tsks04&digital&communication · tsks04&digital&communication continuation(course...

24
TSKS04 Digital Communication Continuation Course Lecture 1 Repetition of Stochastic Processes,PSD of Linearly Modulated Signal Emil Björnson Department of Electrical Engineering (ISY) Division of Communication Systems

Upload: others

Post on 13-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TSKS04&Digital&Communication · TSKS04&Digital&Communication Continuation(Course Lecture&1 Repetition&of&Stochastic&Processes,&PSDof&Linearly&ModulatedSignal Emil&Björnson Department&of&Electrical&Engineering&(ISY)

TSKS04  Digital  CommunicationContinuation  Course

Lecture  1

Repetition  of  Stochastic  Processes,  PSD  of  Linearly  Modulated  Signal

Emil  Björnson

Department  of  Electrical  Engineering  (ISY)Division  of  Communication  Systems

Page 2: TSKS04&Digital&Communication · TSKS04&Digital&Communication Continuation(Course Lecture&1 Repetition&of&Stochastic&Processes,&PSDof&Linearly&ModulatedSignal Emil&Björnson Department&of&Electrical&Engineering&(ISY)

2016-­01-­18 TSKS04  Digital  Communication  Continuation  Course  -­ Lecture  1 2

TSKS04  Digital  Communication  -­ Formalities

Information: www.commsys.isy.liu.se/TSKS04Lecturer  &  examiner: Emil  Björnson,  [email protected]  &  labs: Salil Kashyap,  [email protected]: Laboratory  exercises  (1  hp):

Solved  in  groups  of  4-­5  studentsSolve  on  your  own  – request  help  when  needed

Written  exam  (5  hp):5 problems,  5  points  eachGrade  3  (C):  12  pointsGrade  4  (B):  16  pointsGrade  5  (A):  20  pointsFinal  grade  is  exam  grade

Page 3: TSKS04&Digital&Communication · TSKS04&Digital&Communication Continuation(Course Lecture&1 Repetition&of&Stochastic&Processes,&PSDof&Linearly&ModulatedSignal Emil&Björnson Department&of&Electrical&Engineering&(ISY)

Course  Content

Topics Lecture§ Baseband  representation,  PSD  of  stochastic  signals 1-­2§ Estimation  and  hypothesis  testing

§ Estimation  of  channels 3

§ Estimation  for  synchronization 4-­5§ Estimation  for  equalization/decoding 6-­8

§ Error  control  coding:  Convolutional  codes 9-­11

2016-­01-­18 TSKS04  Digital  Communication  Continuation  Course  -­ Lecture  1 3

Continue  where  TSKS01  ended  and  give  an  in-­depth  description  of  several  important  estimation,  coding,  and  

decoding  issues  that  arise  in  realistic  digital  communication  systems,  and  theoretically  founded  solutions  to  these  issues.

Page 4: TSKS04&Digital&Communication · TSKS04&Digital&Communication Continuation(Course Lecture&1 Repetition&of&Stochastic&Processes,&PSDof&Linearly&ModulatedSignal Emil&Björnson Department&of&Electrical&Engineering&(ISY)

2016-­01-­18 TSKS04  Digital  Communication  Continuation  Course  -­ Lecture  1 4

Repetition:  Stochastic Process

Sample  space:  Ω𝜔$

𝜔%

𝜔&

𝑋$(𝜔$,𝑡)

𝑋%(𝜔%, 𝑡)

𝑋&(𝜔&, 𝑡)

𝑡

𝑡

𝑡

Stochastic  time-­continuous  signal

Key  propertiesMean:  𝑚 𝑡 = 𝐸 𝑋(𝑡)

ACF:  𝑟0 𝑡$,𝑡% = 𝐸 𝑋 𝑡$ 𝑋∗(𝑡%)

Page 5: TSKS04&Digital&Communication · TSKS04&Digital&Communication Continuation(Course Lecture&1 Repetition&of&Stochastic&Processes,&PSDof&Linearly&ModulatedSignal Emil&Björnson Department&of&Electrical&Engineering&(ISY)

2016-­01-­18 TSKS04  Digital  Communication  Continuation  Course  -­ Lecture  1 5

Examples  of  Stochastic  Processes

Example  1: Finite  number  of  realizations:

     𝑋(𝑡) = sin  (𝑡 + 𝜙),   𝜙 ∈ {0, 𝜋/2, 𝜋, 3𝜋/2}.

Example  2:    Infinite  number  of  realizations:

𝑋 𝑡 = ∑ 𝐴A𝑔(𝑡 − 𝑘)A ,                  𝑔 𝑡 = E cos  (𝜋𝑡), |𝑡| < 1/2  0,                        elsewhere

Each    𝐴𝑘   is  independent  and  𝑁(0,1)

One  realization:

Page 6: TSKS04&Digital&Communication · TSKS04&Digital&Communication Continuation(Course Lecture&1 Repetition&of&Stochastic&Processes,&PSDof&Linearly&ModulatedSignal Emil&Björnson Department&of&Electrical&Engineering&(ISY)

2016-­01-­18 TSKS04  Digital  Communication  Continuation  Course  -­ Lecture  1 6

Strict-­Sense  Stationarity

Stationarity is  statistical  invariance  to  a  shift  of  the  time  origin.

Definition:Consider  time  instants  𝑡̅ = (𝑡$,… , 𝑡S) and  shifted  time  instances  𝑢U = 𝑡̅ + Δ = (𝑡$ + Δ,… , 𝑡S + Δ).  The  process  𝑋(𝑡) is  said  to  be  strict-­sense  stationary  (SSS)  if

𝐹0(X̅) �̅� = 𝐹0(Z[) �̅�

holds  for  all  𝑁 and  all  choices  of  𝑡̅ and  Δ.

Equivalence:

𝐹0(X̅) �̅� = 𝐹0(Z[) �̅� ⇔ 𝑓0(X̅) �̅� = 𝑓0(Z[) �̅�

Page 7: TSKS04&Digital&Communication · TSKS04&Digital&Communication Continuation(Course Lecture&1 Repetition&of&Stochastic&Processes,&PSDof&Linearly&ModulatedSignal Emil&Björnson Department&of&Electrical&Engineering&(ISY)

Wide-­Sense  Stationarity

Definition:  A  stochastic  process  𝑋(𝑡) is  said  to  be  wide-­sense  stationary  (WSS)  if

§ Mean  satisfies  𝑚0 𝑡 = 𝑚0 𝑡 + Δ for  all  Δ.§ Auto-­correlation  function  (ACF)  satisfies  

𝑟0 𝑡$,𝑡% = 𝑟0 𝑡$ + Δ, 𝑡% + Δ for  all  Δ.

Interpretation:Constant  mean,  ACF  only  depends  on  time  difference  𝜏 = 𝑡$− 𝑡%

Notation: Mean  𝑚0

ACF  𝑟0 𝜏

2016-­01-­18 TSKS04  Digital  Communication  Continuation  Course  -­ Lecture  1 7

Page 8: TSKS04&Digital&Communication · TSKS04&Digital&Communication Continuation(Course Lecture&1 Repetition&of&Stochastic&Processes,&PSDof&Linearly&ModulatedSignal Emil&Björnson Department&of&Electrical&Engineering&(ISY)

2016-­01-­18 TSKS04  Digital  Communication  Continuation  Course  -­ Lecture  1 8

Gaussian  Processes

Gaussian distribution:𝑋U = (𝑋$,… , 𝑋S)  is  jointly  Gaussian,  denoted  as  𝑁(𝑚[, Λ0U),  if

𝑓0U �̅� =1

2𝜋 Sdet  (Λ0U)𝑒b

$% c̅bd[ ef[

gh c̅bd[ i

Definition: A  stochastic  process  is  called  Gaussian if  𝑋(𝑡)̅ =𝑋(𝑡$),… ,𝑋(𝑡S) is  jointly  Gaussian  for  any  𝑡̅ = (𝑡$,… , 𝑡S)

Theorem: A  Gaussian  process  that  is  wide  sense  stationary  is  also  stationary  in  the  strict  sense.

Page 9: TSKS04&Digital&Communication · TSKS04&Digital&Communication Continuation(Course Lecture&1 Repetition&of&Stochastic&Processes,&PSDof&Linearly&ModulatedSignal Emil&Björnson Department&of&Electrical&Engineering&(ISY)

2016-­01-­18 TSKS04  Digital  Communication  Continuation  Course  -­ Lecture  1 9

Energy  Spectrum and  Power-­Spectral Density

Consider  a  deterministic signal  𝜙(𝑡).

Fourier transform:   Φ 𝑓 = ℱ 𝜙 𝑡 = ∫ 𝜙(𝑡)𝑒bm%noX𝑑𝑡qbq

Energy  spectrum: 𝐸r(𝑓) = |Φ 𝑓 |%

Consider a  WSS  stochastic process  signal  𝑥(𝑡).Power-­spectral density (PSD)  is Fourier transform  of the  ACF

𝑅0 𝑓 = ℱ 𝑟0(𝜏) = t 𝑟0(𝜏)𝑒bm%nou𝑑𝜏q

bq

Page 10: TSKS04&Digital&Communication · TSKS04&Digital&Communication Continuation(Course Lecture&1 Repetition&of&Stochastic&Processes,&PSDof&Linearly&ModulatedSignal Emil&Björnson Department&of&Electrical&Engineering&(ISY)

Today’s  topic:PSD  of  Linearly  Modulated  SignalRecall  from  TSKS01:

§ 𝑁 basis  functions  𝜙$ 𝑡 , … , 𝜙S(𝑡) time-­limited  to  0 ≤ 𝑡 < 𝑇§ 𝑀 possible  data  symbols:

�̅�$,… , �̅�z where  �̅�{ =𝑠{,$⋮𝑠{,S

Digital  modulation:

𝑠{ 𝑡 =}𝑠{,m

S

m~$𝜙m(𝑡), 𝑖 = 1, … , 𝑀

Assumptions:§ Symbols  intervals  are  non-­overlapping§ No  channel  filtering

2016-­01-­18 TSKS04  Digital  Communication  Continuation  Course  -­ Lecture  1 10

What  if  the  channel  filters  the  channel?

Selected  stochastically

Page 11: TSKS04&Digital&Communication · TSKS04&Digital&Communication Continuation(Course Lecture&1 Repetition&of&Stochastic&Processes,&PSDof&Linearly&ModulatedSignal Emil&Björnson Department&of&Electrical&Engineering&(ISY)

Dispersive  Channels

§ Realistic  channels  are  dispersive  → spreads  out  signals§ Examples:  Multi-­path  propagation  in  wireless  (reflections,  echos)§ Non-­overlapping  intervals  at  transmitter  → Overlapping  at  receiver

2016-­01-­18 TSKS04  Digital  Communication  Continuation  Course  -­ Lecture  1 11

What  if  the  channel  filters  the  channel?

This  is  essentially  what  the  course  is  about!

• How  to  estimate  the  channel  behavior?• How  to  treat  consequently  symbols  jointly  in  decoding• How  to  utilize  this  for  advanced  encoding

Page 12: TSKS04&Digital&Communication · TSKS04&Digital&Communication Continuation(Course Lecture&1 Repetition&of&Stochastic&Processes,&PSDof&Linearly&ModulatedSignal Emil&Björnson Department&of&Electrical&Engineering&(ISY)

Model  of  Linearly  Modulated  Signal

Pulse-­amplitude  modulated  signal:

𝑆 𝑡 = } }𝑆{ 𝑛 𝜙{(𝑡 − 𝑛𝑇 −Ψ)S

{~$

q

�~bq

2016-­01-­18 TSKS04  Digital  Communication  Continuation  Course  -­ Lecture  1 12

𝑛th  data  symbol(stochastic  as  before)𝑛 ∈ … , −1,0, +1, … = ℤ

𝑖th basis  function(not  necessarily  time-­limited)

Time  delayRandom  delay

Periodic  signal• Naturally  a  non-­WSS  process• Use  artificial  delay  Ψ,  uniform  on  [0, 𝑇) to  make  it  WSS

Page 13: TSKS04&Digital&Communication · TSKS04&Digital&Communication Continuation(Course Lecture&1 Repetition&of&Stochastic&Processes,&PSDof&Linearly&ModulatedSignal Emil&Björnson Department&of&Electrical&Engineering&(ISY)

Autocorrelation  Function  of  𝑆(𝑡) (1/2)

2016-­01-­18 TSKS04  Digital  Communication  Continuation  Course  -­ Lecture  1 13

Rearrange

Linearity

Indep.

Page 14: TSKS04&Digital&Communication · TSKS04&Digital&Communication Continuation(Course Lecture&1 Repetition&of&Stochastic&Processes,&PSDof&Linearly&ModulatedSignal Emil&Björnson Department&of&Electrical&Engineering&(ISY)

Autocorrelation  Function  of  𝑆(𝑡) (2/2)

Notation:  𝑟��,�� 𝑛 −𝑚 = 𝐸 𝑆{ 𝑛 𝑆�∗[𝑚]

2016-­01-­18 TSKS04  Digital  Communication  Continuation  Course  -­ Lecture  1 14

Uniformdist.

Change  variable

= 𝑢= 𝑘

Simplify

Page 15: TSKS04&Digital&Communication · TSKS04&Digital&Communication Continuation(Course Lecture&1 Repetition&of&Stochastic&Processes,&PSDof&Linearly&ModulatedSignal Emil&Björnson Department&of&Electrical&Engineering&(ISY)

Power-­Spectral  Density of  𝑆(𝑡) (1/2)

Recall:  

2016-­01-­18 TSKS04  Digital  Communication  Continuation  Course  -­ Lecture  1 15

Change  variable

Rearrange

= 𝑣

Page 16: TSKS04&Digital&Communication · TSKS04&Digital&Communication Continuation(Course Lecture&1 Repetition&of&Stochastic&Processes,&PSDof&Linearly&ModulatedSignal Emil&Björnson Department&of&Electrical&Engineering&(ISY)

Power-­Spectral  Density of  𝑆(𝑡) (2/2)

General  PSD  expression:

Matrix  form:

2016-­01-­18 TSKS04  Digital  Communication  Continuation  Course  -­ Lecture  1 16

Fourier  transformΦ�∗ 𝑓

Fourier transformΦ{ 𝑓

Cross  spectrum

Page 17: TSKS04&Digital&Communication · TSKS04&Digital&Communication Continuation(Course Lecture&1 Repetition&of&Stochastic&Processes,&PSDof&Linearly&ModulatedSignal Emil&Björnson Department&of&Electrical&Engineering&(ISY)

Special  Cases  of

§ Real-­valued  signal 𝑆(𝑡):  𝑅�(𝑓) is  also  real  § Imaginary  part  of  𝑅��,�� 𝑓𝑇 Φ{ 𝑓 Φ�

∗(𝑓) and  𝑅��,�� 𝑓𝑇 Φ� 𝑓 Φ{∗(𝑓) cancel

§ Consecutive  symbols  are  independent§ Cross  correlation:  

§ Cross  spectrum:

§ Special  basis  functions§ If  Φ{ 𝑓 Φ�

∗(𝑓)is  purely  imaginary:

2016-­01-­18 TSKS04  Digital  Communication  Continuation  Course  -­ Lecture  1 17

Real-­valued (if indep.  over  basis  functions)

Page 18: TSKS04&Digital&Communication · TSKS04&Digital&Communication Continuation(Course Lecture&1 Repetition&of&Stochastic&Processes,&PSDof&Linearly&ModulatedSignal Emil&Björnson Department&of&Electrical&Engineering&(ISY)

Sine-­Shaped  Basis  Functions    (1/4)  Same  frequency

§ Sine  and  cosine  with  frequency  𝑓$ (2𝑓$𝑇 is  positive  integer)

§ Fourier  transforms:

2016-­01-­18 TSKS04  Digital  Communication  Continuation  Course  -­ Lecture  1 18

Product  of  cosine/sine  and  box  function

Page 19: TSKS04&Digital&Communication · TSKS04&Digital&Communication Continuation(Course Lecture&1 Repetition&of&Stochastic&Processes,&PSDof&Linearly&ModulatedSignal Emil&Björnson Department&of&Electrical&Engineering&(ISY)

Sine-­Shaped  Basis  Functions    (2/4)  Same  frequency

§ Product  of  Fourier  transforms:

§ Purely  imaginary  → PSD  simplifies:

§ Energy  spectra:

2016-­01-­18 TSKS04  Digital  Communication  Continuation  Course  -­ Lecture  1 19

Page 20: TSKS04&Digital&Communication · TSKS04&Digital&Communication Continuation(Course Lecture&1 Repetition&of&Stochastic&Processes,&PSDof&Linearly&ModulatedSignal Emil&Björnson Department&of&Electrical&Engineering&(ISY)

Sine-­Shaped  Basis  Functions    (3/4)  Same  frequency

2016-­01-­18 TSKS04  Digital  Communication  Continuation  Course  -­ Lecture  1 20

Essentially  the  same  energy  spectra!

Page 21: TSKS04&Digital&Communication · TSKS04&Digital&Communication Continuation(Course Lecture&1 Repetition&of&Stochastic&Processes,&PSDof&Linearly&ModulatedSignal Emil&Björnson Department&of&Electrical&Engineering&(ISY)

Sine-­Shaped  Basis  Functions    (4/4)  Same  frequency

PSD  with  this  basis  (and  independent  symbols):

𝑅� 𝑓 =𝜎�h%

2 +𝑚�h2 }𝛿(𝑓𝑇 −𝑚)

dsinc (𝑓 + 𝑓$ 𝑇) + −1 %oh�sinc (𝑓 − 𝑓$ 𝑇)

%

                         +𝜎��%

2 +𝑚��2 }𝛿(𝑓𝑇 −𝑚)

dsinc (𝑓 + 𝑓$ 𝑇) − −1 %oh�sinc (𝑓 − 𝑓$ 𝑇)

%

2016-­01-­18 TSKS04  Digital  Communication  Continuation  Course  -­ Lecture  1 21

When  does  𝛿-­terms  vanish?• All  vanish  if  𝑚�h = 𝑚�� = 0

• All  but  ±𝑓$ if  2𝑓$𝑇 is  even  (due  to  sinc = 0)

Page 22: TSKS04&Digital&Communication · TSKS04&Digital&Communication Continuation(Course Lecture&1 Repetition&of&Stochastic&Processes,&PSDof&Linearly&ModulatedSignal Emil&Björnson Department&of&Electrical&Engineering&(ISY)

Examples:  One-­Dimensional  Constellations

On-­Off  Keying  (OOK)§ Mean  value:   𝐸���/2§ Variance:  𝐸���/2

Binary  Phase-­Shift  Keying  (BPSK)§ Mean  value:  0§ Variance:  𝐸���

2016-­01-­18 TSKS04  Digital  Communication  Continuation  Course  -­ Lecture  1 22

0 2𝐸���

− 𝐸��� + 𝐸���

2𝑓$𝑇 = even  integer

Page 23: TSKS04&Digital&Communication · TSKS04&Digital&Communication Continuation(Course Lecture&1 Repetition&of&Stochastic&Processes,&PSDof&Linearly&ModulatedSignal Emil&Björnson Department&of&Electrical&Engineering&(ISY)

Examples:  Two-­Dimensional  Constellations

𝑀-­ary PSK:§ Component  mean  value:  0§ Component  variance:  𝐸���/2

16-­QAM:§ Component  mean  value:  0§ Component  variance:  𝐸���/2

2016-­01-­18 TSKS04  Digital  Communication  Continuation  Course  -­ Lecture  1 23

Page 24: TSKS04&Digital&Communication · TSKS04&Digital&Communication Continuation(Course Lecture&1 Repetition&of&Stochastic&Processes,&PSDof&Linearly&ModulatedSignal Emil&Björnson Department&of&Electrical&Engineering&(ISY)

www.liu.se