7K and themagnon-energydistribution is ratherflat. Conse-~(0) = 0.18±0.05. Here,as alreadynoticed,theerrors quently,thecalculatedline mustbeconsideredto beain land ~(O)are stronglycorrelated,i.e.land i~(0)are lower limit only.restrictedto thosecombinationsthat satisfy thepre- In conclusion,Ramanscatteringhasprovidedinfor-scriptionJ[l + ~(O)]/k8 = — 17.06 ±0.10K. More mationon the magneticinteractionaswell asthe one-detailedinspectionof the calculationsshowsthat the magnondampingin K2FeF4.Thelatterquantityis notshift of thepeakpositionis in aboutequalpartsdue to correctlydescribedby an approximativesecond-orderthetemperature-dependentrenormalizationandthe Green-functiontheory.Theexchangeparameteris aboutdropof z~(T).It is finally notedthat the effect of 10%largerthanthevalue of 13K deducedfor Rb2FeF4renormalizationwasto reduceJ by 3.7%. [2] , a factor thatis commonlyfound betweencorre-

As Fig. 2 shows,thereisa remarkableincreaseof spondi.ngRb andK compounds.A pointof interestisthe linewidthwith temperature.The full curvein Fig. 2 thatK2FeF4is a planar2D antiferromagnet,in contrastrepresentsthe resultsof theGreen-functioncalculation to themorestudiedK2MnF4, whichis uniaxial2D. Fromto secondorder,with thevaluesfor land ~(T) obtained ~(0) and!obtainedherefor K2FeF4and~(0) = 0.0039aboveinserted.It is quitegratifying that the linewidth at and!= —8.40Kin K2MnF4 [9], onemay estimatethelow temperaturesis correctlypredicted,themoreso concentrationx at whichthespinsin the mixed corn-sincethereare no adjustableparametersinvolved. How- poundK2Mn1_~Fe~F4will flop from alongthec axis toever,the increaseof thelinewidthwith temperature, theplane.At this point theMn andFe anisotropywhich Green-functiontheorywasableto predictsuccess- energiessupposedlycancel,yieldingspin flop atfully in uniaxial 2D systems[6] ,is notsatisfactorily x = 1.8 ±0.5%,in excellentaccordancewith the findings.accountedfor. An explanationcould beinadequate of Bevaarteta!. [10].

Page 3: Two-magnon Raman scattering in the two-dimensional antiferromagnet K2FeF4

Vol. 24,No. 12 RAMAN SCATTERING IN THE ANTIFERROMAGNETK2FeF4 831

REFERENCES

1. WERTHEIM G.K.,GUGGENHEIMH.J., LEVINSTEIN H.J.,BUCHANAN D.N.E. & SHERWOODR,C.,Phys.Rev.173,614(1968).

2. BIRGENEAU R,J.,GUGGENHEIM H.J. & SHIRANE G.,Phys.Rev.BI, 2211 (1970).

3. VAN DIEPEN A.M. (privatecommunication).

4. DE PAPER.,Bull. Soc.ChimieFrance,pp.3489—3491(1965).

5. OGUCHIT., Phys.Rev. 117, 117 (1960).

6. VAN flERPOLA., DE KORTE G., BOSMAN G., VAN DER WAL A,J. & DE WIJN H.W.,SolidStateCommun.19, 177 (1976).

7. OGUCHIT.,Phys.Rev. 111, 1063(1958);PINCUSP.,Phys.Rev. 113,769 (1959).

8. BALUCANI U. & TOGNETFIV., Phys.Rev.B8, 4247 (1973).

9. DE WIJN H. W., WALKER L.R. & WALSTEDT R.E.,Phys.Rev.88,285(1973).

10. BEVAART L., FRIKKEE E. & DE JONG L.J. [to be presentedat the Conf.Stat. Phys.13, Haifa(1977)1.