turbulent heating of the corona and solar wind: the...

40
Turbulent heating of the corona and solar wind: the heliospheric dark energy problem Stuart D. Bale Physics Department and Space Sciences Lab University of California, Berkeley, USA IAP 2012 seminar, PSFC/MIT, January 11, 2012

Upload: others

Post on 21-Jul-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Turbulent heating of the corona and solar wind: the heliospheric dark energy problem

Stuart D. Bale Physics Department and Space Sciences Lab

University of California, Berkeley, USA

IAP 2012 seminar, PSFC/MIT, January 11, 2012

Page 2: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding
Page 3: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

The Sun A boring, middle-aged star

G type, population 1, ‘yellow dwarf’

Photospheric blackbody ~5000-6000K

Sunspots and ‘active regions’

Page 4: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Impulsive Solar Activity -  ‘Carrington Event – September 1-2, 1859 -  Brilliant, intense aurora borealis (18 hrs later) -  Disruption of telegraph services -  Once per 500 years (ice cores) -  Solar-terrestrial connection

-  Interplanetary space is not empty!

Page 5: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Comet tails Comets have two tails -  A ‘Dust tail’ is diffuse and follows the comet’s orbit (Keplerian) -  A ‘Gas tail’ which points away from the Sun (Biermann)

dust

gas

Page 6: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Comet tails - 2010

Page 7: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

The solar corona

1919 eclipse photo, Sobral

1571, Caron

Page 8: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

The solar corona Coronal structure often resembles magnetic lines of force

Eclipse observations show the ‘solar corona’ Thomson-scattered white light

Page 9: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

The corona is very hot and magnetized Hydro Scale height (H ~ kT/mg) not consistent with simple hydrostatic equilibrium Using 6000 degrees C as a temperature, if the atmosphere is hydrogen then H = 175 km (110 miles) – solar radius is much larger Instead, from the eclipses the scale height is clearly comparable to the radius of the Sun, or H = 695,500 km (430,000 miles) - So the corona is very hot or we have some new, lighter elements ‘ coronium’

Early spectrographic measurements of mysterious emission lines helped the confusion (again ‘coronium’) Edlén (1942) identified line emission with highly ionized Fe implying electron temperatures of T >106 C

Page 10: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

The corona is very hot and magnetized

K corona – photospheric light scattered from electrons – spectrum is washed out by Doppler-shift

The corona is a tenous, hot magnetized plasma

(Cranmer et al., 2008)

An important measurement: perpendicular heating

F corona – photospheric light scattered from dust, solar spectrum remains – ‘zodiacal light’

E corona – emission lines from ionized, heavy elements in the corona – UV-soft x-ray

- H and He are fully ionized – no emission - Minor ions are partially (and often highly) ionized - Polarization/splitting of emission lines gives line-of-

sight magnetic field (~1 G)

Page 11: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

A summary (to 1950’s) -  The solar photosphere is ~6000K and macroscopically

‘homogeneous’ (and β = nkT/(Β2/2µ0) > 1) – a ‘fluid’

-  Impulsive events and flares on the Sun produce activity in the Earth’s ionosphere – transit time is hours (slow) - space is not empty!

-  Comet ‘gas’ tails point away from the Sun – fast flow!

-  The solar corona is tenuous and highly structured – often organized by magnetic ‘lines of force’

-  The solar corona is very hot (> 106 K) – this temperature inversion is puzzling (2nd law of thermodynamics)

-  The high coronal temperature and emission lines suggest that the gas is highly ionized, i.e. a magnetized collisionless plasma (β << 1)

Page 12: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Parker’s solar wind model

A ‘solar wind’ is accelerated from the corona

-  Hydrostatic solution (similar to Bondi accretion)

-  Predicts a supersonic atmosphere ‘wind’

-  Similar to ‘de Laval nozzle’ or a jet engine

-  Requires energy input at the base. kTph is not nearly enough! Requires nonthermal energy

-  ‘Alfven point’ in magnetized plasma determines extent of corona - corotation

Page 13: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Mariner 2 measurements

Parker’s solar wind is confirmed The solar wind is highly variable

Page 14: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

The solar wind is heated continuously

-  Helios spacecraft measurements from 0.3 – 1 AU

-  Voyager spacecraft measurements outward

-  Tp ~ 1/r

-  Free expansion predicts a much more rapid decay

-  Requires continuous, distributed energy input

Page 15: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Kinetic Physics in the Corona and Solar Wind

•  There are very few collisions in the solar wind

•  Not in thermal equilibrium

•  Large temperature anisotropies – heating is organized by magnetic field

•  Different temperatures

•  Relative drifts

B

THe/TH

Re

lativ

e F

req

ue

nc

y

B

(Marsch et al)

(Kasper et al)

Page 16: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

electrons

Page 17: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

The solar wind is bimodal

Page 18: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Summary #2 -  The corona requires a non-thermal source of heat

-  A sufficiently heated corona will expand super-sonically and super-Alfvenically to form a ‘solar wind’

-  The expanding solar wind requires additional heating

The large coronal magnetic energy density is a sufficient energy source! This is our ‘dark energy’. But problems remain:

1.  How are the magnetic fields created and transported

2.  How is the magnetic energy converted to thermal energy: magnetic reconnection, shocks, waves and turbulence

3.  What is the role of ambipolar electric fields?

Page 19: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

source of energy Photospheric motion, granulation, footpoint shuffling

Page 20: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Alfven waves in the corona

NASA Solar Dynamics Observatory (SDO) – Advanced Imaging Assembly (AIA) High cadence, high resolution 193Å coronal imaging (Vourlidas and Stenborg) Steady outflows – reconnection? Alfven wave Poynting flux?

Page 21: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Alfven waves CoMP at NSO FeXIII at 1074.7 nm -  ‘Waves’ are faster than sound -  Abundant in the solar wind

(Belcher and Davis) -  Propagate along magnetic field -  Low intensity (in white light)

Hinode (JAXA) CaII measurements

Page 22: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Plasma wave launching - Footpoint ‘shuffling’ generates currents, magnetic fields -  Alfven waves propagate upward -  Produce a turbulent cascade that terminates in damping -  Damping heats the plasma

Page 23: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Turbulent ‘eddies’

evolution

viscous damping

Page 24: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Neutral fluid turbulence

Page 25: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Magnetized turbulent ‘eddies’

evolution

collisionless damping

Ambient magnetic field

Page 26: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Magnetic Plasma Turbulence

Page 27: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Magnetic Plasma Turbulence

Page 28: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Perpendicular cascade

Page 29: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Electric field measurements

Voltage

ELECTRIC FIELD MEASUREMENTS IN THE MAGNETOSPHERE

,= d 2cI,

V2=O

251

f

Fig. 2.

Distance 2 b

Three-electrode probe system. Potential along a line in the plasma through the probes and along a line through the lead ABD.

~\To feVc'~ / kTi v 2 " - - - . e x p - - + iph~ (17)

I1 + I2 = 4~r~ne ~/2Trine ~,kTJ + X2~rni + 16 4he l"

These equations are valid only when V1, V2 and Vc are nonpositive. If VB is chosen e.g. so that V2 = 0, then according to Equation (14) 1/1 = - e E ' d . By eliminating E' from the Equations (13) and inserting 11 and I2 from Equations (15) and (16), and using the fact that V~ given above is small we get

2 ne/--/~Te.(1 exp (\ld/eV~ = J ~ Rr - " t o " - - ( 1 8 ) VR + Vc ~ / m e

where Vo is the floating potential defined in Section 5. Equations (9) and (11) are still valid (with V=0 in Equation (9)). Equation (9)

can also be obtained by combining Equations (13)-(16), and will accordingly read

R r 2 > (Rr2)min __ 1 /mekZ e (19) = ome 2 ~ 2~

which means that

= c~e k \kTe,l]"

Values of (Rr2)mi, for three-electrode systems are given in Table III. By eliminating

(Fahleson)

!

"#$%&%'$()! #*)&+),$-.! /0,%0! ,"! ",1,-$'! )*! )0&! &((&%)!

"&&+! *+! #'&2,*3"! 1$4+&)*"#0&',%! 1,"",*+"! "3%0! $"!

5-3")&'6!

!!

Figure 2.2 "0*/"! )0&! #*)&+),$-! 7,")',83),*+! $'*3+7!)0&!"#$%&%'$()!,+!$!%'*""!"&%),*+!%-*"&!)*!)0&!$+)&++$"6!

9:#,%$--:!/&!%$+!&;#&%)! )0$)!)0&!-*%$-!#*)&+),$-!+&$'!

)0&!$+)&++$"!,"!<=>!*(!)0&!"#$%&%'$()!#*)&+),$-6!!

!

?"!7,"%3""&7!$8*2&.!)0&!"#$%&%'$()!#*)&+),$-!7&#&+7"!

*+! )0&! #-$"1$! 7&+",):! $+7! &-&%)'*+! )&1#&'$)3'&6!

@,43'&! <6A! "0*/"! )0&! "#$%&%'$()! #*)&+),$-! 2$-3&"!

%$-%3-$)&7! (*'! 7,((&'&+)! #-$"1$! #$'$1&)&'"6! B+! )0&!

&;#&%)&7! 7&+",):! $+7! )&1#&'$)3'&! '$+4&.! )0&!

"#$%&%'$()! #*)&+),$-! ,"!13%0!1*'&! 7&#&+7$+)! *+! )0&!

#-$"1$! 7&+",):! )0$+! *+! )0&! &-&%)'*+! )&1#&'$)3'&6!

90&'&(*'&.! ,)! %$+!8&!3"&7! )*!&"),1$)&!#-$"1$!7&+",):!

$+7! 7&+",):! (-3%)3$),*+"6! 90&! $%)3$-! "#$%&%'$()!

#*)&+),$-! C! 7&+",):! %3'2&! %$+! 8&! *8)$,+&7! 3",+4! ,+D

(-,40)! %$-,8'$),*+.! &646! 3",+4! &1,"",*+"! $)! #-$"1$!

('&E3&+%:!$"!0$"!8&&+!7*+&!*+!*)0&'!"#$%&%'$()"6!!

!

10 100 1000density [cm-3]

0

2

4

6

8

10

V sc [V

]

0.1 eV1 eV10 eV100 eV

!!Figure 2.3 ! 90&! "#$%&%'$()! #*)&+),$-! 7&#&+7&+%&!*+!#-$"1$! 7&+",):! )$F,+4! ,+)*! $%%*3+)! )0&! 8,$",+4! *(!

&-&%)',%! $+)&++$"6! ! G,")$+%&! *(! =6<<?H! ,"! $""31&76!

90&! %$"&"! *(! 7,((&'&+)! &-&%)'*+! )&1#&'$)3'&"! $'&!

"0*/+6!B+!)0&!&;#&%)&7!'$+4&!*(!#-$"1$!)&1#&'$)3'&"!

$+7! 7&+",),&"! I9&JKDK=! &L.! +JM=DM==%%N.! )0&!

"#$%&%'$()!#*)&+),$-!,"!13%0!1*'&!"&+",),2&!)*!#-$"1$!

7&+",):! 2$',$),*+"! )0$+! &-&%)'*+! )&1#&'$)3'&!

2$',$),*+"6!!

!

!Figure 2.4! 90&! ",13-$)&7! 2*-)$4&D%3''&+)! %3'2&! *(!)0&! $+)&++$! (*'! )/*! 7,((&'&+)! #-$"1$! '&4,1&"6! 90&!

#*)&+),$-! 2$',$),*+"! *(! 8,$"&7! $+)&++$! $'&!

",4+,(,%$+)-:!-&""!(*'!7,((&'&+)!#-$"1$!#$'$1&)&'"!)0$+!

(*'!3+8,$"&7!$+)&++$6!!

!9*!,7&+),(:!7,((&'&+)!#-$"1$!1*7&".!,)!,"!,1#*')$+)!)*!

F+*/! 8*)0! )0&! $1#-,)37&! $+7! $-"*! )0&! #0$"&! *(! )0&!

7&+",):! (-3%)3$),*+"6! ! ?)! 0,40&'! ('&E3&+%,&".! )0&!

"#$%&%'$()!$+7!#'*8&"!$'&!%$#$%$),2&-:!%*3#-&7!)*!)0&!

#-$"1$.! $+7! /,--! +*)! '&"#*+7! ,+! #0$"&! /,)0! $+:!

7&+",):!(-3%)3$),*+"!I$-)0*340!&-&%)',%! (,&-7"!"),--!%$+!

8&! $%%3'$)&-:! 1&$"3'&7N6! ! 5$-%3-$)&7! 2$-3&"! *(!

%$#$%,)$+%&! $+7! '&",")$+%&! (*'! )0&! "#$%&%'$()! $+7!

$+)&++$! $'&! 4,2&+! ,+! 9$8-&! <6K6! 90&! "#$%&%'$()! ,"!

'&","),2&-:! %*3#-&7! )*! #-$"1$! )0&! #-$"1$! 3#! )*! O<P!

FQR.!$+7!7&+",):!(-3%)3$),*+"!%$+!0&+%&!8&!1&$"3'&7!

3#!)*!"&2&'$-!FQR!6!

!9$8-&!<6KS!!9:#,%$-!2$-3&"!*(!"#$%&%'$()!$+7!$+)&++$!#$'$1&)&'"6!!

Capacitance Resistance 1/(2�RC) Spacecraft TU!#@! K==!FV01! <P!FQR!

1 antenna A=!#@! <M!FV01! <K<!FQR!

!90&!#'*#*"&7!,+")'31&+)!0$"!$!-*+4!0&',)$4&.!$+7!)0&!

#&'(*'1$+%&! %$+! 8&! &"),1$)&7! 8:! &;$1,+,+4! 7$)$!

('*1! &;,"),+4! 1,"",*+"! /,)0! ",1,-$'! 7&",4+"6! ! 90&!

%-*"&")!$+$-*4:!,"!)0&!$;,$-!#'*8&!1&$"3'&1&+)"!('*1!

)0&!W*-$'!$+7!9QXYBZ!"#$%&%'$()6!![&%$3"&!)0&:!$'&!

$-,4+&7! /,)0! "#,+! $;,".! )0&"&! 1&$"3'&1&+)"! $'&!

$+$-*4*3"! )*! $+)&++$"! *+! $! AD$;,"! ")$8,-,R&7!

"#$%&%'$()6! ! ! 90&! $;,$-! #'*8&"! *+! )0&! 9QXYBZDX@B!

&;#&',1&+)! $'&! $8*3)! U1! ),#! )*! ),#! $+7! $'&! -$'4&-:!

",1,-$'!,+!)0&!7&",4+!)*!\W]!*+!Z*-$'!V'8,)&'.!&;%&#)!

)0$)! )0&! "&+"*'! -&+4)0! *+! 9QXYBZ! ,"! K1! /0,-&! *+!

Z*-$'!V'8,)&'!,)!/*3-7!8&!M16!!90&!9QXYBZ!"&+"*'"!

$'&!$-"*!)0,++&'.!$+7!$'&!"&#$'$)&7!('*1!)0&!"#$%&%'$()!

8:!$!-*+4&'!8**16!

!

!<=

- Voltage probes (and spacecraft) are Langmuir probes- Current balance (thermal, photoelectron, secondaries) determine floating voltage

- Bias current minimizes voltage variations due to natural currents- Unbiased probes measure primarily current variations - this is historically the case for SW experiments

Page 30: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Perpendicular cascade

(Bale et al., 2005)

Page 31: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Summary #3 -  Alfven waves appear to be generated low in the corona.

-  Magnetized turbulence is measured in the outer heliosphere – consistent with a perpendicular cascade

-  However, remote-sensing (UVCS) ion temperatures suggest cyclotron heating and hence significant high frequency compressive waves.

-  What is the role of reconnection? Ambipolar electric fields? Shocks?

-  We need radial profiles, we need to get inside of the Alfven radius (10-15 Rs)

-  We need modern, high-quality in situ measurements in the inner heliosphere

Page 32: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

NASA Solar Probe Plus

-  NASA ‘Living with a Star’ Mission -  Recommended by NAS for 30 years

-  Most ambitious NASA ‘Heliophysics’ mission

-  Launch in 2018 -  Mostly in situ instruments -  Perihelion at 9.5 Rs –

within the Alfven radius -  Lots of orbits…

Page 33: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding
Page 34: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Solar Probe Plus

The ‘FIELDS’ Experiment for Solar Probe Plus

4 x Voltage (electric field) sensors 3 x Magnetometers

  SWEAP (Kasper, SAO+UCB)   Solar wind plasma

  FIELDS (Bale, UC Berkeley)   Electric and magnetic fields

  ISIS (McComas, SwRI)   Energetic particles

  WISPR (Howard, NRL)   White light imager

-  Excellent magnetic and electric fields -  Excellent plasma measurements

Page 35: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Solar Probe Plus

Requires heroic thermal engineering! -  TPS ~ 2000C -  FIELDS antennas ~ 1300C -  FIELDS magnetometers ~ -100C

Requires some interesting ops -  Initial warm up of radiators -  Dust environment -  Cp/Cg problems -  Solar panels and power

Page 36: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Solar Probe Plus

2018 launch 35 Rs initial perihelion 7 x Venus Gravity Assist (300 km Venus flyby) 9.5 Rs final perihelion End 2027

Page 37: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Solar Probe Plus

Launch July 2018

Page 38: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Solar Probe Plus

Page 39: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Advanced Technology Solar Telescope (ATST)

-  4.2m, off-axis pupil AO telescope on Haleakala, Maui

-  Optimized for dynamic range and low scattering

-  Will resolve magnetic (electric?) fields with ~70km resolution at ~1-2 Rs

-  Connection with Solar Probe Plus

-  Funded by US NSF, first light in ~2017

Page 40: Turbulent heating of the corona and solar wind: the ...library.psfc.mit.edu/catalog/online_pubs/iap/iap2012/bale.pdf · and super-Alfvenically to form a ‘solar wind’ - The expanding

Perspective -  Magnetic fields are likely to provide the missing ‘dark’

energy for coronal heating and solar wind acceleration

-  Magnetized turbulence is likely to generate the required solar wind continuous heating

-  The plasma physics remains an open question -  Alfven waves and turbulence -  Magnetic reconnection -  Shock waves -  Ambipolar fields

-  Physics may be similar to collisionless accretion

-  The coming decade will be a ‘golden age’ for coronal and solar wind physics: STEREO, SDO, IRIS, Solar Orbiter, Solar Probe Plus, FASR, and ATST