truth for its own sake: academic culture and technology ...mfeldman/minerva102.pdf · pierre...

33
Truth for its own Sake: Academic Culture and Technology Transfer at the Johns Hopkins University Maryann Feldman and Pierre Desrochers * Johns Hopkins University Abstract: American research universities have long been a source of technical advance for industry yet there is little historical perspective on university-industry relationships, specifically how university objectives and institutional culture influence technology transfer. This paper examines university policy and practice towards technology transfer at one American research university, the Johns Hopkins University. Established in 1876 as the first research university in the United States, Hopkins was dedicated to advance knowledge through scientific discovery and scholarship. An organizational culture developed that did not support interaction with industry. This paper examines the development of this academic culture beginning the university’s founding vision and documents its persistence. The intention is to expand the debate of the role of the university in the national system of innovation by considering a detailed example of one university that has not historically embraced industrial outreach. September 2001 Acknowledgements: We wish to acknowledge funding support from the Andrew W. Mellon Foundation for this paper as part of a larger project on evolving university–industry relationships. We are indebted to the technology transfer personnel and research administrators at Johns Hopkins University, for generously sharing their time and expertise in identifying salient issues. The views expressed in this paper are, of course, those of the authors, and do not represent the positions of any of the university, the individuals interviewed, or the Andrew W. Mellon Foundation. This paper has benefited from discussions with Irwin Feller, Janet Bercovitz, Richard Burton, Darren Lacey and James Simpert. We wish to acknowledge the comments of the anonymous referees. * Johns Hopkins University. Correspondence should be addressed to Feldman at 136 New Engineering Building 3400 N. Charles Street, Baltimore, MD 21218:Phone: 410 516 8324: Email: [email protected]

Upload: phunghanh

Post on 11-Nov-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Truth for its own Sake:

Academic Culture and Technology Transfer at the Johns Hopkins University

Maryann Feldman

and Pierre Desrochers*

Johns Hopkins University

Abstract: American research universities have long been a source of technical advance for industry yet there is little historical perspective on university-industry relationships, specifically how university objectives and institutional culture influence technology transfer. This paper examines university policy and practice towards technology transfer at one American research university, the Johns Hopkins University. Established in 1876 as the first research university in the United States, Hopkins was dedicated to advance knowledge through scientific discovery and scholarship. An organizational culture developed that did not support interaction with industry. This paper examines the development of this academic culture beginning the university’s founding vision and documents its persistence. The intention is to expand the debate of the role of the university in the national system of innovation by considering a detailed example of one university that has not historically embraced industrial outreach.

September 2001

Acknowledgements: We wish to acknowledge funding support from the Andrew W. Mellon Foundation for this paper as part of a larger project on evolving university–industry relationships. We are indebted to the technology transfer personnel and research administrators at Johns Hopkins University, for generously sharing their time and expertise in identifying salient issues. The views expressed in this paper are, of course, those of the authors, and do not represent the positions of any of the university, the individuals interviewed, or the Andrew W. Mellon Foundation. This paper has benefited from discussions with Irwin Feller, Janet Bercovitz, Richard Burton, Darren Lacey and James Simpert. We wish to acknowledge the comments of the anonymous referees.

* Johns Hopkins University. Correspondence should be addressed to Feldman at 136 New Engineering Building 3400 N. Charles Street, Baltimore, MD 21218:Phone: 410 516 8324: Email: [email protected]

1

I. Introduction

Research universities have long served as a source of technical progress for industry.

Facilitating technology diffusion and increasing economic growth were justifications for the

Bayh-Dole Act of 1980, which established the rights of American research universities to retain

ownership over intellectual property developed from federal research grants. As a result,

American universities have embraced closer interaction with industry in terms of sponsored

research, technology licensing and the formation of start-up companies (Mowery et al. 1999

provides an examination of these trends). Clark (1998) has coined the phrase entrepreneurial

universities to describe the series of changes that reflect the new, more active role of promoting

technology transfer within national systems of innovation.

Critics argue that this new role for universities may inhibit intellectual freedom, foster

public mistrust of science and scientific objectivity and detract from the university’s fundamental

mission (Slaughter and Leslie 1997). Nelson (2001) questions the long-run effects on the U.S.

system of innovation. While scholars have examined these issues from different analytical

perspectives1, the objective of this paper is to add an historical perspective to the discussion of

the role of the research university in the American system of innovation. While much has been

written about pro-technology transfer culture at the Massachusetts Institute of Technology and

Stanford University2, our focus is a research university that emphasized basic scientific research

and scholarly publication. Indeed, the university culture was anathema to commercial activity

and direct technology transfer. Understanding the counterfactual case of a university that did not

1 See, for example, Brooks and Randazzese (1998), Etzkowitz and Peters (1991), Etzkowitz and Peters (1997), Feller (1990), Geiger (1993), Government-University-Industry Research Roundtable (1986), Lee (1998), , Rahm (1994), Slaughter and Leslie (1997).

2

embrace relationships with industry provides an appreciation of the diversity of culture and

orientations of American research universities and their role in the system of innovation.

Johns Hopkins University, established as America’s first research university in 1876, was

dedicated to promoting what Merton (1979) described as the norms of open science. This

translated into unwillingness to allow commercial interests to influence faculty research agendas,

abhorrence to benefit financially by patenting or commercializing university research and arms-

length relationships with industry. While the university prides itself on scientific breakthroughs

that led to useful commercial applications, these discoveries, however significant, brought no

direct economic benefit to the academic researchers or to the university.3 Instead, they represent

a different model of technology transfer and an alternative role for the university in the national

system of innovation.

I Persistent Evidence of Academic Culture toward University-Industry Interaction

Culture is an attribute of organizations that brings underlying values into focus and

influences patterns of behaviors and performance (Smircich 1983). Culture, once defined, is

also remarkably persistent and resistant to change. Examining the performance of Italian

regional governments, Putnam (1993: 121) concludes that, “Social patterns plainly traceable

from early medieval Italy to today turn out to be decisive in explaining, why on the verge of the

2 See for example, Rosegrant and Lampe (1985), Roberts (1991), Leslie and Kargon (1996).

3

twenty-first century, some communities are better able than others to manage collective life and

sustain effective institutions”. Even after other attributes are accounted for, history, the strength

of tradition and social patterns of interaction are powerful explanatory influences on performance

and adaptability.

Johns Hopkins University ranks as the nations’ single largest recipient of federal R&D

expenditures, almost twice as much as MIT or Stanford University4. Despite this strength, the

university lags behind a cohort of similar universities in measures of technology transfer

performance such as number of patents granted, licensing revenues or university-based spin-offs

(Feldman forthcoming). While academic culture is difficult to quantify, public statements

support the idea that the academic culture has not historically encouraged direct involvement

with industry in active technology transfer.

At Hopkins, the vice-provost for research at the university is responsible for technology

transfer. Jared Cohon, vice provost for research at Hopkins from 1988 to 1992, and currently

President of Carnegie Mellon University, said, “There’s just been a different kind of culture here.

I can’t explain why it happened that way, but I accept it as real. We’ve [Hopkins has] always

been a basic research, individual-investigator, federally-funded institution, the kind of place that

emphasizes the creation of knowledge for its own sake” (Levine, 1990: 26). Reflecting on more

3 For example, heparin, a drug used to prevent blood coagulation that is now widely used in the treatment of thrombosis and in cardiac surgery, was discovered in a series of experiment between 1916 and 1918. Merbromin, discovered in 1919 at the School of Medicine was developed and marketed as Mercurochrome by the Baltimore firm of Hynson, Westcott & Dunning. Similarly, research at the School of Hygiene and Public Health led to the discovery of vitamin D in 1922 and set the stage for an effective polio vaccine in the 1930 and 1940s. For Hopkins academic breakthroughs, see: www.jhu.edu/news/news_info/research.html; hopkins.med.jhu.edu/BasicFacts/discovery.html;www.worldcare.com/e_consultations/consortium/johns_hopkins.hml 4 See, National Science Board (1999: Table 6-4). The university includes research expenditures at the Applied Physics Lab when calculating total R&D expenditures.

4

than 40 years at various divisions of the university, Theodore Poehler, current vice-provost for

research, said, “Historically, Hopkins has eschewed turning inventions into commercial ventures.

Hopkins was a place where you would come to be an academic person and do research, and

that’s that. Most people here today are still here for that reason” (Cavanaugh Simpson, 2001:

16).

Recent speeches by Hopkins’s President William Brody echo this sentiment and highlight

the tensions of university-industry relationships. In a speech titled “From Minds to Minefields:

Negotiating the Demilitarized Zone between Industry and Academia,” Brody (1999) cautiously

notes that university-industry relationships are likely to continue to be tentative and uneasy, a

“minefield of potential conflicts, claims and counterclaims.” He identifies four contentious

issues: 1) what can and should be patented; 2) should universities patent at all; 3) whether the

university should be licensing any intellectual property; 4) if the university is to license, should it

be on an exclusive basis?” He concludes,

“Our scientists are by nature explorers-- they are off sailing uncharted seas in search of discoveries. Asking them to become managers, marketers and accountants is unrealistic and ultimately inimical to the research enterprise. Time spent in the boardroom is time away from the laboratory, making them less productive and less likely to achieve the things most suited to their abilities…When Hopkins scientists discovered restriction enzymes, one of the basis of the biotechnology industry, we put the discovery in the public domain--losing millions and millions in potential royalties. Foolish? Perhaps. But I know we didn't slow science down or diminish the leading role American industry plays in this field.” (Brody 1999).

These contemporary statements have historical origins in the founding mission of the university

and the context of early commercial activity.

In order to understand the Hopkins’ institutional culture, this paper begins by examining

the founding mission of the university and the view of early leaders towards interaction with

industry. The paper then turns to the discovery and commercialization of Saccharin to examine

5

how one influential role model, Ira Remsen who became the second president of the university,

strengthened the organization culture. Culture is further reinforced when actions outside of the

norms of behavior are not successful. This paper examines the university’s first spin-off firm in

Section V. Motivated by faculty member Henry Rowland’s personal circumstances, the activity

was not successful and reinforced the idea that direct commercial activity was not appropriate.

The history of the school of engineering, which represented an uneasy compromise between

practical applications and a culture that promoted basic science, is examined in Section VI.

Reflection conclusions are offered in the final section.

III. The Founding Mission

Johns Hopkins was a Quaker railroad magnate who provided for an endowment of

$7,000,000 in 1870 for the establishment of a university and hospital to bear his name.5 At the

time, this was the largest gift to a college or university and noted as twice the endowment of

Harvard University (Baltimore Sun 1873)6.

Precisely what the term university meant to Johns Hopkins was subject to debate after his

death due to ambiguity in his will. The task of defining the mission and organizational form of

5 In real dollars, the value of the endowment was $131 billion in 2001. The amount was equally split between the university and the medical school. This paper focuses on the university and does not explicitly consider the medical school which is an additional rich example for further study . 6 However, the Hopkins endowment was not as significant as might first be thought, because the university’s annual revenues and property holdings were not comparable to those of older colleges. For example, the property of Harvard was at the time worth more than five million dollars, while that of Yale was thought to equal the university’s endowment. Furthermore, the income-yielding funds of Harvard in 1875 were over three million, a million and a half at Yale, while JHU fund yielded revenue of slightly less than $200,000. By comparison, Harvard received in 1874-75 $168,541.72 in tuition and $218,715.30 from property, the total of which was about twice the income of Hopkins (Gilman, 1906: 4-5)

6

the university fell to twelve trustees whom Hopkins named7. The trustees were all “friends and

acquaintances” of Johns Hopkins, “resident[s] of Baltimore, in middle life, independent, and

acquainted with affairs” and that “he believed to be free from a desire to promote, in their official

action, the special tenets of any denomination or the platform of any political party” (Gilman,

1898: 7). At a time when similar institutions were associated with religious denominations, it

was decided that the university would be non-sectarian, although the majority of its Board of

Trustees belonged to the Society of Friends, the founder’s own denomination. As Daniel Coit

Gilman (1898:7), first President of the university, said in his inaugural address: “In a land where

almost every strong institution of learning is either “a child of the church” or “a child of the

state,” and is thus liable to political or ecclesiastical control, [Johns Hopkins] has planted the

germ of a university which will doubtless serve both church and state the better because it is free

from the guardianship of either.” The decision to be non-sectarian was controversial at the time

but provided autonomy for scientific inquiry (Jensen 1993).

The trustees wanted to create an institution that would be markedly different from the

four hundred schools already in existence in the United States. Counsel was sought from

President Eliot of Harvard, President White of Cornell and President Angell of the University of

Michigan as representatives of prominent universities (Flexner 1946: 38-52). They advised the

Trustees to move slowly in building the academic program, to take a local focus and to orient

toward practical applications and relevance to industry. President Eliot, for example, argued that

7 Seven of the twelve trustees were Baltimore businessmen. Four were lawyers and two of these were members of the city’s high court and the last was Hopkins’ personal physician. At least ten trustees had some college or university training and one had studied abroad. Four were also already involved on the Board of Trustees of another educational institution in Baltimore, the Peabody Institute (a music conservatory) that became part of the University in 1976.

7

the new university should “build up and improve the school system of Maryland. If you could

improve the schools through the actions of the university you could do a good work for a much

larger number of children than you would ever bring under your direct influence.” While

President Angell added, “It seems to me in the present state of science and knowledge you

should hold steadily in view the practical application to science and arts – the practical

application of chemistry, for instance, to the useful arts, such as working in metals, dyes, etc.”

President White said, “In establishing your course of instruction, permit me to suggest that you

give great weight to the technical side, that is, to science in its application to the various

industries.” The advice argued for an institution that would follow the prevailing model of the

time. Importantly, all three were unanimous in nominating Daniel Coit Gilman to the presidency

of the new university.

Daniel Coit Gilman, the trustee’s choice for president, influenced the development of

Johns Hopkins University and its connections to commercial activity. Gilman had previously

been president at the University of California, but left over debates with the legislature about his

vision for the university.8 He articulated a vision for a research institution that the Board of

Trustees embraced. This vision would differ significantly from both the practical orientation of

land grant colleges as well as the liberal arts tradition of broad based knowledge appreciation.

In the publication The Nation, the editor, Edwin L. Godkin made the following report on

January 28, 18759:

He [Mr Gilman] said [to the Trustees] in substance he would make it [the Johns Hopkins University] the means of promoting scholarship of the first order, and this by only offering the kind of instruction to advanced students, which other universities offer in their post-graduate

8 See Flexner (1946) and French (1946). 9 Reported in Flexner (1946:50-51).

8

courses…For this purpose he would select as professors men now standing in the front rank in their own field; he would pay them well enough to leave them at their ease as regards the commoner and courser cares; would find them only students who were far enough advanced to keep them constantly stimulated to the highest point; and he would exact from them yearly proof of diligent and fruitful cultivation of their specialties by compelling them to print somewhere the results of their researches. Now what this means, and how great a contribution it would be to the intellectual progress and fame of the United States, may be inferred when we say that we could at this moment name twenty men, employed at small salaries in existing colleges, whose work in certain fields of research would be of inestimable value to science and literature of the world, but who are compelled, in order to earn their livelihood, to pass most of their time teaching the rudiments to boys or preparing schoolbooks and that American graduates ..are compelled every year either to go abroad or content themselves with the necessarily imperfect aid which they can get in the post-graduate courses from overworked and half-paid professors…To the higher thought of the world we [American scholars] contribute shamefully little.

The trustees decided, against the advice of the three university presidents, to follow

Gilman by creating an institution that would be primarily devoted to advanced study and

specialized graduate training along what has been described as the German model. At the time,

German universities were preeminent in the world and nine thousand Americans are estimated to

have studied in Germany during the second half of the nineteenth century. The German

university provided two conspicuous features that the American system lacked. The first was the

principal of academic freedom and the second was a commitment to Wissenchaft, or pure

learning – the idea of knowledge for its own sake (Menand 2001: 256). The trustees decided to

build a school dedicated primarily to research and advanced study, the first American university

that provided graduate education10.

"What are we aiming at?" Gilman asked, in his inaugural address, "The encouragement of

research ...and the advancement of individual scholars, who by their excellence will advance the

sciences they pursue and the society where they dwell (Gilman 1898: 35).” “Remote utility is

9

quite as worthy to be thought of as immediate advantage. Those ventures are not always the

most sagacious that expect a return on the morrow. It sometimes pays to send our argosies

across the seas, to make investments with an eye to slow but sure returns. So is it always in the

promotion of science” (Gilman 1898: 18).

During the early decades of the university’s history, however, some critics charged that

the university’s mission was too impractical to meet the needs of an increasingly industrial

economy. Seven of the twelve trustees were businessmen of sufficient prominence that they were

noted to be able to give time to affairs of public interest. Prominent among this group was John

Garrett, President of the Baltimore and Ohio (B&O) Railroad, a close personal friend of the

founder.11 Garrett wanted the university to take a more practical, commercially relevant

approach. In 1883, he publicly denounced the Board of Trustees12, and subsequently rarely

appeared at the Board of Trustees’ meetings. Trustee Lewis N. Hopkins, nephew of the founder,

corresponding with Garrett concurred, “Great discoveries always came from those who were

devoting themselves to practical applications” (Hawkins 1960: 305). In 1887, Robert Garrett,

who had succeeded his father as President of the Baltimore and Ohio Railroad, tried again

unsuccessfully to remold the university into a technical institution (Hawkins 1960: 318). One of

his assistants, W.T. Barnard (1887) prepared a monograph on higher education, entitled

Technical Education in Industrial Pursuit with Special Reference to Railroad Service that asked,

“Why should not the Johns Hopkins University sustain a department for higher technical

10 Geiger (1986: 7-9) provides context for the adoption and diffusion of the Hopkins model and the effect on American research universities. 11 A large portion of the university’s initial endowment was invested in the Railroad. To this day the President and the Chairman of the finance committee of the Railroad and its predecessors hold seats of the university board of Trustees. 12 Address of John W. Garrett, Delivered on the 30th of January, 1883, before the Young Men’s Christian Association of Baltimore, on the Occasion of their thirtieth Anniversary as noted in Hawkins (1960:5)

10

training in industrial pursuits?…The present tendency of the Johns Hopkins University management savors too much of the classic and metaphysical scholasticism of the Middle Ages... The Johns Hopkins University should be considered as a part of the Baltimore school system, and its crowning glory. To maintain this position it should afford instruction in applied as well as in pure science (Barnard 1887: 82-83, quoted by Rosenberg 1990: 209-210).

The Garrett family offered the university an endowment to establish an adjunct scientific school

like the Sheffield School at Yale or the Lawrence School at Harvard. The administration turned

the offer down (Hawkins 1960: 318-319 as quoted in Rosenberg 1990:210).

In 1887, one Colonel Thomas J. Scharf also attacked the university for its failure “to

come down out of the scholastic clouds” and advocated a more practical orientation (quoted by

French 1946: 84, 166). Whether Scharf was part of the attempt by Garrett to remold the

university into a technical institution is not known, but in the end, these attempts to remold the

university’s orientation were not successful (Hawkins 1960: 318).

This public debate prompted Gilman to entitle his Commemoration Day speech of 1885

“The Benefits Which Society Derives from Universities” and to take up the disciplines taught at

Hopkins one by one to prove their usefulness (Gilman 1898: 94). 13 In later years, Gilman would

justify his orientation by invoking Faraday’s motto: “There is nothing so prolific in utilities as

abstractions” (Gilman 1898: 117). Gilman would recall that inventions such as the telegraph, the

telephone, photography, the steam locomotive and electric lighting had not been the creation of

industrial research, of mercantile corporations or even of private enterprise, but of university

researchers, whose motive was not “acquisition of wealth, but the ascertainment of fundamental

laws” (Lucas 1994: 173).

13 As Gilman wrote in the preface of the reproduction of this address: “ When the following address was delivered, the comments which had been made upon the work of the University seemed to call for a new exposition of its principles and aims” (Gilman, 1898: 94).

11

Gilman’s hiring decisions stressed scholarly potential above all else. Menand (2001:

257) notes that by 1880, four years after it opened, Johns Hopkins had more than one hundred

graduate students, compared to forty-one at Harvard. Hopkins faculty had published almost as

much research as had been published during the previous twenty years by all the faculty

members of all other American universities combined. Hawkins (1960: 293-295) notes, “If one

had asked among the teachers and students of the early Johns Hopkins University what ideal they

served, he would most often have been answered, Truth, or Truth for its own sake. ” Truth was

the theme of most formal efforts to present the ideology of the university.” The early emphasis

was on unfettered exploration, pragmatic understanding and academic freedom. The Johns

Hopkins Press, which is currently the oldest continuously operated university press in America,

was added in 1878 as a way to disseminate university research. When Daniel Coit Gilman

inaugurated the Press, he stated his conviction that publishing, along with teaching and research,

is a primary obligation of a great university.

Assessing institutional culture is not a simple task, and academics never form a unified

and invariant group. Rosenberg (1997:185-195) discusses the tension between pure and applied

science during this time period. At Johns Hopkins University there is no doubt that the emphasis

was on basic scientific inquiry. Many of the faculty demonstrated hostility to direct practical

applications of academic work. For instance, the first professor appointed at Hopkins, Basil L.

Gildersleeve, a classicist and specialist of ancient Greek, openly declared in his Commemoration

Day address of 1877 “that the word useful should be banished from the university vocabulary”

(Hawkins 1960: 304). A number of his colleagues in scientific fields, however, expressed similar

sentiments. Ira Remsen, the university’s first professor in chemistry in 1876 and the second

12

president of the institution, from 1901 until 1913, exemplified the stance toward industrial

research and commercial activity. Remsen disparaged what he described as practicalism on

many public occasions and refused any offers to consult to private industry as long as he

occupied his university appointment (Hawkins 1960: 140). Furthermore, when one of his

students suggested that private industries might support the university by paying for laboratories

and cited German examples, Remsen responded that he “could think of no worse fate for the

university than such an invasion”14. By contrast, America’s other prominent academic chemist

at the time, John W. Mallet, was hired at the University of Virginia with the explicit purpose of

expanding practical knowledge and devoted most of his time and effort to address industrial and

agricultural concerns (Spencer 1985).15

IV. The Saccharin Story

Among the first important JHU contribution to the commercial realm was the discovery

of saccharin by Constantin Fahlberg, a visiting European postdoctoral fellow who worked with

Ira Remsen.16 The discovery of saccharin is a story of unintended or chance discovery. In 1879,

Fahlberg was assisting Remsen on the investigations into toluene sulfamides, a class of coal tar

derivatives. While eating his lunch in the lab, Fahlberg noticed an unaccountable sweetness to

his food that he ultimately traced back to the residual of a compound that had sputtered on his

fingers.

14 Letter from Judge Morris A. Soper, March 13, 1953 as cited by Hawkins (1960: 140). The student was Alfred R.L. Dohme, who later became President of Sharpe and Dohme, a prominent pharmaceutical company that subsequently merged with Merck. 15 For example, Mallet surveyed the “Most Important Changes in the Industrial Applications of Chemistry within the Last Few Years” in the first three issues of the American Chemical Journal (Spencer 1985).

13

The two researchers jointly published the discovery in two articles in the American

Chemical Journal in 1879 and 1880 and in a German journal in 1879. Remsen moved on to

other projects, but Fahlberg perceived the commercial potential of low-cost sweetening agents.

Fahlberg left Hopkins and academia to pursue commercializing the invention. He moved back to

Germany where he obtained financial backing and eventually perfected a large-scale

manufacturing process. Fahlberg marketed his product under the label saccharin from the Latin

word for sugar, saccharum. He was granted US and European patents on Manufacture of

Saccharine Compounds and Saccharine Compounds in 1884 and 1885. Remsen was not

included a co-inventor although the patents reference the jointly authored American article.

The university's culture toward profit-making activities probably had no impact on the

unpaid post-doc Fahlberg for he had already filed for other patents before his serendipitous

discovery. 17 Fahlberg became wealthy with the commercialization of the new sweetener, but

Remsen and the university never received, nor claimed, any royalty from the commercial venture

(Field 1993). Remsen was distressed when Fahlberg claimed full credit for the invention and

sought recognition for the role of the university in the discovery.18 Remsen never challenged

Fahlberg’s patents despite an offer from Merck & Company to pursue compensation when the

university was experiencing financial difficulties during Remsen’s tenure as president. One

student later recalled: “I urged Remsen to accept Merck and Company’s offer to undertake the

16 Various, and sometimes conflicting, accounts of this episode are given in Field (1993), French (1946), Hawkins (1960) and Schmidt (1986). 17 Fahlberg’s original United States letter patents were for “Improvement in processes for utilizing zinc sulphate” (1878), “Method of removing iron from ferroginous saline solutions” (1882) and “Recovery of plumbic dioxide from ferroginous solutions” (1882)(United States Patent and Trademark Office records. Fahlberg obtained his first German patent in 1886 (Szmrecsanyi, 1997). 18 Letter from Ira Remsen to Doctor Goodnow, dated February 26, 1918; Records of the Office of the President , The Ferdinand Hamburg Archives of the Johns Hopkins University, 02.001 box 116#274. .

14

contest, but he refused, saying that he would not sully his hands with industry” (quoted by Field

1993: 5). 19 What Remsen sought was recognition for the invention – not monetary remuneration.

Remsen’s regard for commercial activity is consistent with Hounshell’s (1996: 16)

description of the contemporary movement of the professionalization of science and its parallel

plea for pure science, science pursued for its own sake rather than for profit. Proponents of pure

research considered applied science and science conducted for-profit as a less significant activity

(Rosenberg 1997: 186-7). This sentiment was echoed as recently as 1990 by Professor Robert

Massof who characterized the attitude of his Medical Schools colleagues as regarding, “money

from business is tainted, that dealing with business is a form of prostitution” (quoted by Levine

1990: 26).

One device that reinforces institutional culture is stories that provide orientation and

socialize new members. The story of Ira Remsen and the discovery and commercialization of

Saccharin helped solidify a culture with distain for direct interaction with industry. The

Saccharin story has taken mythical proportions at the university. It is standard fare in

introductory chemistry classes as a way of socializing students and is often repeated in the media

and public speeches.20

Of course, the other side of university-industry relationships is industry’s perception and

orientation. The early public debates started by Trustee and B&O Railroad President Garrett

started a perception that the university was not generally regarded as practically oriented by the

Baltimore community. A former student of Remsen’s reflects that,

19 This has often been attributed to the fact that Fahlberg eventually claimed that the discovery was his alone, leading to Remsen’ s comment in a letter to English chemist William Ramsey: “ Fahlberg is a scoundrel. It nauseates me to hear my name mentioned in the same breath with him” (quoted by Field, 1993: 1).

15

“Remsen’s attitude toward American chemical industry in that day was unfortunate. The intimate association which existed between the German universities and German industry and the mutual advantages that grew out of the association was a themes not infrequently touched upon in his lectures. Yet there was little attempt made by him to direct any of his students into industry: all his encouragement appeared to steer them into teaching. I suspect he may have had some unfortunate experiences with industrialists. He used to speak ironically of those who were boastful about operations ‘on the large scale” and I have heard him speak of being refused an entry into some of the Baltimore works. I dare say there may have been as much prejudice on the other side toward the school, but if he had been a more tactful man prejudices might have been swept away and new opportunities for students might have been opened as well as new avenues of influence for a man so really practical as himself.” Allen (1927:222-223).

Thus, although the traditional German model stressed interaction with industry, the

Hopkins adaptation did not encourage this exchange. The underlying premise is similar to what

Vannevar Bush (1947) later codified as the linear model of innovation. In this conceptualization,

university research focuses on the fundamental understanding of nature through unfettered

inquiry. The resulting scientific discoveries disseminate through publishing and education.

Subsequently, industry develops these discoveries and markets them as commercial innovation.21

In this conceptualization, knowledge flows in one directional, from the university to industry.

An alternative conceptualization is the chain-link model that incorporates university-industry

collaboration on problem definition and development activities (Kline and Rosenberg 1987).

Hopkins’ early forays into commercial activity further reinforced the academic culture by

demonstrating the difficulties of direct technology transfer.

V. The Failure of Early Commercial Attempts

The first known Hopkins spin-off company, the Rowland Telegraphic Company (RTC),

was created in 1898. This example is instructive on two points. Despite the academic culture,

20 Rowett (1994); Field (1993); Stimpert (2000); Brody (1999); Baltimore Sun (2001).

16

special circumstances allowed the university administration to make an exception and support

commercial activity. Second, the process of bringing an academic idea to market was very

difficult and was not perceived to represent the best use of university resources. The RTC did

not prove successful and this seems to have reinforced the belief that commercial activity was

not appropriate for the university.

Henry A. Rowland had a distinguished academic career in Physics. He was among the

first faculty member hired by Gilman who recognized his academic brilliance (Gilman 1906: 14-

15). Rowland founded the Hopkins’ physics department and organized the Physical Laboratory,

which was regarded as the most complete and extensive facility of its kind in the world.

Rowland also created an innovative curriculum in applied electricity and applied mechanics

(Rosenberg 1990). The Department of Physics and Astronomy at Johns Hopkins University still

bears his name and is dedicated to his vision of modern physics.

Rowland’s views were consistent with the Hopkins culture. His 1883 speech, A Plea for

Pure Science, delivered as Vice President of the American Association for the Advancement of

Science, echoes Gilman’s orientation about practical emphasis in a university,

“The proper course of one in my position is to consider what must be done to create a science of physics in this country, rather than to call telegraphs, electric lights, and such conveniences, by the name of science... When the average tone of the [scientific] society is low, when the highest honors are given to the mediocre, when third-class men are held up as examples, and when trifling inventions are magnified into scientific discoveries, then the influence of such societies is prejudicial “(Rowland 1902: 609).

Rosenberg (1990:202), however, argues that Rowland was not a one-dimensional scientific

aristocrat . While he felt that the research scientist supplied the foundation of technical progress,

21 Barfield (1997) provides a retrospective examination of the implications of the Science the Endless Frontier.

17

he did not feel that it was a disgrace to make money by an invention or to do commercial work

under some circumstances.

A change in Rowland’s personal circumstances refocused his professional orientation. A

routine medical examination for an insurance policy revealed that he had diabetes, at the time an

incurable illness with a limited life expectancy. He wrote in his diary: “The certainty of my

death in a few years entirely changed my life and I work for money for wife and (3) children as I

never expected to” (quoted by May 1995, n.p.). His research focus changed toward applied work

in telegraphy and hydroelectric power, which led to both practical inventions and consulting with

business firms.

President Gilman, and subsequently President Remsen, supported Rowland’s new

commercial emphasis not only personally, but also financially. The Physical Laboratory was

placed at his disposal, and he was allowed great latitude as to the disposition of his own time

with relation to this applied work (Anonymous 1902: 540). Baltimore businessmen financed the

firm.

The RTC story illustrates the difficulties in turning an academic laboratory invention into

a commercially successful product. As the company president put it in his annual report of 1907

(Rowland Telegraphic Company 1907: 1):

“The Rowland Telegraphic Company, seven years ago, undertook to develop a commercial machine to embody an original invention. There were no precedents to follow. The questions presented were new in mechanics and electricity; the laboratory could only afford artificial wires but not the varying conditions of the real telegraph line. We were, more than we realized, feeling our way in the beginning, but we found that Rowland had grasped... the real needs for a new telegraph system. This fact opened up to us the widest experimental use of telegraph wires ever accorded to a new invention. The work thus went forward with the combined advantage of laboratory and field experience. It grew upon our hands into an undertaking far greater than we had foreseen. We soon found that it was not enough to demonstrate the working principles of Professor Rowland’s invention, and that only a fully

18

commercial machine would (or could) prove the availability of the invention in commercial use; and that alone after commercial trial upon circuits of varying environment and length, and for a long enough period and thoroughly enough to show its durability and regularity and the ability of the employees to manage it.”

It was necessary to perfect the function of each part of the machine, to standardize all the

components, to make special tools and to integrate the machine in existing systems, which meant

dealing with the diversity of the telegraph system. As the company president reported: “This

elaborate work was wholly unexpected. It led to repeated remodeling, but progressive successes

always justified the continuance of our work” (idem). Because of these difficulties, after

Rowland’s death, the RTC went out of business in 1910 and had little discernable impact on

Hopkins culture or the Baltimore’s economy.

University support for the RTC was seemingly an exception dictated by special

circumstances. We may speculate that if this endeavor had proven successful it might have

encouraged others at Hopkins to reconsider their stance on commercial activity. Remsen’s

disdain toward the commercial success of saccharin coupled with the difficulties of

commercializing Rowland’s inventions and the lack of success of the RTC, left imprints on

Hopkins organizational culture. The history of the School of Engineering at Hopkins highlights

the ongoing tension between pure and applied science, the consequences that resulted from close

interaction with industry and the penalty imposed when an applied discipline like engineering is

forced to abandon applied considerations.

IV. The Compromise of Engineering Science

Among academic disciplines, engineering is the most practically oriented and typically

19

has extensive interaction with industry. As was pointed out in an earlier section, tensions arose

quickly as to its relevance for the new university. By and large, however, it can be stated that

practical engineering education was deemed outside the founding mission of the university and

its prevailing academic culture. In his Inaugural Address in 1876, Gilman stated, “There is a

department of engineering which may also receive special attention here. …But in forming all

these plans we must beware lest we are led away form our foundations; least we make our

schools technical instead of liberal; and impart a knowledge of methods that than of principles.

If we make that mistake, we may have an excellent Polytechnicum but not a university.”

(Perhaps a few words on electrical engineering under Rowland in the 1890s might be

helpful here. This material is in Rosenberg’s dissertation, but I don’t have copies of the relevant

passages with me. I think it would reinforce nicely the general thesis)

In 1912, the Maryland state legislature provided $600,000 to launch a technical

engineering program at Johns Hopkins. The state of Maryland did not have a prominent

engineering school and as many as 300 young men annually left the state to attend northern

institutes of technology, while others were held back because they could not afford to study far

away from home (French 1946: 166). The Maryland Technical School Bill provided one

hundred and twenty-nine scholarships in applied science or advanced technology for state

residents at the University. Financing of a new building and laboratory space was also included.

The state offer to fund an engineering program came at a time when the institution had financial

problems due to the decline in the value its endowment (French 1946).

The university retained full control of the program, but according to French (1946: 168):

20

“So far as the State was concerned… the work of the school was to be primarily undergraduate

with advanced work for adequately prepared college graduates.” From the outset, however,

some faculty insisted that this money be used to create a model for advanced study and research

in engineering. According to Yoe (1989: 5): “A few faculty members felt strongly that formal

instruction in an essentially pragmatic field was inconsistent with the University’s role and

ideals”.

To define the curriculum, John Whitehead, professor of applied electricity and a student

of Henry Rowland, traveled to fourteen established eastern engineering schools and sought

practical advice from industry representatives. He concluded that what was needed was a

program rooted in fundamental scientific principles. Nonetheless, in addition to Whitehead, the

other founding professors were Charles J. Tilden (civil engineering) and Carl C. Thomas

(mechanical engineering). The original expectation was that engineering would create new

standards for professional education, similar to what had been accomplished by the Hopkins

Medical School (French 1946:169).

Engineering opened as a department in 1912. J. Trueman Thompson was a member of

the first four-year class of engineers. He describes himself and his classmates as, “guinea pigs in

an experiment in engineering education… The teachers in the Faculty of Philosophy looked at us

with suspicions and doubt but decided that if we were determined to be plumbers and other

varieties of mechanics, we would at least be better educated than the artisans whom they had

thus far encountered ” (Thompson 1973). The term plumbers, certainly meant to be pejorative,

21

can be traced back to the debates surrounding the establishment of an engineering program.22

Hopkins’ engineering was soon involved in war preparations, both in terms of research

and teaching, but after the war quickly turned to commercial work. For example, William B.

Kouwenhoven, as an assistant professor was a captain in the Reserve Officers Training Corps

(ROTC) unit that was organized as the first in the country. His research focused on identifying

bad stocks in rifle manufacturing. After the was , Kouwenhoven became interested in working

to prevent the accidental death of electric utility lineman by electric shock and began to study the

effects of electricity on the human body in 1928. Ultimately, Kouwenhoven’s work led to the

discovery of cardio-pulmonary resuscitation (CPR) in 1960.

Engineering grew into the organization status of a School in 1919 with local political and

strong corporate support (French 1946; Yoe 1989). The early emphasis on basic scientific and

general courses was progressively abandoned in favor of the practical approach that was

common in other technical colleges (Yoe 1989: 33-37). As a result of this cultural shift, night

courses for technical workers were initiated and the School regularly ran short courses developed

at the request of local industries. The School of Engineering also entered in cooperative

agreements with firms to provide hands-on experience to students (Yoe 1989:26). Many faculty

members consulted with industry and government on issues ranging from electrical insulation to

22 John Boswell Whitehead, one of the first faculty in engineering and the first Dean of the School of Engineering, is noted to have remarked, “They thought I meant plumbers” when explaining why some members of the Hopkins faculty opposed the establishment of engineering at the university (Yoe 1989: 19).

22

highway construction and steam turbines design.23 John Whitehead, then Dean of the School of

Engineering, stated that a technical school within a university had to be “in proper adjustment

with, and feeding the needs of, the surrounding community, but at the same time setting its

standards high and providing opportunity in the field of the applications of science for the most

advanced types of study and education”. Because of this practical orientation, Hopkins

engineering graduates were highly sought after in the job market. In 1937, in the depth of the

Depression, a Baltimore Sun article reported that thirty-five corporations made campus visits and

every graduate in mechanical engineering had been offered at least three jobs (idem, p. 24). In

sum, engineering exemplified a different orientation in terms of its rapport with commercial

activities.

Not all members of the Hopkins community viewed the accomplishments of the School

of Engineering with unbridled enthusiasm. A 1944 report commissioned by President Bowman

recommended that specialized methods courses be dropped in favor of increased emphasis on

basic science and engineering principles and required coursework in social studies, the

humanities and oral and written expression. For example, the engineering course, Heat Engines

was replaced by the study of Thermodynamics while Electrical Machinery was replaced by

Circuit Analysis, to reflect a more scientific orientation (Yoe 1989: 41). Graduates of the School

were awarded Bachelor of Engineering Science degrees as coursework became less applied. A

23 Details of the Engineering School’s interactions with industry may be found under the list of “professional services” in the various Annual Report of the President of the Johns Hopkins University. This can be further illustrated by the growing financial support that commercial interests gave to the School. Following the First World War, foundations and associations interested in the applications of scientific discoveries in electricity gave $120,000 for research in Electrical Engineering. In 1924 the member companies of the Southern Gas Association offered $8,000 a year for five years for both graduate and undergraduate work in their field. The training and research conducted by the new gas department was so successful that additional grants came from the gas companies of four large cities and from the American Gas Association. In later years, this work was merged with chemistry to constitute a department of gas and chemical engineering (French,

23

similar story unfolded with the opening in 1946 of a new aeronautics department, when the

newly appointed department head, Francis Clauser, made sure to uphold Hopkins’ research

tradition in his inaugural address: “I am not here to establish a trade school, but to set up a

training course for the type of men who have always pushed back the frontiers of flight

knowledge” (quoted by Yoe 1989: 39). Despite the prominence of the emerging discipline, it

had nonetheless taken 17 years to create the new department.

After the Second World War, the School pioneered a national trend with a resolute turn

towards what would now be called “engineering science”.24 After 1951, students were awarded

the Bachelor of Engineering Science degree, underscoring the increased emphasis on science.

The graduate program was reoriented towards training university professors and researchers.

The resulting hiring policy increased the number of faculty members with training in the sciences

rather than engineering.

In 1961, the School of Engineering officially changed its name to the School of

Engineering Sciences. The engineering program had become redundant: its courses were

1946: 175).

24

increasingly similar to those offered in the science departments of the university. The School of

Engineering was merged with the School of Philosophy in 1966 to create the School of Arts and

Sciences. Following the merger, the word engineering is noted to almost have disappeared

entirely from campus (Yoe 1989: 52).

In 1975, the university convened a blue-ribbon committee chaired by L. R. Hafstad, then

retired vice president and research director for General Motors, to review the role of engineering

sciences. The final report, issued in the fall of 1976 came to the following conclusion:

“..in the industrial world, Hopkins is considered to have lost all interest in practical engineering activities. Individual professors may be known and even acclaimed, but there is no ‘School of Engineering’ to attract students interested in working in industry. There is little incentive for industry to support an institution not sensitive to its needs for broadly trained leaders capable of managing major engineering projects (as reported in Schmidt 1986: 132).”

The School of Engineering was recreated in 1979. It can be argued, however, that

engineering at Hopkins still struggled with the imprint of Hopkins’ culture. In 1990, vice-provost

for research Jared Cohon argued that most faculty at the engineering school focused on relatively

abstract questions and received the bulk of their funding from a handful of federal agencies such

24 For a larger description of this phenomena, see Ferguson (1992). He summarizes his view in the following way: “The final report [of the Committee of the American Society for Engineering Education published in the early 1950's]] contained two significant recommendations that were promptly followed by those schools that had received or hoped to receive large research grants. First, “those courses having a high vocational and skill content” should be eliminated, as should “those primarily attempting to convey engineering art and practice.” Thus, shop courses - intended to give students a visual and tactile appreciation of materials and basic processes, such as the welding, casting, and machining of metals - were rapidly dispensed with. Engineering drawing lingered a bit, primarily because many drawing instructors held academic rank and were difficult to fire, but the diminished status of courses in drawing and descriptive geometry was clear to all concerned. The “art and practice” courses - which described the individual components fo engineering systems such as steam power plants, electrical networks, and chemical process plants and explained how the components were coordinated in practice, thus providing training in the wy engineering had been and was being done - survived only until the Committee’s second recommendation could be put in place. That second recommendation called for courses in “six engineering sciences - mechanics of solids, fluid mechanics, thermodynamics, transfer and rate mechanisms (heat, mass, momentum), electrical theory, and nature and properties of materials”... By no means were all engineering curricula changed immediately, but the gospel of change was unambiguous for the research-oriented engineering schools and for the schools that aspired to join the prosperous group (Ferguson, 1992: 160-161).

25

as the National Science Foundation (NSF), the National Aeronautics and Space Administration

(NASA), and the various branches of the Department of Defense (DOD) (as reported by Levine

1990). To date, there is little industry funding of sponsored research and there appears to be

relatively little consulting to private industry by Hopkins’ engineering professors. This is also

reflected by the fact that while Hopkins as a whole always ranked among the best American

universities in terms of total research expenditures, its percentage of industry sponsored research

as a portion of total research expenditures still ranked the second to lowest among the top 20

universities in the late 1990’s (Abramson et al. 1997:23). This is in stark contrast to institutions

such as MIT, Penn State and the University of Washington. 25

VII. Reflective Conclusions

The objective of this article is to provide an historical perspective to enrich our

understanding of universities as complex organizations that may encounter difficulties

accommodating the new post-Bayh-Dole expectations of increased industrial interaction. With

the passage of the Bayh-Dole Act in 1980, American universities took a more active stance

towards technology transfer. Johns Hopkins was no exception26. In recent years, new initiatives

have been introduced to offer incentives for direct technology transfer, encouraging faculty to

patent their research and license their ideas to industry. Nevertheless, the process of changing

organizational culture is slow. As one university spokesperson said in 1998: “Changing a

25 In FY 1994, the percentage of industry sponsored research at MIT was 15.25%, at Penn State 14.99% and 9.65% at the University of Washington. In contrast, at Hopkins, industry provided 1.33% of university research funding.

26

university’s culture takes time, like turning a tanker takes time, there’s a lot of inertia to

overcome” (quoted by Lynch 1998). This paper, however, does not consider the post-Bayh-Dole

era. Instead, the objective is to examine historical practice toward industrial activity to

understand how the university defined its role and to illustrate some of the problems encountered

in interaction with industry.

Culture is an illusive organizational attribute that, while difficult to quantify, is real and

persistent. Johns Hopkins University’s founding mission, together with a drive to be a

preeminent research university and the hiring decisions that resulted, shaped its academic

culture. As was pointed out, the founding mission of the university was Truth for its own Sake,

an orientation that was radically different from the prevailing liberal arts and technical

school/land grant models. While this conceptualization was roughly based on the German model,

it advocated scientific inquiry that was free from commercial interests.

One device that reinforces institutional culture is the use of stories and the interpretation

of historical episodes that provide orientation and socialization for new members. The story of

Ira Remsen and the discovery and commercialization of Saccharin helped solidify a culture that

disdained direct interaction with industry. The idea of direct interaction was simply contrary to

the mission of the university. When these activities did happen and benefited from institutional

support, as in the case of the Rowland Telegraphic Company, it was through the initiative of

individuals in special circumstances. When they proved unsuccessful, they only reinforced the

26 Hopkins did not have a dedicated technology transfer office until 1986, making it what (Mowery and Ziedonis, 1999) define as a late entrant into this activity. AUTM reports that Hopkins formed an office of Technology Transfer in 1973 under the criteria that one-half FTE was working in technology transfer. We use 1986 as more realistic date due to policy changes that allowed more aggressive incentives for faculty and the commitment of resources to support the activity.

27

norm that this was not an activity in which the university should actively engage.

The first incarnation of the Engineering School is a tale of uneasy compromise that tested

the university’s cultural orientation. The less than thirty-year flirtation with a more applied

orientation was always seen to potentially detract from the university’s basic mission.

Yet, the larger question concerns the role of the university in the national system of

innovation. It has been our hope that this example illuminates some of the inherent problems

and potential pitfalls of university participation in commercial activities and provides the

rationale and justification for the Hopkins’ motto of Truth for its own sake. Nelson (2001)

argues that the aggressive exercise of intellectual property rights by universities propagated by

Bayh-Dole is inconsistent with the norms of open science and raises questions about the long-run

effects on the U.S. system of innovation. The historical example of Johns Hopkins University

indicates that there are other models of university-industry interaction that offer alternative

conceptualizations on the role of university in the system of innovation. Perhaps one of the

strengths of the American system of innovation is the diversity of different types of institutions

of higher education in terms of their cultures, orientations and strengths. We may ask if the

current emphasis destroys that diversity. The authors hope that this example illuminates some of

the inherent problems and potential pitfalls of university participation in commercial activities.

28

Bibliography

Abramson, H. Norman, José Encarnaçao, Proctor P. Reid and Ulrich Schmoch (eds). 1997. Technology Transfer Systems in the United States and Germany. Lessons and Perspectives. Washington, D.C: National Academy Press.

Allen, E.T. (1927) “Reflections of Ira Remsen”. Johns Hopkins Alumni Magazine, XVI: 2xx-2xx. Anonymous. 1902. “The Rowland Multiplex Printing Telegraph System.” The Electrical Age 29

(9): 540-557. Apple, Rima D. 1989. “Patenting University Research: Harry Steenbock and the Wisconsin

Alumni Research Foundation.” ISIS 80:375-394. Baltimore Sun. 1873. “Death of Johns Hopkins” December 25, 1973. Barfield, Claude. 1997. Science for the twenty-first century : the Bush report revisited.

Washington, D.C. American Enterprise Institute Press. Barnard, W.T. 1887. Technical Education in Industrial Pursuits with Special Reference to

Railroad Service. Baltimore: Isaac Friedenwald. Bowman, Isaiah. 1939. The Graduate School in American Democracy. Bulletin 1939, no. 10.

Washington, D.C.: Government Printing Office. Brody, William. 1999. “From Minds to Minefields: Negotiating the Demilitarized Zone Between

Industry and Academia”. Remarks delivered for the Biomedical Engineering Lectures Series by William R. Brody, President, The Johns Hopkins University, Tuesday, April 6 (http://www.jhu.edu/~president/speech/biolec.html).

Brooks, Harvey and Lucien Randazzese (1998) “University-Industry Relations: The New Four Years and Beyond” in Investing in Innovation, edited by Lewis Branscomb and James Keller (Cambridge, MA: The MIT Press), pp. 361-399.

Bruce, Robert V. 1988. The Launching of American Science. Ithaca: Cornell University Press. Bush, Vannevar. 1945. Science: The Endless Frontier. Washington: Government Printing Office

(http://www1.umn.edu/scitech/VBush1945.html). Cavanaugh Simpson, Joanne . 2001. “Golden Opportunity – or Overwhelming Obstacle?.” Johns

Hopkins Magazine 53 (1): 12-22. Clark, B. (1998). Creating Entrepreneurial Universities. International Association of

Universities and Elsevier Science. Columbia University. 1999. Transcript of the Technology Transfer and Innovation Conference.

Columbia University, December 3. Desrochers, Pierre and Maryann P. Feldman. 2001. “The University and the Region: Johns

Hopkins University, Spin-Off Firms and Organizational Evolution.” Mimeo Ely, Richard T. (1880). “American Colleges and German Universities. Harpers New Monthly

Magazine, 61:253-260. Etzkowitz, Henry (1989). “Entrepreneurial Science in the Academy: A Case of the

Transformation of Norms.” Social Problems 36(1): 14–29, 36-50.

29

Etzkowitz, Henry and Loet Leydesdorff (1997), editors, Universities and the Global Knowledge Economy (London, England: Pinter).

Etzkowitz, Henry and Lois Peters (1991) “Profit from Knowledge: Organizational Innovations and Normative Change in American Universities” Minerva 29:133-166.

Fee, Elizabeth and Edward T. Morman. 1993. “Doing History, Making Revolution: The Aspirations of Henry E. Sigerist and George Rosen”. Clio-Medica 23: 275-311.

Fee, Elizabeth. 1987. Disease and Discovery: A History of the Johns Hopkins School of Hygiene and Public Health, 1916-1939. Baltimore: Johns Hopkins University Press.

Feldman, Maryann P. 1994. “The University and Economic Development: The Case of Johns Hopkins University and Baltimore”. Economic Development Quarterly 8 (1): 67-76.

Feldman, Maryann P. forthcoming. “Post Bayh-Dole University-Industry Relationships”. In Charles Wessner, Editor. Government – Industry Partnerships in Biotechnology and Information Technologies: New Needs and New Opportunities. Washington, D.C: National Academy Press.

Feller, Irwin (1990) “Universities as Engines of R&D-based Economic Growth: They Think They Can” Research Policy 19:335-348.

Feller, Irwin. 1990. "Universities as Engines of Economic Growth: They Think They Can." Research Policy, 19 (4): 335-348.

Ferguson, Eugene S. 1992. Engineering and the Mind’ s Eye. Cambridge: The MIT Press. Field, Mike. 1993. “Technology Transfer’s Bittersweet Beginnings”. The Johns Hopkins

University Gazette, May 17, pp. 1 and 5. Fleming, Donald. 1987 (1954). William H. Welch and the Rise of Modern Medicine. Baltimore:

Johns Hopkins University Press. Flexner, Abraham J. Daniel Coit Gilman : Creator of the American type of University. New

York: Harcourt, Brace and Company. French, John Calvin.1946. A History of the University Founded by Johns Hopkins. Baltimore:

Johns Hopkins Press. Geiger, Roger (1993) Research and Relevant Knowledge (New York: Oxford University Press). Geuna, A. (2000). The Economics of Knowledge Production: Funding and the Structure of

University Research, London: Edward Elgar. Gilman, Daniel Coit. 1898. University Problems in the United States. New York: The Century

Co. Gilman, Daniel Coit. 1906.The Launching of a University. New York: Dodd, Mead & Company. Hambrick, D., & Mason, P. 1984. Upper echelons: The organization as a reflection of its top

managers. Academy of Management Review, 9: 193-206. Harvey, Abner McGehee, Gert H. Brieger, Susan L. Abrams and Victor A. McKusick. 1989. A

Model of Its Kind: Vol. I, A Centennial History of Medicine at Johns Hopkins University. Baltimore: Johns Hopkins University Press.

30

Harvey, Abner McGehee. 1976. Adventures in Medical Research. Baltimore: Johns Hopkins University Press.

Harvey, Abner McGehee. 1981. Research and Discovery in Medicine: Contributions from Johns Hopkins. Baltimore: Johns Hopkins University Press.

Hawkins, Hugh. 1960. Pioneer: A History of the Johns Hopkins University, 1874-1889. Cornell University Press.

Hounshell, David. 1996. “The Evolution of Industrial Research in the U.S.” In Richard S. Rosenbloom and William J. Spencer (eds.). Engines of Innovation: U.S. Industrial Research at the End of an Era. Cambridge: Harvard Business School Publishing.

Jensen, J. Vernon. 1993. “Thomas Henry Huxley's address at the opening of the Johns Hopkins University in September 1876. “ Notes and Records of the Royal Society ofLondon [Great Britain] 1993 47(2): 257-269.

Kline, Stephen J. and Nathan Rosenberg. 1987. “An Overview of Innovation,” in R. Landau and N. Rosenberg, editors, The Positive Sum Society. Washington, D.C.: National Academy Press.

Klingaman, William K. 1993. APL – Fifty Years of Service to the Nation. A History of the Johns Hopkins University Applied Physics Laboratory. Laurel, MD: The Johns Hopkins University Applied Physics Laboratory.

Lee, Yong S. 1998. “University-industry collaboration on technology transfer” Research Policy 26: 69-84.

Leslie, S. and R. Kargon. 1996. “Selling Silicon Valley: Frederick Terman’s Model for Regional Advantage”. Business History Review.70(4), 435-472

Leslie, Stuart W. and Robert H. Kargon. 1996. “Selling Silicon Valley: Frederick Terman’s Model for Regional Advantage.” Business History Review 70: 435-472.

Levine, Joe. 1990. “Technology Tales.” Johns Hopkins Magazine 42 (4): 15-31. Link, Al. 1995. A Generosity of Spirit: The Early History of Research Triangle Park. Chapel

Hill: The Research Triangle Foundation of North Carolina Lucas, Christopher. 1994. American Higher Education. A History. New York: St. Martin’s

Griffin. Luger, Michael and Harvey Goldstein (1991) Technology in the Garden. Chapel Hill, N.C.:

University of North Carolina Press. Lynch Heather. 1998. “The Age of Invention: Hopkins Cranks Up Wheel of Free Enterprise.”

The Daily Record, December 12, p. 1a and 10a. Matkin, Gary W. 1990. Technology Transfer and the University. New York: American Council

on Education in collaboration with MacMillan Publishing Company. May, Stephen. 1995. “One Summer in Seal Harbor.” Johns Hopkins Magazine. June

(http://www.jhu.edu/~news_info/jhmag/695web/eakins.html) Menand, Louis. 2001. The Metaphysical Club. New York: Farrar, Straus and Giroux.

31

Merton, Robert K. 1979. The Sociology of Science: An Episodic Memoir. Carbondale: Southern Illinois University Press.

Mowery, David, and Arvid Ziedonis (1999). “The Effects of the Bayh-Dole Act on U.S. University Research and Technology Transfer: Analyzing Data from Entrants and Incumbents.” Paper presented at the Science and Technology Group, NBER Summer Institute (Cambridge, MA: National Bureau of Economic Research).

Mowery, David, Richard. Nelson, Bahven Sampat, and Arvid Ziedonis (1999). “The Effects of the Bayh-Dole Act on U.S. University Research and Technology Transfer.” Pp. 269–306 in L. Branscomb, F. Kodama, and R. Florida (eds.), Industrializing Knowledge (Cambridge, MA: MIT Press).

National Science Board. 2001. Science and Engineering Indicators, 2001. Washington, DC: National Science Foundation:

Nelson, Richard. 2001. “ Observations on the Post Bayh-Dole Rise in Patenting at American Universities. “Journal of Technology Transfer. 16: 13-19.

Peters, L., and H. Fusfeld (1983). “Current U.S. University/Industry Research Connections.” In National Science Foundation, University– Industry Research Relationships: Selected Studies. Washington, DC: National Science Board.

Putnam, Robert D. 1993. Making Democracy Work: Civic Traditions in Modern Italy. Princeton: Princeton University Press.

Rahm, Dianne (1994) “Academic Perceptions of University-Firm Technology Transfer” Policy Studies Journal 22:267-278

Roberts, Everett B. 1991. Entrepreneurs in High Technology. New York, Oxford University Press.

Rogers, Everett B. and Judith K. Larsen. 1984. Silicon Valley Fever. Growth of a High-Technology Culture. New York: Basic Books.

Rosegrant, Susan and David R. Lampe. 1985. Route 128. Lessons from Boston’ s High-Tech Community. New York: Basic Books.

Rosenberg, Charles E. 1997. No Other God :On Science and American Social Thought. Baltimore: Johns Hopkins University Press.

Rosenberg, Nathan and Richard.R. Nelson 1994. “American Universities and Technical Advance in Industry.” Research Policy 23: 325–348.

Rosenberg, Robert. 1990. Academic Physics and the Origins of Electrical Engineering in America. Ph.D. Dissertation (History of Science), Johns Hopkins University.

Rowett, Christine A. (1994). “Smithsonian Revisits Remsen, Fahlberg Debate” The Johns Hopkins University Gazette, August 22.

Rowland Telegraphic Company. 1907. The Rowland Telegraphic Company. Report of the President. Baltimore, MD: Rowland Telegraphic Company.

Rowland, Henry Augustus 1902. The Physical Papers of Henry Augustus Rowland, Johns Hopkins University, 1876-1901, Baltimore: Johns Hopkins Press.

32

Ryan, W. Carson. 1939. Studies in Early Graduate Education. The Johns Hopkins University, Clark University, The University of Chicago. New York: The Carnegie Foundation for the Advancement of Teaching.

Schafer, Sarah. 1999. “A “Stealth Lab” Spin-Off”. Washington Post, December 1, p. E1. Schmidt, John C. 1986. Johns Hopkins. Portrait of a University. Baltimore: The Johns Hopkins

University. Slaughter, Sheila, and L (???).L. Leslie (1997). Academic Capitalism: Politics, Policies and the

Entrepreneurial University. Baltimore, MD: The Johns Hopkins University Press. Smircich, L. 1983. Concepts of culture and organizational analysis. Administrative Science

Quarterly, 28: 339-358. Spencer, Hugh Miller. 1985. The Life of John William Mallet, B.A., Ph.D., LL.D., Hon. M.D.

F.R.S.; and The four distinguished sons of Patrick Kerr (1776-1828) and Hannah Blythe (ca. 1775-1820) Rogers. Charlottesville: Alumni Association of the University of Virginia.

Stimpert, James. (2000). “Ira Remsen: The Chemistry was Just Right.” The Johns Hopkins University Gazette Online, September 11.

Szmercsanyi, Tamas. 1997 “Review of Christopher Maria Merki, Zucker gegen Saccharine: zur Geschichte der Kuslichen Sussstoffe Frankfurt: Campus Verlag, 1993”. World Sugar History Newsletter 24, June (available at http:www.chass.utoronto.ca/epc/wshn/number24.html).

Thompson, 1973. Johns Hopkins Magazine (to be completed). Warren, Mame. 2000. Johns Hopkins: Knowledge for the World, 1976-2001. Baltimore: Johns

Hopkins University. Yoe, Mary Ruth. 1989. Hopkins: Engineering at the University. Baltimore: The Johns Hopkins

University.