frustrated s=3/2 honeycomb antiferromagnet) …msm09/azuma.pdfhoneycomb antiferromagnet) bi 3mn 4o...

27
MSM 09 Kolkata, Nov. 12 Frustrated S=3/2 Honeycomb antiferromagnet Bi 3 Mn 4 O 12 (NO 3 )

Upload: others

Post on 06-Feb-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

  • MSM  09  Kolkata,  Nov.  12

    Frustrated  S=3/2  Honeycomb  antiferromagnet  

    Bi3Mn4O12(NO3)

  • Spin  Frustrations  on    Triangular  Lattice  Derivatives

    Triangular  Lattice Remove  ¼  spins  →  Kagome  Lattice

    ? ?

    Disordered  ground  state  in    S  =  1/2  triangular  NiGa2S4

    “Structurally  Perfect  S  =  1/2  Kagome”  Zn0.33Cu3.67(OH)6Cl2  Clinoatacamite  

    Cu3V2O7(OH)2  2H2O  Volborthite  

  • Honeycomb  Lattice

      No  magnetic  frustration  with  nearest  neighbor  only  

      Next  nearest  neighbor  interaction  induces  frustration

    remove  1/3  spins  →  Honeycomb  Lattice  

    J1

    J1J2

  • Absence  of  LRO  in  Honeycomb  AFM  with  J2/J1>0.16  (S=3/2)

    Quantum: K. Takano, PRB 74, 140402R (2006)

    Classical: S. Katsura et al., J. Stat. Phys. 42, 381 (1986) (J

  • S=3/2  Honeycomb  AFM  Bi3Mn4O12(NO3)    

    Mn1, Mn2

    Mn1, Mn2

    Mn3, Mn4

    Mn3, Mn4

    NO3

    NO3

    •  New  compound  synthesized  by  hydrothermal  method  

    •  Mn4+,  S=3/2  •  P3、No  distortion  in  the  honeycomb  lattice  

    NO3  group  with  120°  bonds  works  as  a  template  so  that    Mn  ions  form  honeycomb  lattice

    c

    O.  Smirnova,  M.  Azuma  et  al.,  J.  Am.  Chem.  Soc.,  131,  (2009)  8313.

    J1

    J1J2

  • Hydrothermal  Synthesis   NaBiO3+  9Mn(NO3)2·∙6H2O  dissolved  in  H2O  was  heated  in  a  Teflon  autoclave  at  270˚C  for  7  days    

    All  the  measurements  were  on  the  powder  sample

  •   Plate  like  crystal  with  a  hexagonal  shape

  • Neutron  Powder  Diffraction  @HRPD  JRR-‐3,  Tokai,  Japan

    MnO2  present  as  impurity

  • Magnetic  Susceptibility    Curie-‐Weiss  like    C  =2.21,θ=  -‐257  K  

      Broad  maximum  at  around  80  K  →2D  AFM  

      Deviation  of  FC  and  ZFC  data      →Magnetic  transition

    2.5

    2.0

    1.5

    1.0

    0.5

    0.0

    M/H

    (10-

    2 em

    u/m

    ol)

    4003002001000Temperature (K)

    1.8

    1.7

    1.6

    1.5

    M/H

    (10-

    2 em

    u/m

    ol)

    20151050Temperature (K)

    1000 Oe"

  • Total  Specific  Heat  

    MnO2 LRO

      No  long  range  ordering  (RLO)  (measured  down  to  0.4  K)  

      C/T  has  a  maximum  at  around  40  K,  suggestive  of  short  range  ordering  

      No  lattice  reference

    400

    300

    200

    100

    0

    C P (J

    / K

    mol

    )

    200150100500

    2.5

    2.0

    1.5

    1.0

    0.5

    0.0

    C /

    T (J

    / K2

    mol

    )

    MnO2  LRO

  • J1=30K,  J2/J1~  0.13  <  0.16  Monte  Carlo  Calculation

    2 4 6 8 10 12

    7

    6

    5

    4

    3

    2

    1

    0

    χ spi

    n (10

    -3em

    u/m

    ol M

    n)

    4003002001000Temperature (K)

  • Anomaly  in  Magnetization  Curves

      Jump  at  ~6T  

      Magnetic  ordering?

  • H-‐T  Phase  diagram

    20

    15

    10

    5

    0

    µ 0H

    (T)

    302520151050T (K)

    No-LRO (S.G.?)

    Bi3Mn4O12(NO3)powder

  • Field  induced  long  range  ordering!  Ordered  moment  is  1.8  µB  1/3  of  the  spins  don’t  get  ordered  

    ~1.8 µB at 10 T

    Neutron  diffraction  under  magnetic  field

  • Findings  and  Questions

      LRO  is  absent  in  the  low  magnetic  field.  Why?    J2/J1=0.13,  smaller  than  1/6  

      What  is  the  ground  state?  Spin  glass?  

      What  is  the  driving  force  of  the  field  induced  LRO?  

  • 0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0 0.5 1 1.5 2 2.5 3

    exp

    Best  Fit:  J1=  30.7  K,  J2/J1=0.12,  Jc=0.2J1

    Inclusion  of  interlayer  coupling

    Mn1, Mn2

    Mn1, Mn2

    Mn3, Mn4

    Mn3, Mn4

    NO3

    NO3

    Jc

    8.28 Å

    4.78 Å

    Jc/J1=0.0"0.1 !0.2"

  • Multiple  Jc  enhances  the  frustration?

      Additional  calculation  or  direct  estimation  of  J  values  are  necessary!  

      X-‐ray  absorption  study  in  progress!

  • Magnetic  ground  state  –µSR-‐

      Fast  relaxation  without  oscillation  

     →Static,  random  internal  field  

    Spin  glass  like  

    30 K

    20 K

    10 K

    8.5 K7 K2 K

  • 0

    200

    400

    600

    800

    1000

    1200

    1400

    0 10 20 30 40 50 60 70

    ΔE=0.2 meVΔE=1.2 meV

    Inte

    nsity

    (arb

    . uni

    ts)

    Temperature (K)

    Q=1.6 Å-1

    ΔE=1.2 meV

    •   Short  range  spin  correlation  develops  at  low  temperature    •   Spin-‐glass  like  behavior  •   Presence  of  (101)  peak  →  AF  Inter  bi-‐layer  coupling  Jc  • Anisotropic  3D  correlations  (ξab~  8  Å,  ξc~  6  Å)  •     

    Triple axes diffractometer TAS-2 & LTAS @ JRR-3

    Neutron  Powder  Diffraction

  • Intra-‐cluster  ordering  No  inter-‐cluster  correlation  

    ξab~ 8 Å

    ξc~ 6 Å

    Short  Range  Spin  Correlation

  • 20

    15

    10

    5

    0

    µ 0H

    (T)

    302520151050T (K)

    No-LRO (S.G.?)

    Bi3Mn4O12(NO3)powder

    Development  of  the  LRO

    LRO

    S. G.

    LRO

    S. G.

  • 1

    0

    Cp

    (102

    mJ

    / g K

    )

    50403020100Temperature (K)

    Specific  heat  in  magnetic  field 1

    0

    Cp

    (102

    mJ

    / g K

    )

    50403020100Temperature (K)

    9T

    No  transition  is  observed  →  Entropy  change  is  small  Probably  because  of  the  short  range  (cluster)  ordering  in  zero  field  

  • Magnetization  of  Aligned  sample

      Presence  of  ferromagnetic  moment  along  the  c-‐axis

    0.4

    0.3

    0.2

    0.1

    0.0

    M ( µ

    B / f

    .u.)

    1086420

    Field (104 Oe)

    2K10K2K

    10K

    H=9T

    c:  hard  axis  ab  plane  //  H

    c c

  • The  Origin  of  the  Field  Induced  LRO

      LRO  is  stabilized  because  of  the  presence  of  ferromagnttic  moment  due  to  the  spin  canting  

      The  particles  perpendicular  to  the  field  don’t  order    (Consistent  with  the  ordered  moment  of    1.8  µB  out  of  3  µB)

    H=0

    H=10T

    SG

    LRO  with  net  moment  

  • Summary

      Bi3Mn4O12(NO3)  is  the  first  example  of  frustrated    honeycomb  antiferromagnet  

      Inter  layer  coupling  within  the  bi-‐layer  is  not  negligible  

      The  magnetic  ground  state  is  spin-‐glass  like,  but  short  range  (cluster)  ordering  is  present    

      Magnetic  field  induces  long  range  ordering  probably  because  of  the  presence  of  spin  canting  with  magnetic  moment  along  the  c-‐axis  

  • Future  Perspective   Estimation  of  J  values  from  structural  parameters  or  spectroscopic  measurement  

      Measurement  on  aligned  sample  (neutron, µSR)  

      Synthesis  of  isostructural  compounds  with  different  spin  numbers      Ti4+:S=0  as  the  specific  heat  reference,  V4+:S=1/2,  Cr4+:S=1  …  

  • Collaborators   Inst.  Chem.  Res.,  Kyoto  Univ  

    Nozomi  Onishi  Synthesis,  Magnetic  measurements  Smirnova  Olga    Structure  determination  Yuichi  Shimakawa  

      Yamanashi  Univ.    Nobuhiro  Kumada    Synthesis  

      Kurashiki  University  of  Science  and  the  Arts    Yoshihiro  Kusano    TEM  

      JAEA    Masaaki  Matsuda  Neutron  diffraction  

      KEK  µSR    Akihiro  Koda,  Ryosuke  Kadono  

      Univ.  Tokyo  Yukitoshi  Motome    MC  calculation